Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Pulsed-laser excitation of acoustic modes in open high-Q photoacoustic resonators for trace gas monitoring: results for C2H4

Not Accessible

Your library or personal account may give you access

Abstract

The pulsed excitation of acoustic resonances was studied with a continuously monitoring photoacoustic detector system. Acoustic waves were generated in C2H4/N2 gas mixtures by light absorption of the pulses from a transversely excited atmospheric CO2 laser. The photoacoustic part consisted of high-Q cylindrical resonators (Q factor 820 for the first radial mode in N2) and two adjoining variable acoustic filter systems. The time-resolved signal was Fourier transformed to a frequency spectrum of high resolution. For the first radial mode a Lorentzian profile was fitted to the measured data. The outside noise suppression and the signal-to-noise ratio were investigated in a normal laboratory environment in the flow-through mode. The acoustic and electric filter system combined with the averaging of the photoacoustic signal in the time domain suppressed the outside noise by a factor of 4500 (73 dB). The detection limit for trace gas analysis of ethylene in pure N2 was 2.0 parts in 109 by volume (ppbV) (minimal absorption coefficient αmin = 6.1 × 10−8 cm−1, pulse energy 20 mJ, 1-bar N2), and in environmental air, in which the absorption of other gas components produces a high background signal, we can detect C2H4 to ~180 ppbV. In addition, an alternative experimental technique, in which the maximum signal of the second azimuthal mode was monitored, was tested. To synchronize the sampling rate at the resonance frequency, a resonance tracking system was applied. The detection limit for ethylene measurements was αmin = 9.1 × 10−8 cm−1 for this system.

© 1995 Optical Society of America

Full Article  |  PDF Article
More Like This
Quantitative signal analysis in pulsed resonant photoacoustics

Stefan Schäfer, András Miklós, and Peter Hess
Appl. Opt. 36(15) 3202-3211 (1997)

Intracavity CO laser photoacoustic trace gas detection: cyclic CH4, H2O and CO2 emission by cockroaches and scarab beetles

F. G. C. Bijnen, F. J. M. Harren, J. H. P. Hackstein, and J. Reuss
Appl. Opt. 35(27) 5357-5368 (1996)

Internally excited acoustic resonator for photoacoustic trace detection

Sorasak Danworaphong, Irio G. Calasso, Andrew Beveridge, Gerald J. Diebold, Claire Gmachl, Federico Capasso, Deborah L. Sivco, and A. Y. Cho
Appl. Opt. 42(27) 5561-5565 (2003)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (8)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (2)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (17)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All Rights Reserved