Abstract

A dual-beam detection strategy with automatic balancing is described for ultrasensitive spectroscopy. Absorbances of 2 × 10−7 Hz−1/2 in free-space configurations and 5 × 10−6 Hz−1/2 in fiber-coupled configurations are demonstrated. With the dual-beam technique, atmospherically broadened absorption transitions may be resolved with InGaAsP, AlGaAs, and AlGaInP single-longitudinal-mode diode Nlasers. Applications to trace measurements of NO2, O2, and H2O are described by the use of simple, inexpensive laser and detector systems. Small signal gain measurements on optically pumped I2 with a sensitivity of 10−5 are also reported.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. C. Bjorklund, “Frequency-modulation spectroscopy: a new method for measuring weak absorption and dispersions,” Opt. Lett. 5, 15–17 (1980).
    [CrossRef] [PubMed]
  2. W. Lenth, “Optical heterodyne spectroscopy with frequency-and amplitude-modulated semiconductor lasers,” Opt. Lett. 8, 575–577 (1983).
    [CrossRef] [PubMed]
  3. D. E. Cooper, J. P. Watjen, “Two-tone optical heterodyne spectroscopy with a tunable lead-salt diode laser,” Opt. Lett. 11, 606–608 (1986).
    [CrossRef] [PubMed]
  4. C. B. Carlisle, D. E. Cooper, “Tunable-diode-laser frequency-modulation spectroscopy using balanced homodyne detection,” Opt. Lett. 14, 1306–1308 (1989).
    [CrossRef] [PubMed]
  5. C. B. Carlisle, D. E. Cooper, “Tunable diode laser frequency modulation spectroscopy through an optical fiber: high-sensitivity detection of water vapor,” Appl. Phys. Lett. 56, 805–807 (1990).
    [CrossRef]
  6. B. F. Ventrudo, D. T. Cassidy, “Operating characteristics of a tunable diode laser absorption spectrometer using short-external-cavity and DFB laser diodes,” Appl. Opt. 29, 5007–5013 (1990).
    [CrossRef] [PubMed]
  7. R. Grosskloss, P. Kersten, W. Demtroder, “Sensitive amplitude- and phase-modulated absorption spectroscopy with a continuously tunable diode laser,” Appl. Phys. B 58, 137–142 (1994).
    [CrossRef]
  8. J. A. Silver, D. C. Hovde, “Near-infrared diode laser airborne hygrometer,” Rev. Sci. Instrum. 65, 1691–1694 (1994).
    [CrossRef]
  9. A. Lucchesini, I. Longo, C. Gabbanini, S. Gozzini, L. Moi, “Diode laser spectroscopy of methane overtone transitions,” Appl. Opt. 32, 5211–5216 (1993).
    [CrossRef] [PubMed]
  10. M. Feher, P. A. Martin, A. Rohrbacher, A. M. Solva, J. P. Maier, “Inexpensive near-infrared diode-laser-based detection system for ammonia,” Appl. Opt. 32, 2028–2030 (1993).
    [CrossRef] [PubMed]
  11. D. M. Bruce, D. T. Cassidy, “Detection of oxygen using short external cavity GaAs semiconductor diode lasers,” Appl. Opt. 29, 1327–1332 (1990).
    [CrossRef] [PubMed]
  12. L. C. Phillipe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993).
    [CrossRef]
  13. H. Riris, D. Cooper, C. Carlisle, L. Carr, J. van Laan, “Frequency modulation spectroscopy with tunable diode lasers,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Kollinger, H. I. Schiff, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2112, 12–18 (1994).
  14. D. Hovde, J. Silver, A. Stanton, “Measuring atmospheric methane and water vapor using near-infrared diode lasers,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2112, 110–117 (1994).
  15. N. Goldstein, J. Lee, F. Bien, “Automated remote monitoring of toxic gases with diode-laser-based sensor systems,” in Tunable Diode Laser Spetroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2112, 130–139 (1994).
  16. G. D. Houser, E. Garmire, “Balanced detection technique to measure small changes in transmission,” Appl. Opt. 33, 1059–1062 (1994).
    [CrossRef] [PubMed]
  17. P. C. D. Hobbs, “Shot noise limited optical measurements at baseband with noisy lasers,” in Laser Noise, R. Roy, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1376, 216–221 (1990).
  18. L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
    [CrossRef] [PubMed]
  19. B. Daino, P. Spano, M. Tamburrini, S. Piazolla, “Phase noise and spectral line shape in semiconductor lasers,” IEEE J. Quantum Electron. 19, 266–270 (1983).
    [CrossRef]
  20. J. Reid, M. El-Sherbiny, B. K. Garside, E. A. Ballik, “Sensitivity limits of a tunable diode laser spectrometer, with applications to the detection of NO2 at the 100-ppt level,” Appl. Opt. 19, 3349–3354 (1980).
    [CrossRef] [PubMed]
  21. R. E. Smalley, L. Wharton, D. H. Levy, “The fluorescence excitation spectrum of rotationally cooled NO2,” J. Chem. Phys. 63, 4977–4989 (1975).
    [CrossRef]
  22. V. M. Donnely, F. Kaufman, “Fluorescence lifetime studies of NO2. I. Excitation of the perturbed 2B2 state near 600 nm,” J. Chem. Phys. 66, 4100–4110 (1977).
    [CrossRef]
  23. D. K. Hus, D. L. Monts, R. N. Zare, Spectral Atlas of Nitrogen Dioxide 5530 to 6480 Angstroms (Academic, New York, 1978).
  24. W. Lenth, M. Gehrtz, “Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAlAs diode laser,” Appl. Phys. Lett. 47, 4263–4265 (1985).
    [CrossRef]

1994

R. Grosskloss, P. Kersten, W. Demtroder, “Sensitive amplitude- and phase-modulated absorption spectroscopy with a continuously tunable diode laser,” Appl. Phys. B 58, 137–142 (1994).
[CrossRef]

J. A. Silver, D. C. Hovde, “Near-infrared diode laser airborne hygrometer,” Rev. Sci. Instrum. 65, 1691–1694 (1994).
[CrossRef]

G. D. Houser, E. Garmire, “Balanced detection technique to measure small changes in transmission,” Appl. Opt. 33, 1059–1062 (1994).
[CrossRef] [PubMed]

1993

1990

1989

1987

1986

1985

W. Lenth, M. Gehrtz, “Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAlAs diode laser,” Appl. Phys. Lett. 47, 4263–4265 (1985).
[CrossRef]

1983

W. Lenth, “Optical heterodyne spectroscopy with frequency-and amplitude-modulated semiconductor lasers,” Opt. Lett. 8, 575–577 (1983).
[CrossRef] [PubMed]

B. Daino, P. Spano, M. Tamburrini, S. Piazolla, “Phase noise and spectral line shape in semiconductor lasers,” IEEE J. Quantum Electron. 19, 266–270 (1983).
[CrossRef]

1980

1977

V. M. Donnely, F. Kaufman, “Fluorescence lifetime studies of NO2. I. Excitation of the perturbed 2B2 state near 600 nm,” J. Chem. Phys. 66, 4100–4110 (1977).
[CrossRef]

1975

R. E. Smalley, L. Wharton, D. H. Levy, “The fluorescence excitation spectrum of rotationally cooled NO2,” J. Chem. Phys. 63, 4977–4989 (1975).
[CrossRef]

Ballik, E. A.

Barbe, A.

Bien, F.

N. Goldstein, J. Lee, F. Bien, “Automated remote monitoring of toxic gases with diode-laser-based sensor systems,” in Tunable Diode Laser Spetroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2112, 130–139 (1994).

Bjorklund, G. C.

Brown, L. R.

Bruce, D. M.

Camy-Peyret, C.

Carlisle, C.

H. Riris, D. Cooper, C. Carlisle, L. Carr, J. van Laan, “Frequency modulation spectroscopy with tunable diode lasers,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Kollinger, H. I. Schiff, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2112, 12–18 (1994).

Carlisle, C. B.

C. B. Carlisle, D. E. Cooper, “Tunable diode laser frequency modulation spectroscopy through an optical fiber: high-sensitivity detection of water vapor,” Appl. Phys. Lett. 56, 805–807 (1990).
[CrossRef]

C. B. Carlisle, D. E. Cooper, “Tunable-diode-laser frequency-modulation spectroscopy using balanced homodyne detection,” Opt. Lett. 14, 1306–1308 (1989).
[CrossRef] [PubMed]

Carr, L.

H. Riris, D. Cooper, C. Carlisle, L. Carr, J. van Laan, “Frequency modulation spectroscopy with tunable diode lasers,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Kollinger, H. I. Schiff, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2112, 12–18 (1994).

Cassidy, D. T.

Cooper, D.

H. Riris, D. Cooper, C. Carlisle, L. Carr, J. van Laan, “Frequency modulation spectroscopy with tunable diode lasers,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Kollinger, H. I. Schiff, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2112, 12–18 (1994).

Cooper, D. E.

Daino, B.

B. Daino, P. Spano, M. Tamburrini, S. Piazolla, “Phase noise and spectral line shape in semiconductor lasers,” IEEE J. Quantum Electron. 19, 266–270 (1983).
[CrossRef]

Demtroder, W.

R. Grosskloss, P. Kersten, W. Demtroder, “Sensitive amplitude- and phase-modulated absorption spectroscopy with a continuously tunable diode laser,” Appl. Phys. B 58, 137–142 (1994).
[CrossRef]

Donnely, V. M.

V. M. Donnely, F. Kaufman, “Fluorescence lifetime studies of NO2. I. Excitation of the perturbed 2B2 state near 600 nm,” J. Chem. Phys. 66, 4100–4110 (1977).
[CrossRef]

El-Sherbiny, M.

Feher, M.

Flaud, J.-M.

Gabbanini, C.

Gamache, R. R.

Garmire, E.

Garside, B. K.

Gehrtz, M.

W. Lenth, M. Gehrtz, “Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAlAs diode laser,” Appl. Phys. Lett. 47, 4263–4265 (1985).
[CrossRef]

Goldman, A.

Goldstein, N.

N. Goldstein, J. Lee, F. Bien, “Automated remote monitoring of toxic gases with diode-laser-based sensor systems,” in Tunable Diode Laser Spetroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2112, 130–139 (1994).

Gozzini, S.

Grosskloss, R.

R. Grosskloss, P. Kersten, W. Demtroder, “Sensitive amplitude- and phase-modulated absorption spectroscopy with a continuously tunable diode laser,” Appl. Phys. B 58, 137–142 (1994).
[CrossRef]

Hanson, R. K.

Hobbs, P. C. D.

P. C. D. Hobbs, “Shot noise limited optical measurements at baseband with noisy lasers,” in Laser Noise, R. Roy, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1376, 216–221 (1990).

Houser, G. D.

Hovde, D.

D. Hovde, J. Silver, A. Stanton, “Measuring atmospheric methane and water vapor using near-infrared diode lasers,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2112, 110–117 (1994).

Hovde, D. C.

J. A. Silver, D. C. Hovde, “Near-infrared diode laser airborne hygrometer,” Rev. Sci. Instrum. 65, 1691–1694 (1994).
[CrossRef]

Hus, D. K.

D. K. Hus, D. L. Monts, R. N. Zare, Spectral Atlas of Nitrogen Dioxide 5530 to 6480 Angstroms (Academic, New York, 1978).

Husson, N.

Kaufman, F.

V. M. Donnely, F. Kaufman, “Fluorescence lifetime studies of NO2. I. Excitation of the perturbed 2B2 state near 600 nm,” J. Chem. Phys. 66, 4100–4110 (1977).
[CrossRef]

Kersten, P.

R. Grosskloss, P. Kersten, W. Demtroder, “Sensitive amplitude- and phase-modulated absorption spectroscopy with a continuously tunable diode laser,” Appl. Phys. B 58, 137–142 (1994).
[CrossRef]

Lee, J.

N. Goldstein, J. Lee, F. Bien, “Automated remote monitoring of toxic gases with diode-laser-based sensor systems,” in Tunable Diode Laser Spetroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2112, 130–139 (1994).

Lenth, W.

W. Lenth, M. Gehrtz, “Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAlAs diode laser,” Appl. Phys. Lett. 47, 4263–4265 (1985).
[CrossRef]

W. Lenth, “Optical heterodyne spectroscopy with frequency-and amplitude-modulated semiconductor lasers,” Opt. Lett. 8, 575–577 (1983).
[CrossRef] [PubMed]

Levy, D. H.

R. E. Smalley, L. Wharton, D. H. Levy, “The fluorescence excitation spectrum of rotationally cooled NO2,” J. Chem. Phys. 63, 4977–4989 (1975).
[CrossRef]

Longo, I.

Lucchesini, A.

Maier, J. P.

Martin, P. A.

Moi, L.

Monts, D. L.

D. K. Hus, D. L. Monts, R. N. Zare, Spectral Atlas of Nitrogen Dioxide 5530 to 6480 Angstroms (Academic, New York, 1978).

Phillipe, L. C.

Piazolla, S.

B. Daino, P. Spano, M. Tamburrini, S. Piazolla, “Phase noise and spectral line shape in semiconductor lasers,” IEEE J. Quantum Electron. 19, 266–270 (1983).
[CrossRef]

Pickett, H. M.

Poynter, R. L.

Reid, J.

Rinsland, C. P.

Riris, H.

H. Riris, D. Cooper, C. Carlisle, L. Carr, J. van Laan, “Frequency modulation spectroscopy with tunable diode lasers,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Kollinger, H. I. Schiff, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2112, 12–18 (1994).

Rohrbacher, A.

Rothman, L. S.

Silver, J.

D. Hovde, J. Silver, A. Stanton, “Measuring atmospheric methane and water vapor using near-infrared diode lasers,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2112, 110–117 (1994).

Silver, J. A.

J. A. Silver, D. C. Hovde, “Near-infrared diode laser airborne hygrometer,” Rev. Sci. Instrum. 65, 1691–1694 (1994).
[CrossRef]

Smalley, R. E.

R. E. Smalley, L. Wharton, D. H. Levy, “The fluorescence excitation spectrum of rotationally cooled NO2,” J. Chem. Phys. 63, 4977–4989 (1975).
[CrossRef]

Smith, M. A. H.

Solva, A. M.

Spano, P.

B. Daino, P. Spano, M. Tamburrini, S. Piazolla, “Phase noise and spectral line shape in semiconductor lasers,” IEEE J. Quantum Electron. 19, 266–270 (1983).
[CrossRef]

Stanton, A.

D. Hovde, J. Silver, A. Stanton, “Measuring atmospheric methane and water vapor using near-infrared diode lasers,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2112, 110–117 (1994).

Tamburrini, M.

B. Daino, P. Spano, M. Tamburrini, S. Piazolla, “Phase noise and spectral line shape in semiconductor lasers,” IEEE J. Quantum Electron. 19, 266–270 (1983).
[CrossRef]

Toth, R. A.

van Laan, J.

H. Riris, D. Cooper, C. Carlisle, L. Carr, J. van Laan, “Frequency modulation spectroscopy with tunable diode lasers,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Kollinger, H. I. Schiff, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2112, 12–18 (1994).

Ventrudo, B. F.

Watjen, J. P.

Wharton, L.

R. E. Smalley, L. Wharton, D. H. Levy, “The fluorescence excitation spectrum of rotationally cooled NO2,” J. Chem. Phys. 63, 4977–4989 (1975).
[CrossRef]

Zare, R. N.

D. K. Hus, D. L. Monts, R. N. Zare, Spectral Atlas of Nitrogen Dioxide 5530 to 6480 Angstroms (Academic, New York, 1978).

Appl. Opt.

J. Reid, M. El-Sherbiny, B. K. Garside, E. A. Ballik, “Sensitivity limits of a tunable diode laser spectrometer, with applications to the detection of NO2 at the 100-ppt level,” Appl. Opt. 19, 3349–3354 (1980).
[CrossRef] [PubMed]

L. S. Rothman, R. R. Gamache, A. Goldman, L. R. Brown, R. A. Toth, H. M. Pickett, R. L. Poynter, J.-M. Flaud, C. Camy-Peyret, A. Barbe, N. Husson, C. P. Rinsland, M. A. H. Smith, “The HITRAN database: 1986 edition,” Appl. Opt. 26, 4058–4097 (1987).
[CrossRef] [PubMed]

D. M. Bruce, D. T. Cassidy, “Detection of oxygen using short external cavity GaAs semiconductor diode lasers,” Appl. Opt. 29, 1327–1332 (1990).
[CrossRef] [PubMed]

A. Lucchesini, I. Longo, C. Gabbanini, S. Gozzini, L. Moi, “Diode laser spectroscopy of methane overtone transitions,” Appl. Opt. 32, 5211–5216 (1993).
[CrossRef] [PubMed]

L. C. Phillipe, R. K. Hanson, “Laser diode wavelength-modulation spectroscopy for simultaneous measurement of temperature, pressure, and velocity in shock-heated oxygen flows,” Appl. Opt. 32, 6090–6103 (1993).
[CrossRef]

G. D. Houser, E. Garmire, “Balanced detection technique to measure small changes in transmission,” Appl. Opt. 33, 1059–1062 (1994).
[CrossRef] [PubMed]

M. Feher, P. A. Martin, A. Rohrbacher, A. M. Solva, J. P. Maier, “Inexpensive near-infrared diode-laser-based detection system for ammonia,” Appl. Opt. 32, 2028–2030 (1993).
[CrossRef] [PubMed]

B. F. Ventrudo, D. T. Cassidy, “Operating characteristics of a tunable diode laser absorption spectrometer using short-external-cavity and DFB laser diodes,” Appl. Opt. 29, 5007–5013 (1990).
[CrossRef] [PubMed]

Appl. Phys. B

R. Grosskloss, P. Kersten, W. Demtroder, “Sensitive amplitude- and phase-modulated absorption spectroscopy with a continuously tunable diode laser,” Appl. Phys. B 58, 137–142 (1994).
[CrossRef]

Appl. Phys. Lett.

W. Lenth, M. Gehrtz, “Sensitive detection of NO2 using high-frequency heterodyne spectroscopy with a GaAlAs diode laser,” Appl. Phys. Lett. 47, 4263–4265 (1985).
[CrossRef]

C. B. Carlisle, D. E. Cooper, “Tunable diode laser frequency modulation spectroscopy through an optical fiber: high-sensitivity detection of water vapor,” Appl. Phys. Lett. 56, 805–807 (1990).
[CrossRef]

IEEE J. Quantum Electron.

B. Daino, P. Spano, M. Tamburrini, S. Piazolla, “Phase noise and spectral line shape in semiconductor lasers,” IEEE J. Quantum Electron. 19, 266–270 (1983).
[CrossRef]

J. Chem. Phys.

R. E. Smalley, L. Wharton, D. H. Levy, “The fluorescence excitation spectrum of rotationally cooled NO2,” J. Chem. Phys. 63, 4977–4989 (1975).
[CrossRef]

V. M. Donnely, F. Kaufman, “Fluorescence lifetime studies of NO2. I. Excitation of the perturbed 2B2 state near 600 nm,” J. Chem. Phys. 66, 4100–4110 (1977).
[CrossRef]

Opt. Lett.

Rev. Sci. Instrum.

J. A. Silver, D. C. Hovde, “Near-infrared diode laser airborne hygrometer,” Rev. Sci. Instrum. 65, 1691–1694 (1994).
[CrossRef]

Other

D. K. Hus, D. L. Monts, R. N. Zare, Spectral Atlas of Nitrogen Dioxide 5530 to 6480 Angstroms (Academic, New York, 1978).

H. Riris, D. Cooper, C. Carlisle, L. Carr, J. van Laan, “Frequency modulation spectroscopy with tunable diode lasers,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Kollinger, H. I. Schiff, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2112, 12–18 (1994).

D. Hovde, J. Silver, A. Stanton, “Measuring atmospheric methane and water vapor using near-infrared diode lasers,” in Tunable Diode Laser Spectroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2112, 110–117 (1994).

N. Goldstein, J. Lee, F. Bien, “Automated remote monitoring of toxic gases with diode-laser-based sensor systems,” in Tunable Diode Laser Spetroscopy, Lidar, and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. K. Killinger, H. I. Schiff, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2112, 130–139 (1994).

P. C. D. Hobbs, “Shot noise limited optical measurements at baseband with noisy lasers,” in Laser Noise, R. Roy, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1376, 216–221 (1990).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (14)

Fig. 1
Fig. 1

Schematic diagram of principal components of the balanced ratiometric detector.

Fig. 2
Fig. 2

Experimental setup for free-space propagation absorption measurements. B.S. beam splitter.

Fig. 3
Fig. 3

100-sweep average absorption scan of the RQ(9,10) transition in a 1-mm path length.

Fig. 4
Fig. 4

Comparison of O2 absorption measurements in atmospheric pressure air (dashed curve) and 1 Torr pure O2 (solid curve).

Fig. 5
Fig. 5

Example NO2 absorption spectrum near 638.5 nm showing multiple transitions at room temperature.

Fig. 6
Fig. 6

Water-vapor absorption spectrum between 1.3 and 1.4 μm at 200 K.

Fig. 7
Fig. 7

Schematic layout of fiber-coupled diode leser sensor.

Fig. 8
Fig. 8

Typical experimental setup for fiber-coupled detection of water vapor. BRD, balanced ratiometric detector.

Fig. 9
Fig. 9

Comparison of measured and calculated line shapes for 3 × 1016 cm−3 pure water vapor.

Fig. 10
Fig. 10

Measured absorbance of pure water vapor at 1.3137 μm as a function of water-vapor concentration.

Fig. 11
Fig. 11

Measured absorbance of pure water vapor at 1.3925 μm as a function of water-vapor concentration.

Fig. 12
Fig. 12

Apparatus for development of an ultrasensitive gain–loss diagnostic.

Fig. 13
Fig. 13

Pump-and-probe schematic for demonstration of measurement of small-signal gain in molecular I2.

Fig. 14
Fig. 14

Diode laser scan showing both absorption (positive peaks) and optical gain (negative peak) in a 3-cm cell that was pumped with a cw dye laser. The gain is the sharper negative peak. See text for details.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

V 1 = G ln ( I ref I sig - 1 ) ,
V 1 = G ln ( exp α - 1 ) .
α = k ν N l ,
exp α - 1 α ,
d V 1 = ( G / u ) d α ,
u = ( I ref / I sig ) - 1.

Metrics