Abstract

A 248-nm excimer laser was used to produce ionized nitrogen by the process of multiphoton excitation in gaseous nitrogen at room temperature. First-negative N2+ emission spectra were analyzed to yield rotational temperatures of typically 600 to 1200 K. Rotational Raman scattering of H2 in gaseous mixtures of N2 and H2 was used to determine if laser heating of the gas produced the observed increase in temperature, but the room temperature value of 295 K was inferred from the H2 Raman data. Therefore the use of N2+ spectra produced by multiphoton excitation at 248 nm does not appear to be acceptable for air-temperature diagnostics. N2+ emission spectra were also recorded subsequent to optical breakdown in air induced by Nd:YAG 1064-nm radiation, and temperatures were determined to be greater than 5000 K in the decaying plasma.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Laufer, R. H. Krauss, J. H. Grinstead, “Multiphoton ionization of N2 by the third harmonic of a Nd:YAG laser: a new avenue for air diagnostics,” Opt. Lett. 16, 1037–1039 (1991).
    [CrossRef] [PubMed]
  2. K. J. Rensberger, J. B. Jeffries, R. A. Copeland, K. Kohse-Höinghaus, M. L. Wise, D. R. Crosley, “Laser-induced fluorescence determination of temperatures in low pressure flames,” Appl. Opt. 28, 3556–3566 (1989).
    [CrossRef] [PubMed]
  3. J. O. Hornkohl, C. Parigger, J. W. L. Lewis, “Temperature measurements from CN spectra in a laser-induced plasma,” J. Quant. Spectrosc. Radiat. Transfer 46, 405–411 (1991).
    [CrossRef]
  4. C. Parigger, D. H. Plemmons, J. O. Hornkohl, J. W. L. Lewis, “Spectroscopic temperature measurements in a decaying laser-induced plasma using the C2 Swan system,” J. Quant. Spectrosc. Radiat. Transfer 52, 707–711 (1994).
    [CrossRef]
  5. K. A. Dick, W. Benesch, H. M. Crosswhite, S. G. Tilford, R. A. Gottscho, R. W. Field, “High resolution spectra of bands of the first negative group of ionized molecular nitrogen (N2+1NG:B²Σu+→ X²Σg+),” J. Mol. Spectrosc. 69, 95–108 (1978).
    [CrossRef]
  6. J. A. Nelder, R. Mead, “A simplex method for function minimizing,” Comput. J. 7, 308–313 (1965).
  7. J. A. Guthrie, X. X. Wang, L. J. Radziemski, “Resonance-enhanced multiphoton ionization of N2 at 193 nm and 248 nm detected by N2+ fluorescence,” Chem. Phys. Lett. 170, 117–120 (1990).
    [CrossRef]
  8. T. L. Cottrell, J. G. McCovbrey, Molecular Energy Transfer in Gases (Butterworths, London, 1961), pp. 77–78.

1994 (1)

C. Parigger, D. H. Plemmons, J. O. Hornkohl, J. W. L. Lewis, “Spectroscopic temperature measurements in a decaying laser-induced plasma using the C2 Swan system,” J. Quant. Spectrosc. Radiat. Transfer 52, 707–711 (1994).
[CrossRef]

1991 (2)

J. O. Hornkohl, C. Parigger, J. W. L. Lewis, “Temperature measurements from CN spectra in a laser-induced plasma,” J. Quant. Spectrosc. Radiat. Transfer 46, 405–411 (1991).
[CrossRef]

G. Laufer, R. H. Krauss, J. H. Grinstead, “Multiphoton ionization of N2 by the third harmonic of a Nd:YAG laser: a new avenue for air diagnostics,” Opt. Lett. 16, 1037–1039 (1991).
[CrossRef] [PubMed]

1990 (1)

J. A. Guthrie, X. X. Wang, L. J. Radziemski, “Resonance-enhanced multiphoton ionization of N2 at 193 nm and 248 nm detected by N2+ fluorescence,” Chem. Phys. Lett. 170, 117–120 (1990).
[CrossRef]

1989 (1)

1978 (1)

K. A. Dick, W. Benesch, H. M. Crosswhite, S. G. Tilford, R. A. Gottscho, R. W. Field, “High resolution spectra of bands of the first negative group of ionized molecular nitrogen (N2+1NG:B²Σu+→ X²Σg+),” J. Mol. Spectrosc. 69, 95–108 (1978).
[CrossRef]

1965 (1)

J. A. Nelder, R. Mead, “A simplex method for function minimizing,” Comput. J. 7, 308–313 (1965).

Benesch, W.

K. A. Dick, W. Benesch, H. M. Crosswhite, S. G. Tilford, R. A. Gottscho, R. W. Field, “High resolution spectra of bands of the first negative group of ionized molecular nitrogen (N2+1NG:B²Σu+→ X²Σg+),” J. Mol. Spectrosc. 69, 95–108 (1978).
[CrossRef]

Copeland, R. A.

Cottrell, T. L.

T. L. Cottrell, J. G. McCovbrey, Molecular Energy Transfer in Gases (Butterworths, London, 1961), pp. 77–78.

Crosley, D. R.

Crosswhite, H. M.

K. A. Dick, W. Benesch, H. M. Crosswhite, S. G. Tilford, R. A. Gottscho, R. W. Field, “High resolution spectra of bands of the first negative group of ionized molecular nitrogen (N2+1NG:B²Σu+→ X²Σg+),” J. Mol. Spectrosc. 69, 95–108 (1978).
[CrossRef]

Dick, K. A.

K. A. Dick, W. Benesch, H. M. Crosswhite, S. G. Tilford, R. A. Gottscho, R. W. Field, “High resolution spectra of bands of the first negative group of ionized molecular nitrogen (N2+1NG:B²Σu+→ X²Σg+),” J. Mol. Spectrosc. 69, 95–108 (1978).
[CrossRef]

Field, R. W.

K. A. Dick, W. Benesch, H. M. Crosswhite, S. G. Tilford, R. A. Gottscho, R. W. Field, “High resolution spectra of bands of the first negative group of ionized molecular nitrogen (N2+1NG:B²Σu+→ X²Σg+),” J. Mol. Spectrosc. 69, 95–108 (1978).
[CrossRef]

Gottscho, R. A.

K. A. Dick, W. Benesch, H. M. Crosswhite, S. G. Tilford, R. A. Gottscho, R. W. Field, “High resolution spectra of bands of the first negative group of ionized molecular nitrogen (N2+1NG:B²Σu+→ X²Σg+),” J. Mol. Spectrosc. 69, 95–108 (1978).
[CrossRef]

Grinstead, J. H.

Guthrie, J. A.

J. A. Guthrie, X. X. Wang, L. J. Radziemski, “Resonance-enhanced multiphoton ionization of N2 at 193 nm and 248 nm detected by N2+ fluorescence,” Chem. Phys. Lett. 170, 117–120 (1990).
[CrossRef]

Hornkohl, J. O.

C. Parigger, D. H. Plemmons, J. O. Hornkohl, J. W. L. Lewis, “Spectroscopic temperature measurements in a decaying laser-induced plasma using the C2 Swan system,” J. Quant. Spectrosc. Radiat. Transfer 52, 707–711 (1994).
[CrossRef]

J. O. Hornkohl, C. Parigger, J. W. L. Lewis, “Temperature measurements from CN spectra in a laser-induced plasma,” J. Quant. Spectrosc. Radiat. Transfer 46, 405–411 (1991).
[CrossRef]

Jeffries, J. B.

Kohse-Höinghaus, K.

Krauss, R. H.

Laufer, G.

Lewis, J. W. L.

C. Parigger, D. H. Plemmons, J. O. Hornkohl, J. W. L. Lewis, “Spectroscopic temperature measurements in a decaying laser-induced plasma using the C2 Swan system,” J. Quant. Spectrosc. Radiat. Transfer 52, 707–711 (1994).
[CrossRef]

J. O. Hornkohl, C. Parigger, J. W. L. Lewis, “Temperature measurements from CN spectra in a laser-induced plasma,” J. Quant. Spectrosc. Radiat. Transfer 46, 405–411 (1991).
[CrossRef]

McCovbrey, J. G.

T. L. Cottrell, J. G. McCovbrey, Molecular Energy Transfer in Gases (Butterworths, London, 1961), pp. 77–78.

Mead, R.

J. A. Nelder, R. Mead, “A simplex method for function minimizing,” Comput. J. 7, 308–313 (1965).

Nelder, J. A.

J. A. Nelder, R. Mead, “A simplex method for function minimizing,” Comput. J. 7, 308–313 (1965).

Parigger, C.

C. Parigger, D. H. Plemmons, J. O. Hornkohl, J. W. L. Lewis, “Spectroscopic temperature measurements in a decaying laser-induced plasma using the C2 Swan system,” J. Quant. Spectrosc. Radiat. Transfer 52, 707–711 (1994).
[CrossRef]

J. O. Hornkohl, C. Parigger, J. W. L. Lewis, “Temperature measurements from CN spectra in a laser-induced plasma,” J. Quant. Spectrosc. Radiat. Transfer 46, 405–411 (1991).
[CrossRef]

Plemmons, D. H.

C. Parigger, D. H. Plemmons, J. O. Hornkohl, J. W. L. Lewis, “Spectroscopic temperature measurements in a decaying laser-induced plasma using the C2 Swan system,” J. Quant. Spectrosc. Radiat. Transfer 52, 707–711 (1994).
[CrossRef]

Radziemski, L. J.

J. A. Guthrie, X. X. Wang, L. J. Radziemski, “Resonance-enhanced multiphoton ionization of N2 at 193 nm and 248 nm detected by N2+ fluorescence,” Chem. Phys. Lett. 170, 117–120 (1990).
[CrossRef]

Rensberger, K. J.

Tilford, S. G.

K. A. Dick, W. Benesch, H. M. Crosswhite, S. G. Tilford, R. A. Gottscho, R. W. Field, “High resolution spectra of bands of the first negative group of ionized molecular nitrogen (N2+1NG:B²Σu+→ X²Σg+),” J. Mol. Spectrosc. 69, 95–108 (1978).
[CrossRef]

Wang, X. X.

J. A. Guthrie, X. X. Wang, L. J. Radziemski, “Resonance-enhanced multiphoton ionization of N2 at 193 nm and 248 nm detected by N2+ fluorescence,” Chem. Phys. Lett. 170, 117–120 (1990).
[CrossRef]

Wise, M. L.

Appl. Opt. (1)

Chem. Phys. Lett. (1)

J. A. Guthrie, X. X. Wang, L. J. Radziemski, “Resonance-enhanced multiphoton ionization of N2 at 193 nm and 248 nm detected by N2+ fluorescence,” Chem. Phys. Lett. 170, 117–120 (1990).
[CrossRef]

Comput. J. (1)

J. A. Nelder, R. Mead, “A simplex method for function minimizing,” Comput. J. 7, 308–313 (1965).

J. Mol. Spectrosc. (1)

K. A. Dick, W. Benesch, H. M. Crosswhite, S. G. Tilford, R. A. Gottscho, R. W. Field, “High resolution spectra of bands of the first negative group of ionized molecular nitrogen (N2+1NG:B²Σu+→ X²Σg+),” J. Mol. Spectrosc. 69, 95–108 (1978).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (2)

J. O. Hornkohl, C. Parigger, J. W. L. Lewis, “Temperature measurements from CN spectra in a laser-induced plasma,” J. Quant. Spectrosc. Radiat. Transfer 46, 405–411 (1991).
[CrossRef]

C. Parigger, D. H. Plemmons, J. O. Hornkohl, J. W. L. Lewis, “Spectroscopic temperature measurements in a decaying laser-induced plasma using the C2 Swan system,” J. Quant. Spectrosc. Radiat. Transfer 52, 707–711 (1994).
[CrossRef]

Opt. Lett. (1)

Other (1)

T. L. Cottrell, J. G. McCovbrey, Molecular Energy Transfer in Gases (Butterworths, London, 1961), pp. 77–78.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Schematic experimental arrangement for multiphoton excitation (KrF, 248 nm) and Raman spectroscopy probing. The 532-nm pulses from the Nd:YAG laser were time delayed from the 248-nm excimer laser pulses. Optical-breakdown spectra were produced with only 1064-nm pulses.

Fig. 2
Fig. 2

B Σ 2 u + ( v = 0 ) X Σ 2 g + ( v = 0 ) transition of N 2 + . 92-mJ 248-nm laser pulses were used in the multiphoton ionization of N2. (a) Experimentally recorded spectrum at a resolution of Δν = 2.8 cm−1, (b) fitted spectrum.

Fig. 3
Fig. 3

Synthetic spectrum of N 2 + at a temperature of T = 300 K.

Fig. 4
Fig. 4

Log–log plot of spectral intensities at 391.4 nm versus laser pulse energy. The slope of a linear fit is 1.88 with an standard deviation of ±0.06.

Fig. 5
Fig. 5

(Top) measured and fitted N 2 + spectrum, (bottom) the corresponding Boltzmann plot.

Fig. 6
Fig. 6

(a) Raman spectrum for a N2:H2 ratio of 4:1 (400 Torr of N2). The synthetic Raman spectrum was calculated for a temperature of T = 295 K (room temperature). (b) The first-negative N 2 + emission-spectrum fitting yields a temperature of T = 600 K.

Fig. 7
Fig. 7

Laser-induced plasma spectrum of the B Σ 2 u + ( v = 0 ) X Σ 2 g + ( v = 0 ) first-negative system in N 2 + . A temperature of T = 5100 K is inferred the fitted 2.3-cm−1 resolution data recorded with a gate width of 10 μs at a delay of 10 μs from the 1064-nm breakdown pulse.

Metrics