Abstract

A Nd:YAG laser was operated at 1064 nm and with 6-ns pulse duration to achieve optical breakdown in gaseous hydrogen at pressures of 150 and 810 Torr. Spatially and temporally resolved laser-induced emission spectra were measured early in the plasma decay. With hydrogen-alpha line profiles, electron number density values were determined along the laser beam plasma in the range 1019 to 1016 cc−1.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. H. R. Griem, Spectral Line Broadening by Plasmas (Academic, New York, 1974), pp. 282–296.
  2. L. L. Wiese, J. A. Augis, “Time- and space-resolved spectroscopic studies of electrical breakdowns in an argon-hydrogen mixture,” J. Appl. Phys. 48, 4528–4535 (1977).
    [CrossRef]
  3. V. Helbig, K. P. Nick, “Investigation of the Stark broadening of Balmer beta,” J. Phys. B 14, 3573–3583 (1981).
    [CrossRef]
  4. H. R. Griem, “Shifts of hydrogen lines from electron collisions in dense plasmas,” Phys. Rev. A 28, 1596–1601 (1983).
    [CrossRef]
  5. J. H. Eickmans, W.-F. Hsieh, R. K. Chang, “Plasma spectroscopy of H, Li, and Na in plumes resulting from laser-induced droplet explosion,” Appl. Opt. 26, 3721–3725 (1987).
    [CrossRef] [PubMed]
  6. J. Ashkenazy, R. Kipper, M. Caner, “Spectroscopic measurements of electron density of capillary plasma based on Stark broadening of hydrogen lines,” Phys. Rev. A 43, 5568–5574 (1991).
    [CrossRef] [PubMed]
  7. P. Blau, I. Smilanski, S. Rosenwaks, “Simultaneous time-averaged measurements of gas temperature and electron density in a copper-vapor laser using hydrogen emission spectroscopy,” J. Appl. Phys. 72, 849–854 (1992).
    [CrossRef]
  8. J. B. Simeonsson, A. W. Miziolek, “Time-resolved emission studies of ArF-laser-produced microplasmas,” Appl. Opt. 32, 939–947 (1993).
    [CrossRef] [PubMed]
  9. I. A. Bufetova, G. A. Bufetova, A. M. Prokhorov, V. B. Fedorov, “Interference structure of the scattering cone in a laser spark,” JETP Lett. 58, 75–79 (1993).
  10. C. G. Durfee, H. M. Milchberg, “Light pipe for high intensity laser pulses,” Phys. Rev. Lett. 71, 2409–2412 (1993).
    [CrossRef] [PubMed]
  11. C. Parigger, D. H. Plemmons, J. W. L. Lewis, “Electron number density and temperature in a transient hydrogen plasma,” in OSA Annual Meeting, Vol. 16 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 220.
  12. C. Parigger, J. W. L. Lewis, D. H. Plemmons, “Electron number density and temperature measurement in a laser-induced hydrogen plasma,” J. Quant. Spectrosc. Radiat. Transfer 53, 249–255 (1994).

1994 (1)

C. Parigger, J. W. L. Lewis, D. H. Plemmons, “Electron number density and temperature measurement in a laser-induced hydrogen plasma,” J. Quant. Spectrosc. Radiat. Transfer 53, 249–255 (1994).

1993 (3)

J. B. Simeonsson, A. W. Miziolek, “Time-resolved emission studies of ArF-laser-produced microplasmas,” Appl. Opt. 32, 939–947 (1993).
[CrossRef] [PubMed]

I. A. Bufetova, G. A. Bufetova, A. M. Prokhorov, V. B. Fedorov, “Interference structure of the scattering cone in a laser spark,” JETP Lett. 58, 75–79 (1993).

C. G. Durfee, H. M. Milchberg, “Light pipe for high intensity laser pulses,” Phys. Rev. Lett. 71, 2409–2412 (1993).
[CrossRef] [PubMed]

1992 (1)

P. Blau, I. Smilanski, S. Rosenwaks, “Simultaneous time-averaged measurements of gas temperature and electron density in a copper-vapor laser using hydrogen emission spectroscopy,” J. Appl. Phys. 72, 849–854 (1992).
[CrossRef]

1991 (1)

J. Ashkenazy, R. Kipper, M. Caner, “Spectroscopic measurements of electron density of capillary plasma based on Stark broadening of hydrogen lines,” Phys. Rev. A 43, 5568–5574 (1991).
[CrossRef] [PubMed]

1987 (1)

1983 (1)

H. R. Griem, “Shifts of hydrogen lines from electron collisions in dense plasmas,” Phys. Rev. A 28, 1596–1601 (1983).
[CrossRef]

1981 (1)

V. Helbig, K. P. Nick, “Investigation of the Stark broadening of Balmer beta,” J. Phys. B 14, 3573–3583 (1981).
[CrossRef]

1977 (1)

L. L. Wiese, J. A. Augis, “Time- and space-resolved spectroscopic studies of electrical breakdowns in an argon-hydrogen mixture,” J. Appl. Phys. 48, 4528–4535 (1977).
[CrossRef]

Ashkenazy, J.

J. Ashkenazy, R. Kipper, M. Caner, “Spectroscopic measurements of electron density of capillary plasma based on Stark broadening of hydrogen lines,” Phys. Rev. A 43, 5568–5574 (1991).
[CrossRef] [PubMed]

Augis, J. A.

L. L. Wiese, J. A. Augis, “Time- and space-resolved spectroscopic studies of electrical breakdowns in an argon-hydrogen mixture,” J. Appl. Phys. 48, 4528–4535 (1977).
[CrossRef]

Blau, P.

P. Blau, I. Smilanski, S. Rosenwaks, “Simultaneous time-averaged measurements of gas temperature and electron density in a copper-vapor laser using hydrogen emission spectroscopy,” J. Appl. Phys. 72, 849–854 (1992).
[CrossRef]

Bufetova, G. A.

I. A. Bufetova, G. A. Bufetova, A. M. Prokhorov, V. B. Fedorov, “Interference structure of the scattering cone in a laser spark,” JETP Lett. 58, 75–79 (1993).

Bufetova, I. A.

I. A. Bufetova, G. A. Bufetova, A. M. Prokhorov, V. B. Fedorov, “Interference structure of the scattering cone in a laser spark,” JETP Lett. 58, 75–79 (1993).

Caner, M.

J. Ashkenazy, R. Kipper, M. Caner, “Spectroscopic measurements of electron density of capillary plasma based on Stark broadening of hydrogen lines,” Phys. Rev. A 43, 5568–5574 (1991).
[CrossRef] [PubMed]

Chang, R. K.

Durfee, C. G.

C. G. Durfee, H. M. Milchberg, “Light pipe for high intensity laser pulses,” Phys. Rev. Lett. 71, 2409–2412 (1993).
[CrossRef] [PubMed]

Eickmans, J. H.

Fedorov, V. B.

I. A. Bufetova, G. A. Bufetova, A. M. Prokhorov, V. B. Fedorov, “Interference structure of the scattering cone in a laser spark,” JETP Lett. 58, 75–79 (1993).

Griem, H. R.

H. R. Griem, “Shifts of hydrogen lines from electron collisions in dense plasmas,” Phys. Rev. A 28, 1596–1601 (1983).
[CrossRef]

H. R. Griem, Spectral Line Broadening by Plasmas (Academic, New York, 1974), pp. 282–296.

Helbig, V.

V. Helbig, K. P. Nick, “Investigation of the Stark broadening of Balmer beta,” J. Phys. B 14, 3573–3583 (1981).
[CrossRef]

Hsieh, W.-F.

Kipper, R.

J. Ashkenazy, R. Kipper, M. Caner, “Spectroscopic measurements of electron density of capillary plasma based on Stark broadening of hydrogen lines,” Phys. Rev. A 43, 5568–5574 (1991).
[CrossRef] [PubMed]

Lewis, J. W. L.

C. Parigger, J. W. L. Lewis, D. H. Plemmons, “Electron number density and temperature measurement in a laser-induced hydrogen plasma,” J. Quant. Spectrosc. Radiat. Transfer 53, 249–255 (1994).

C. Parigger, D. H. Plemmons, J. W. L. Lewis, “Electron number density and temperature in a transient hydrogen plasma,” in OSA Annual Meeting, Vol. 16 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 220.

Milchberg, H. M.

C. G. Durfee, H. M. Milchberg, “Light pipe for high intensity laser pulses,” Phys. Rev. Lett. 71, 2409–2412 (1993).
[CrossRef] [PubMed]

Miziolek, A. W.

Nick, K. P.

V. Helbig, K. P. Nick, “Investigation of the Stark broadening of Balmer beta,” J. Phys. B 14, 3573–3583 (1981).
[CrossRef]

Parigger, C.

C. Parigger, J. W. L. Lewis, D. H. Plemmons, “Electron number density and temperature measurement in a laser-induced hydrogen plasma,” J. Quant. Spectrosc. Radiat. Transfer 53, 249–255 (1994).

C. Parigger, D. H. Plemmons, J. W. L. Lewis, “Electron number density and temperature in a transient hydrogen plasma,” in OSA Annual Meeting, Vol. 16 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 220.

Plemmons, D. H.

C. Parigger, J. W. L. Lewis, D. H. Plemmons, “Electron number density and temperature measurement in a laser-induced hydrogen plasma,” J. Quant. Spectrosc. Radiat. Transfer 53, 249–255 (1994).

C. Parigger, D. H. Plemmons, J. W. L. Lewis, “Electron number density and temperature in a transient hydrogen plasma,” in OSA Annual Meeting, Vol. 16 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 220.

Prokhorov, A. M.

I. A. Bufetova, G. A. Bufetova, A. M. Prokhorov, V. B. Fedorov, “Interference structure of the scattering cone in a laser spark,” JETP Lett. 58, 75–79 (1993).

Rosenwaks, S.

P. Blau, I. Smilanski, S. Rosenwaks, “Simultaneous time-averaged measurements of gas temperature and electron density in a copper-vapor laser using hydrogen emission spectroscopy,” J. Appl. Phys. 72, 849–854 (1992).
[CrossRef]

Simeonsson, J. B.

Smilanski, I.

P. Blau, I. Smilanski, S. Rosenwaks, “Simultaneous time-averaged measurements of gas temperature and electron density in a copper-vapor laser using hydrogen emission spectroscopy,” J. Appl. Phys. 72, 849–854 (1992).
[CrossRef]

Wiese, L. L.

L. L. Wiese, J. A. Augis, “Time- and space-resolved spectroscopic studies of electrical breakdowns in an argon-hydrogen mixture,” J. Appl. Phys. 48, 4528–4535 (1977).
[CrossRef]

Appl. Opt. (2)

J. Appl. Phys. (2)

L. L. Wiese, J. A. Augis, “Time- and space-resolved spectroscopic studies of electrical breakdowns in an argon-hydrogen mixture,” J. Appl. Phys. 48, 4528–4535 (1977).
[CrossRef]

P. Blau, I. Smilanski, S. Rosenwaks, “Simultaneous time-averaged measurements of gas temperature and electron density in a copper-vapor laser using hydrogen emission spectroscopy,” J. Appl. Phys. 72, 849–854 (1992).
[CrossRef]

J. Phys. B (1)

V. Helbig, K. P. Nick, “Investigation of the Stark broadening of Balmer beta,” J. Phys. B 14, 3573–3583 (1981).
[CrossRef]

J. Quant. Spectrosc. Radiat. Transfer (1)

C. Parigger, J. W. L. Lewis, D. H. Plemmons, “Electron number density and temperature measurement in a laser-induced hydrogen plasma,” J. Quant. Spectrosc. Radiat. Transfer 53, 249–255 (1994).

JETP Lett. (1)

I. A. Bufetova, G. A. Bufetova, A. M. Prokhorov, V. B. Fedorov, “Interference structure of the scattering cone in a laser spark,” JETP Lett. 58, 75–79 (1993).

Phys. Rev. A (2)

H. R. Griem, “Shifts of hydrogen lines from electron collisions in dense plasmas,” Phys. Rev. A 28, 1596–1601 (1983).
[CrossRef]

J. Ashkenazy, R. Kipper, M. Caner, “Spectroscopic measurements of electron density of capillary plasma based on Stark broadening of hydrogen lines,” Phys. Rev. A 43, 5568–5574 (1991).
[CrossRef] [PubMed]

Phys. Rev. Lett. (1)

C. G. Durfee, H. M. Milchberg, “Light pipe for high intensity laser pulses,” Phys. Rev. Lett. 71, 2409–2412 (1993).
[CrossRef] [PubMed]

Other (2)

C. Parigger, D. H. Plemmons, J. W. L. Lewis, “Electron number density and temperature in a transient hydrogen plasma,” in OSA Annual Meeting, Vol. 16 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), p. 220.

H. R. Griem, Spectral Line Broadening by Plasmas (Academic, New York, 1974), pp. 282–296.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Schematic experimental arrangement for laser-induced hydrogen-breakdown spectroscopy.

Fig. 2
Fig. 2

Hα spectra at a delay of 12 ns, 810 Torr: (a) recorded data versus wavelength and slit height, (b) gray-scale projection, (c) inferred electron number density versus slit height.

Fig. 3
Fig. 3

Hα spectra at a delay of 30 ns, 810 Torr: (a) recorded data versus wavelength and slit height, (b) gray-scale projection, (c) inferred electron number density versus slit height.

Fig. 4
Fig. 4

Hα spectra at a delay of 300 ns, 810 Torr: (a) recorded data versus wavelength and slit height, (b) gray-scale projection, (c) inferred electron number density versus slit height.

Fig. 5
Fig. 5

Hα spectra at a delay of 6 ns, 150 Torr: (a) recorded data versus wavelength and slit height, (b) gray-scale projection, (c) inferred electron number density versus slit height.

Fig. 6
Fig. 6

Hα spectra at a delay of 12 ns, 150 Torr: (a) recorded data versus wavelength and slit height, (b) gray-scale projection, (c) inferred electron number density versus slit height.

Fig. 7
Fig. 7

Hα spectra at a delay of 30 ns, 150 Torr: (a) recorded data versus wavelength and slit height, (b) gray-scale projection, (c) inferred electron number density versus slit height.

Fig. 8
Fig. 8

Hα spectra at a delay of 300 ns, 150 Torr: (a) recorded data versus wavelength and slit height, (b) gray-scale projection, (c) inferred electron number density versus slit height.

Metrics