Abstract

Pulsed lasers are used for simultaneous single-beam three-dimensional optical trapping of and second-harmonic generation in 50–100-nm nonlinear particles. The emission power of the frequency-doubled light, the trapping stability, and the particle degradation are investigated for KTP and LiNbO3 particles trapped by 25-kHz-repetition-rate Q-switched Nd:YAG and 76-MHz mode-locked Ti:sapphire lasers. Typically 1 pW–10 nW of frequency-doubled light is detected from stably trapped particles. The particles may be used as probes for nonintrusively scanned near-field optical microscopy.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
    [CrossRef] [PubMed]
  2. S. Sato, H. Inaba, “Observation of second harmonic generation from optically trapped microscopic LiNbO3 particle using Nd:YAG laser,” Electron. Lett. 28, 286–287 (1992).
    [CrossRef]
  3. L. Malmqvist, H. M. Hertz, “Trapped particle optical microscopy,” Opt. Commun. 94, 19–24 (1992).
    [CrossRef]
  4. L. Malmqvist, H. M. Hertz, “Two-color trapped particle optical microscopy,” Opt. Lett. 19, 853–855 (1994).
    [CrossRef] [PubMed]
  5. A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
    [CrossRef] [PubMed]
  6. W. H. Wright, G. J. Sonek, Y. Tadir, M. W. Bems, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
    [CrossRef]
  7. A. Ashkin, K. Schuütze, J. M. Dziedzic, U. Euteneuer, M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348, 346–348 (1990).
    [CrossRef] [PubMed]
  8. K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Laser-scanning micromanipulation and spatial patterning of fine particles,” Jpn. J. Appl. Phys. 30, L907–L909 (1991).
    [CrossRef]
  9. K. Visscher, G. J. Brakenhoff, J. J. Krol, “Micromanipulation by ‘multiple’ optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14, 105–114 (1993).
    [CrossRef] [PubMed]
  10. S. M. Block, “Optical tweezers: a new tool for biophysics,” in Noninvasive Techniques in Cell Biology, J. K. Foskett, S. Grinstein, eds. (Wiley, New York, 1990), pp. 375–402.
  11. H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70, 3829–3836 (1991).
    [CrossRef]
  12. M. Kerker, The Scattering of Light (Academic, New York, 1969), Chap. 3.
  13. W. Heller, “Theoretical investigations on the light scattering of spheres. XVI. Range of practical validity of the Rayleigh theory,” J. Chem. Phys. 42, 1609–1615 (1965).
    [CrossRef]
  14. S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys. 15, 1–89 (1943).
    [CrossRef]
  15. R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), pp. 39 and 432.
  16. H. Vanherzeele, J. D. Bierlein, “Magnitude of the nonlinear-optical coefficients of KTiOPO4.” Opt. Lett. 17, 982–984 (1992).
    [CrossRef] [PubMed]
  17. P. Lorrain, D. Corson, Electromagnetic Fields and Waves, 2nd ed. (Freeman, New York, 1970), p. 605.
  18. S. Hell, Centre for Biotechnology, P.O. Box 123, Turku, Finland FIN-20521 (personal communication, 1994).
  19. W. Seiffert, Department of Physics, Lund Institute of Technology, P.O. Box 118, Lund, Sweden S-22100 (personal communication, 1994).
  20. J. K. Trautman, E. Betzig, J. S. Wiener, D. J. DiGiovanni, T. D. Harris, F. Hellman, E. M. Gyorgy, “Image contrast in near-field optics,” J. Appl. Phys. 71, 4659–4663 (1992).
    [CrossRef]
  21. S. Andersson-Engels, I. Rokahr, J. Carlsson, “Time- and wavelength-resolved spectroscopy in two-photon excited fluorescence microscopy,” J. Microsc. (Oxford) 176195–203 (1994); I. Rokahr, Department of Physics, Lund Institute of Technology, P.O. Box 118, Lund, Sweden S-22100 (personal communication, 1994).
    [CrossRef]
  22. D. S. Chemla, J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, New York, 1987).

1994 (2)

S. Andersson-Engels, I. Rokahr, J. Carlsson, “Time- and wavelength-resolved spectroscopy in two-photon excited fluorescence microscopy,” J. Microsc. (Oxford) 176195–203 (1994); I. Rokahr, Department of Physics, Lund Institute of Technology, P.O. Box 118, Lund, Sweden S-22100 (personal communication, 1994).
[CrossRef]

L. Malmqvist, H. M. Hertz, “Two-color trapped particle optical microscopy,” Opt. Lett. 19, 853–855 (1994).
[CrossRef] [PubMed]

1993 (1)

K. Visscher, G. J. Brakenhoff, J. J. Krol, “Micromanipulation by ‘multiple’ optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14, 105–114 (1993).
[CrossRef] [PubMed]

1992 (4)

H. Vanherzeele, J. D. Bierlein, “Magnitude of the nonlinear-optical coefficients of KTiOPO4.” Opt. Lett. 17, 982–984 (1992).
[CrossRef] [PubMed]

S. Sato, H. Inaba, “Observation of second harmonic generation from optically trapped microscopic LiNbO3 particle using Nd:YAG laser,” Electron. Lett. 28, 286–287 (1992).
[CrossRef]

L. Malmqvist, H. M. Hertz, “Trapped particle optical microscopy,” Opt. Commun. 94, 19–24 (1992).
[CrossRef]

J. K. Trautman, E. Betzig, J. S. Wiener, D. J. DiGiovanni, T. D. Harris, F. Hellman, E. M. Gyorgy, “Image contrast in near-field optics,” J. Appl. Phys. 71, 4659–4663 (1992).
[CrossRef]

1991 (2)

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70, 3829–3836 (1991).
[CrossRef]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Laser-scanning micromanipulation and spatial patterning of fine particles,” Jpn. J. Appl. Phys. 30, L907–L909 (1991).
[CrossRef]

1990 (2)

W. H. Wright, G. J. Sonek, Y. Tadir, M. W. Bems, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[CrossRef]

A. Ashkin, K. Schuütze, J. M. Dziedzic, U. Euteneuer, M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348, 346–348 (1990).
[CrossRef] [PubMed]

1987 (1)

A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef] [PubMed]

1986 (1)

1965 (1)

W. Heller, “Theoretical investigations on the light scattering of spheres. XVI. Range of practical validity of the Rayleigh theory,” J. Chem. Phys. 42, 1609–1615 (1965).
[CrossRef]

1943 (1)

S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys. 15, 1–89 (1943).
[CrossRef]

Andersson-Engels, S.

S. Andersson-Engels, I. Rokahr, J. Carlsson, “Time- and wavelength-resolved spectroscopy in two-photon excited fluorescence microscopy,” J. Microsc. (Oxford) 176195–203 (1994); I. Rokahr, Department of Physics, Lund Institute of Technology, P.O. Box 118, Lund, Sweden S-22100 (personal communication, 1994).
[CrossRef]

Ashkin, A.

A. Ashkin, K. Schuütze, J. M. Dziedzic, U. Euteneuer, M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348, 346–348 (1990).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

Bems, M. W.

W. H. Wright, G. J. Sonek, Y. Tadir, M. W. Bems, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[CrossRef]

Betzig, E.

J. K. Trautman, E. Betzig, J. S. Wiener, D. J. DiGiovanni, T. D. Harris, F. Hellman, E. M. Gyorgy, “Image contrast in near-field optics,” J. Appl. Phys. 71, 4659–4663 (1992).
[CrossRef]

Bierlein, J. D.

Bjorkholm, J. E.

Block, S. M.

S. M. Block, “Optical tweezers: a new tool for biophysics,” in Noninvasive Techniques in Cell Biology, J. K. Foskett, S. Grinstein, eds. (Wiley, New York, 1990), pp. 375–402.

Boyd, R. W.

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), pp. 39 and 432.

Brakenhoff, G. J.

K. Visscher, G. J. Brakenhoff, J. J. Krol, “Micromanipulation by ‘multiple’ optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14, 105–114 (1993).
[CrossRef] [PubMed]

Carlsson, J.

S. Andersson-Engels, I. Rokahr, J. Carlsson, “Time- and wavelength-resolved spectroscopy in two-photon excited fluorescence microscopy,” J. Microsc. (Oxford) 176195–203 (1994); I. Rokahr, Department of Physics, Lund Institute of Technology, P.O. Box 118, Lund, Sweden S-22100 (personal communication, 1994).
[CrossRef]

Chandrasekhar, S.

S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys. 15, 1–89 (1943).
[CrossRef]

Chu, S.

Corson, D.

P. Lorrain, D. Corson, Electromagnetic Fields and Waves, 2nd ed. (Freeman, New York, 1970), p. 605.

DiGiovanni, D. J.

J. K. Trautman, E. Betzig, J. S. Wiener, D. J. DiGiovanni, T. D. Harris, F. Hellman, E. M. Gyorgy, “Image contrast in near-field optics,” J. Appl. Phys. 71, 4659–4663 (1992).
[CrossRef]

Dziedzic, J. M.

A. Ashkin, K. Schuütze, J. M. Dziedzic, U. Euteneuer, M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348, 346–348 (1990).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef] [PubMed]

A. Ashkin, J. M. Dziedzic, J. E. Bjorkholm, S. Chu, “Observation of single-beam gradient force optical trap for dielectric particles,” Opt. Lett. 11, 288–290 (1986).
[CrossRef] [PubMed]

Euteneuer, U.

A. Ashkin, K. Schuütze, J. M. Dziedzic, U. Euteneuer, M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348, 346–348 (1990).
[CrossRef] [PubMed]

Gyorgy, E. M.

J. K. Trautman, E. Betzig, J. S. Wiener, D. J. DiGiovanni, T. D. Harris, F. Hellman, E. M. Gyorgy, “Image contrast in near-field optics,” J. Appl. Phys. 71, 4659–4663 (1992).
[CrossRef]

Harris, T. D.

J. K. Trautman, E. Betzig, J. S. Wiener, D. J. DiGiovanni, T. D. Harris, F. Hellman, E. M. Gyorgy, “Image contrast in near-field optics,” J. Appl. Phys. 71, 4659–4663 (1992).
[CrossRef]

Hell, S.

S. Hell, Centre for Biotechnology, P.O. Box 123, Turku, Finland FIN-20521 (personal communication, 1994).

Heller, W.

W. Heller, “Theoretical investigations on the light scattering of spheres. XVI. Range of practical validity of the Rayleigh theory,” J. Chem. Phys. 42, 1609–1615 (1965).
[CrossRef]

Hellman, F.

J. K. Trautman, E. Betzig, J. S. Wiener, D. J. DiGiovanni, T. D. Harris, F. Hellman, E. M. Gyorgy, “Image contrast in near-field optics,” J. Appl. Phys. 71, 4659–4663 (1992).
[CrossRef]

Hertz, H. M.

L. Malmqvist, H. M. Hertz, “Two-color trapped particle optical microscopy,” Opt. Lett. 19, 853–855 (1994).
[CrossRef] [PubMed]

L. Malmqvist, H. M. Hertz, “Trapped particle optical microscopy,” Opt. Commun. 94, 19–24 (1992).
[CrossRef]

Inaba, H.

S. Sato, H. Inaba, “Observation of second harmonic generation from optically trapped microscopic LiNbO3 particle using Nd:YAG laser,” Electron. Lett. 28, 286–287 (1992).
[CrossRef]

Kerker, M.

M. Kerker, The Scattering of Light (Academic, New York, 1969), Chap. 3.

Kitamura, N.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Laser-scanning micromanipulation and spatial patterning of fine particles,” Jpn. J. Appl. Phys. 30, L907–L909 (1991).
[CrossRef]

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70, 3829–3836 (1991).
[CrossRef]

Koshioka, M.

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70, 3829–3836 (1991).
[CrossRef]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Laser-scanning micromanipulation and spatial patterning of fine particles,” Jpn. J. Appl. Phys. 30, L907–L909 (1991).
[CrossRef]

Krol, J. J.

K. Visscher, G. J. Brakenhoff, J. J. Krol, “Micromanipulation by ‘multiple’ optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14, 105–114 (1993).
[CrossRef] [PubMed]

Lorrain, P.

P. Lorrain, D. Corson, Electromagnetic Fields and Waves, 2nd ed. (Freeman, New York, 1970), p. 605.

Malmqvist, L.

L. Malmqvist, H. M. Hertz, “Two-color trapped particle optical microscopy,” Opt. Lett. 19, 853–855 (1994).
[CrossRef] [PubMed]

L. Malmqvist, H. M. Hertz, “Trapped particle optical microscopy,” Opt. Commun. 94, 19–24 (1992).
[CrossRef]

Masuhara, H.

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70, 3829–3836 (1991).
[CrossRef]

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Laser-scanning micromanipulation and spatial patterning of fine particles,” Jpn. J. Appl. Phys. 30, L907–L909 (1991).
[CrossRef]

Misawa, H.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Laser-scanning micromanipulation and spatial patterning of fine particles,” Jpn. J. Appl. Phys. 30, L907–L909 (1991).
[CrossRef]

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70, 3829–3836 (1991).
[CrossRef]

Rokahr, I.

S. Andersson-Engels, I. Rokahr, J. Carlsson, “Time- and wavelength-resolved spectroscopy in two-photon excited fluorescence microscopy,” J. Microsc. (Oxford) 176195–203 (1994); I. Rokahr, Department of Physics, Lund Institute of Technology, P.O. Box 118, Lund, Sweden S-22100 (personal communication, 1994).
[CrossRef]

Sasaki, K.

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Laser-scanning micromanipulation and spatial patterning of fine particles,” Jpn. J. Appl. Phys. 30, L907–L909 (1991).
[CrossRef]

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70, 3829–3836 (1991).
[CrossRef]

Sato, S.

S. Sato, H. Inaba, “Observation of second harmonic generation from optically trapped microscopic LiNbO3 particle using Nd:YAG laser,” Electron. Lett. 28, 286–287 (1992).
[CrossRef]

Schliwa, M.

A. Ashkin, K. Schuütze, J. M. Dziedzic, U. Euteneuer, M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348, 346–348 (1990).
[CrossRef] [PubMed]

Schuütze, K.

A. Ashkin, K. Schuütze, J. M. Dziedzic, U. Euteneuer, M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348, 346–348 (1990).
[CrossRef] [PubMed]

Seiffert, W.

W. Seiffert, Department of Physics, Lund Institute of Technology, P.O. Box 118, Lund, Sweden S-22100 (personal communication, 1994).

Sonek, G. J.

W. H. Wright, G. J. Sonek, Y. Tadir, M. W. Bems, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[CrossRef]

Tadir, Y.

W. H. Wright, G. J. Sonek, Y. Tadir, M. W. Bems, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[CrossRef]

Trautman, J. K.

J. K. Trautman, E. Betzig, J. S. Wiener, D. J. DiGiovanni, T. D. Harris, F. Hellman, E. M. Gyorgy, “Image contrast in near-field optics,” J. Appl. Phys. 71, 4659–4663 (1992).
[CrossRef]

Vanherzeele, H.

Visscher, K.

K. Visscher, G. J. Brakenhoff, J. J. Krol, “Micromanipulation by ‘multiple’ optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14, 105–114 (1993).
[CrossRef] [PubMed]

Wiener, J. S.

J. K. Trautman, E. Betzig, J. S. Wiener, D. J. DiGiovanni, T. D. Harris, F. Hellman, E. M. Gyorgy, “Image contrast in near-field optics,” J. Appl. Phys. 71, 4659–4663 (1992).
[CrossRef]

Wright, W. H.

W. H. Wright, G. J. Sonek, Y. Tadir, M. W. Bems, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[CrossRef]

Cytometry (1)

K. Visscher, G. J. Brakenhoff, J. J. Krol, “Micromanipulation by ‘multiple’ optical traps created by a single fast scanning trap integrated with the bilateral confocal scanning laser microscope,” Cytometry 14, 105–114 (1993).
[CrossRef] [PubMed]

Electron. Lett. (1)

S. Sato, H. Inaba, “Observation of second harmonic generation from optically trapped microscopic LiNbO3 particle using Nd:YAG laser,” Electron. Lett. 28, 286–287 (1992).
[CrossRef]

IEEE J. Quantum Electron. (1)

W. H. Wright, G. J. Sonek, Y. Tadir, M. W. Bems, “Laser trapping in cell biology,” IEEE J. Quantum Electron. 26, 2148–2157 (1990).
[CrossRef]

J. Appl. Phys. (2)

H. Misawa, M. Koshioka, K. Sasaki, N. Kitamura, H. Masuhara, “Three-dimensional optical trapping and laser ablation of a single polymer latex particle in water,” J. Appl. Phys. 70, 3829–3836 (1991).
[CrossRef]

J. K. Trautman, E. Betzig, J. S. Wiener, D. J. DiGiovanni, T. D. Harris, F. Hellman, E. M. Gyorgy, “Image contrast in near-field optics,” J. Appl. Phys. 71, 4659–4663 (1992).
[CrossRef]

J. Chem. Phys. (1)

W. Heller, “Theoretical investigations on the light scattering of spheres. XVI. Range of practical validity of the Rayleigh theory,” J. Chem. Phys. 42, 1609–1615 (1965).
[CrossRef]

J. Microsc. (Oxford) (1)

S. Andersson-Engels, I. Rokahr, J. Carlsson, “Time- and wavelength-resolved spectroscopy in two-photon excited fluorescence microscopy,” J. Microsc. (Oxford) 176195–203 (1994); I. Rokahr, Department of Physics, Lund Institute of Technology, P.O. Box 118, Lund, Sweden S-22100 (personal communication, 1994).
[CrossRef]

Jpn. J. Appl. Phys. (1)

K. Sasaki, M. Koshioka, H. Misawa, N. Kitamura, H. Masuhara, “Laser-scanning micromanipulation and spatial patterning of fine particles,” Jpn. J. Appl. Phys. 30, L907–L909 (1991).
[CrossRef]

Nature (1)

A. Ashkin, K. Schuütze, J. M. Dziedzic, U. Euteneuer, M. Schliwa, “Force generation of organelle transport measured in vivo by an infrared laser trap,” Nature 348, 346–348 (1990).
[CrossRef] [PubMed]

Opt. Commun. (1)

L. Malmqvist, H. M. Hertz, “Trapped particle optical microscopy,” Opt. Commun. 94, 19–24 (1992).
[CrossRef]

Opt. Lett. (3)

Rev. Mod. Phys. (1)

S. Chandrasekhar, “Stochastic problems in physics and astronomy,” Rev. Mod. Phys. 15, 1–89 (1943).
[CrossRef]

Science (1)

A. Ashkin, J. M. Dziedzic, “Optical trapping and manipulation of viruses and bacteria,” Science 235, 1517–1520 (1987).
[CrossRef] [PubMed]

Other (7)

M. Kerker, The Scattering of Light (Academic, New York, 1969), Chap. 3.

S. M. Block, “Optical tweezers: a new tool for biophysics,” in Noninvasive Techniques in Cell Biology, J. K. Foskett, S. Grinstein, eds. (Wiley, New York, 1990), pp. 375–402.

R. W. Boyd, Nonlinear Optics (Academic, San Diego, Calif., 1992), pp. 39 and 432.

P. Lorrain, D. Corson, Electromagnetic Fields and Waves, 2nd ed. (Freeman, New York, 1970), p. 605.

S. Hell, Centre for Biotechnology, P.O. Box 123, Turku, Finland FIN-20521 (personal communication, 1994).

W. Seiffert, Department of Physics, Lund Institute of Technology, P.O. Box 118, Lund, Sweden S-22100 (personal communication, 1994).

D. S. Chemla, J. Zyss, eds., Nonlinear Optical Properties of Organic Molecules and Crystals (Academic, New York, 1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental arrangement for simultaneous optical trapping and second-harmonic generation (SHG). PMT, photomultiplier tube.

Fig. 2
Fig. 2

Detected frequency-doubled power (λ = 532 nm) as a function of fundamental trapping power (λ = 1.06 μm) for three KTP particles trapped by a 25-kHz Q-switched Nd:YAG laser. The data have been normalized to 80-nm-diameter particles, and the original particles were 60 (▲), 95 (■), and 115 (●) nm. The solid curve represents the theoretically calculated power.

Fig. 3
Fig. 3

Emitted frequency-doubled power (λ = 397 nm) as a function of incident power (λ = 795 nm) for three KTP particles trapped by a 76-MHz mode-locked Ti:sapphire laser. The data have been normalized to 80-nm-diameter particles, and the original particles were 70 (▲), 70 (■), and 85 (●) nm. The solid curve represents the theoretically calculated power.

Fig. 4
Fig. 4

Stability of the frequency-doubled emission from KTP particles as a function of the time when a Q-switched Nd:YAG laser and a mode-locked Ti:sapphire laser are used.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

r 2 = ( k T k r ) 1 / 2 ,
r 2 = ( k T 3 π a η t ) 1 / 2 ,
E 1 = 3 ɛ 2 ɛ 1 + 2 ɛ 2 E 2 ,
W tot = 64 π 5 c a 6 27 ɛ 0 n 2 3 λ 4 [ P i ( 2 ω ) ] 2 ,

Metrics