Abstract

Laser-induced fluorescence (LIF) spectroscopy in combination with fiber optics is shown to be a powerful tool for qualitative and quantitative diagnostics of environmental pollutants in water and soil. Time-integrated data accumulation of the LIF signals in early and late time windows with respect to the excitation pulse simplifies the method so that it becomes attractive for practical applications. Results from field measurements are reported, as oil contaminations under a gas station and in an industrial sewer system are investigated. A KrF-excimer laser and a hydrogen Raman shifter can be applied for multiwavelength excitation. This allows a discrimination between benzene, toluene, xylene, and ethylbenzene aromatics and polycyclic aromatic hydrocarbon molecules in the samples under investigation. For a rough theoretical approach, a computer simulation is developed to describe the experimental results.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. Oesgaard, “Determination of environmental pollutants by direct fluorescence spectroscopy,” Trace Anal. 3, 163–212 (1984).
  2. R. Niessner, W. Roberts, P. Wilbring, “Fiber optical sensor system using a tunable laser for detection of PAH’s on particles and in water,” in Chemical, Biochemical, and Environmental Fiber Sensors, R. A. Lieberman, M. T. Wlodarczyk, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1172, 145–156 (1989).
  3. S. H. Lieberman, S. M. Inman, G. A. Theriault, S. S. Cooper, P. G. Malone, Y. Shimizu, P. W. Lurk, “Fiber-optic based chemical sensors for in situ measurement of metals and aromatic organic compounds in seawater and soil systems,” in Environment and Pollution Measurement Sensors and Systems, H. O. Nielsen, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1269, 175–184 (1990).
  4. T. Hengstermann, R. Reuter, “Lidar fluorescensing of mineral oil spills on the sea surface,” Appl. Opt. 29, 3218–3227 (1990).
    [CrossRef] [PubMed]
  5. S. E. Apitz, G. A. Theriault, S. H. Lieberman, “Optimization of the optical characteristics of a fiber-optic guided laser fluorescence technique for the in-situ evaluation of fuels in soils,” in Environmental and Process Monitoring Technologies, T. Vo-Dinh, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1637, 241–254 (1992).
  6. R. M. Measures, W. R. Houston, D. G. Stephenson, “Laser induced fluorescent decay spectra—a new form of environmental signature,” Opt. Eng. 13, 494–501 (1974).
  7. D. M. Rayner, A. G. Szabo, “Time-resolved laser fluorosensors: a laboratory study of their potential in the remote characterization of oil,” Appl. Opt. 17, 1624–1630 (1978).
    [CrossRef] [PubMed]
  8. P. Camagni, A. Colombo, C. Koechler, N. Omenetto, Pan Qi, G. Rossi, “Fluorescence response of mineral oils: spectral yield versus absorption and decay time,” Appl. Opt. 30, 26–35 (1991).
    [CrossRef] [PubMed]
  9. F. V. Bright, “A new fibre-optic-based multifrequency phase-modulation fluorometer,” Appl. Spectrosc. 42, 1531–1537 (1988).
    [CrossRef]
  10. U. Panne, F. Lewitzka, R. Niessner, “Fibre optical sensors for detection of atmospheric and hydrospheric polycyclic aromatic hydrocarbons,” Analusis 20, 533–542 (1992).
  11. W. Schade, J. Bublitz, K.-P. Nick, V. Helbig, “Time-resolved laser-induced fluorescence spectroscopy for diagnostics of oil pollution in water,” in Laser in Remote Sensing, V. Klein, K. Weber, Ch. Werner, eds. (Springer-Verlag, Berlin, 1992), pp. 53–61.
  12. Y.-B. Zhu, J. Ma, “Study on determination of micro amount oil in water by laser time-resolution fluorescence spectroscopic technique,” in Environmental and Process Monitoring Technologies, T. Vo-Dinh, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1637, 285–290 (1992).
  13. G. D. Gillispie, R. W. St. Germain, “In-situ tunable laser fluorescence of hydrocarbons,” in Environmental and Process Monitoring Technologies, T. Vo-Dinh, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1637, 151–162 (1992).
  14. N. H. Eisum, A. Lynggaard-Jensen, “The development of a fluorimeter using laser induced single-shot fluorescence lifetime spectroscopy,” in Environment and Pollution Measurement Sensors and Systems, H. O. Nielsen, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1269, 167–174 (1990).
  15. S. H. Lieberman, S. M. Inman, G. A. Theriault, “Use of time-resolved spectral fluorometry for improving specifity,” in Chemical, Biochemical, and Environmental Fiber Sensors, R. A. Lieberman, M. T. Wlodarczyk, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1172, 94–98 (1989).
  16. S. M. Inman, P. Thibado, G. A. Theriault, S. H. Lieberman, “Development of a pulsed laser, fiber-optic-based fluorimeter: determination of fluorescence decay times of polycyclic aromatic hydrocarbons in sea water,” Anal. Chim. Acta 239, 45–51 (1990).
    [CrossRef]
  17. R. Niessner, U. Panne, H. Schröder, “Fibre-optic sensors for the determination of polynuclear aromatic hydrocarbons with time-resolved, laser-induced fluorescence,” Anal. Chim. Acta 255, 231–243 (1991).
    [CrossRef]
  18. W. Schade, J. Bublitz, “New laser-induced fluorescence trace analysis of pollutants in water and soil,” Laser Optoelektron. 24(4), 41–48 (1993).
  19. W. Schade, J. Bublitz, “Time-resolved laser spectroscopy for the trace analysis of PAH-molecules in water and in the soil,” in Proceedings of the Eleventh International Conference on Laser Spectroscopy, L. Bloomfield, T. Gallagher, D. Larson, eds. (American Institute of Physics, New York, 1994), pp. 261–263.
  20. W. Ziechmann, Huminstoffe (Verlag Chemie, Weinheim, Germany, 1980).
  21. U.-B. Goers, “Untersuchungen zur laserinduzierten Fluoreszenz von Gelbstoffen und Chlorophyll in Tiedegewässern,” Ph.D. dissertation (University of Hamburg, Hamburg, 1991).
  22. A. S. Marfunin, Spectroscopy, Luminescence and Radiation Centers in Minerals (Springer-Verlag, Berlin, 1979).
    [CrossRef]
  23. W. Schade, G. Langhans, V. Helbig, “Lifetime measurements of V II levels using tunable subnanosecond uv-dye-laser pulses,” Phys. Scr. 36, 890–894 (1987).
    [CrossRef]
  24. J. B. Birks, Photophysics of Aromatic Hydrocarbons (Wiley, London, 1972).
  25. I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules (Academic, New York, 1971).
  26. G. A. Theriault, R. Newbery, J. M. Andrews, S. E. Apitz, S. H. Lieberman, “Fiber optic fluorometer based on a dual wavelength laser excitation source,” in Chemical, Biochemical, and Environmental Fiber Sensors IV, R. A. Lieberman, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1796, 115–123 (1992).

1993 (1)

W. Schade, J. Bublitz, “New laser-induced fluorescence trace analysis of pollutants in water and soil,” Laser Optoelektron. 24(4), 41–48 (1993).

1992 (1)

U. Panne, F. Lewitzka, R. Niessner, “Fibre optical sensors for detection of atmospheric and hydrospheric polycyclic aromatic hydrocarbons,” Analusis 20, 533–542 (1992).

1991 (2)

P. Camagni, A. Colombo, C. Koechler, N. Omenetto, Pan Qi, G. Rossi, “Fluorescence response of mineral oils: spectral yield versus absorption and decay time,” Appl. Opt. 30, 26–35 (1991).
[CrossRef] [PubMed]

R. Niessner, U. Panne, H. Schröder, “Fibre-optic sensors for the determination of polynuclear aromatic hydrocarbons with time-resolved, laser-induced fluorescence,” Anal. Chim. Acta 255, 231–243 (1991).
[CrossRef]

1990 (2)

S. M. Inman, P. Thibado, G. A. Theriault, S. H. Lieberman, “Development of a pulsed laser, fiber-optic-based fluorimeter: determination of fluorescence decay times of polycyclic aromatic hydrocarbons in sea water,” Anal. Chim. Acta 239, 45–51 (1990).
[CrossRef]

T. Hengstermann, R. Reuter, “Lidar fluorescensing of mineral oil spills on the sea surface,” Appl. Opt. 29, 3218–3227 (1990).
[CrossRef] [PubMed]

1988 (1)

1987 (1)

W. Schade, G. Langhans, V. Helbig, “Lifetime measurements of V II levels using tunable subnanosecond uv-dye-laser pulses,” Phys. Scr. 36, 890–894 (1987).
[CrossRef]

1984 (1)

K. Oesgaard, “Determination of environmental pollutants by direct fluorescence spectroscopy,” Trace Anal. 3, 163–212 (1984).

1978 (1)

1974 (1)

R. M. Measures, W. R. Houston, D. G. Stephenson, “Laser induced fluorescent decay spectra—a new form of environmental signature,” Opt. Eng. 13, 494–501 (1974).

Andrews, J. M.

G. A. Theriault, R. Newbery, J. M. Andrews, S. E. Apitz, S. H. Lieberman, “Fiber optic fluorometer based on a dual wavelength laser excitation source,” in Chemical, Biochemical, and Environmental Fiber Sensors IV, R. A. Lieberman, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1796, 115–123 (1992).

Apitz, S. E.

G. A. Theriault, R. Newbery, J. M. Andrews, S. E. Apitz, S. H. Lieberman, “Fiber optic fluorometer based on a dual wavelength laser excitation source,” in Chemical, Biochemical, and Environmental Fiber Sensors IV, R. A. Lieberman, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1796, 115–123 (1992).

S. E. Apitz, G. A. Theriault, S. H. Lieberman, “Optimization of the optical characteristics of a fiber-optic guided laser fluorescence technique for the in-situ evaluation of fuels in soils,” in Environmental and Process Monitoring Technologies, T. Vo-Dinh, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1637, 241–254 (1992).

Berlman, I. B.

I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules (Academic, New York, 1971).

Birks, J. B.

J. B. Birks, Photophysics of Aromatic Hydrocarbons (Wiley, London, 1972).

Bright, F. V.

Bublitz, J.

W. Schade, J. Bublitz, “New laser-induced fluorescence trace analysis of pollutants in water and soil,” Laser Optoelektron. 24(4), 41–48 (1993).

W. Schade, J. Bublitz, “Time-resolved laser spectroscopy for the trace analysis of PAH-molecules in water and in the soil,” in Proceedings of the Eleventh International Conference on Laser Spectroscopy, L. Bloomfield, T. Gallagher, D. Larson, eds. (American Institute of Physics, New York, 1994), pp. 261–263.

W. Schade, J. Bublitz, K.-P. Nick, V. Helbig, “Time-resolved laser-induced fluorescence spectroscopy for diagnostics of oil pollution in water,” in Laser in Remote Sensing, V. Klein, K. Weber, Ch. Werner, eds. (Springer-Verlag, Berlin, 1992), pp. 53–61.

Camagni, P.

Colombo, A.

Cooper, S. S.

S. H. Lieberman, S. M. Inman, G. A. Theriault, S. S. Cooper, P. G. Malone, Y. Shimizu, P. W. Lurk, “Fiber-optic based chemical sensors for in situ measurement of metals and aromatic organic compounds in seawater and soil systems,” in Environment and Pollution Measurement Sensors and Systems, H. O. Nielsen, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1269, 175–184 (1990).

Eisum, N. H.

N. H. Eisum, A. Lynggaard-Jensen, “The development of a fluorimeter using laser induced single-shot fluorescence lifetime spectroscopy,” in Environment and Pollution Measurement Sensors and Systems, H. O. Nielsen, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1269, 167–174 (1990).

Germain, R. W. St.

G. D. Gillispie, R. W. St. Germain, “In-situ tunable laser fluorescence of hydrocarbons,” in Environmental and Process Monitoring Technologies, T. Vo-Dinh, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1637, 151–162 (1992).

Gillispie, G. D.

G. D. Gillispie, R. W. St. Germain, “In-situ tunable laser fluorescence of hydrocarbons,” in Environmental and Process Monitoring Technologies, T. Vo-Dinh, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1637, 151–162 (1992).

Goers, U.-B.

U.-B. Goers, “Untersuchungen zur laserinduzierten Fluoreszenz von Gelbstoffen und Chlorophyll in Tiedegewässern,” Ph.D. dissertation (University of Hamburg, Hamburg, 1991).

Helbig, V.

W. Schade, G. Langhans, V. Helbig, “Lifetime measurements of V II levels using tunable subnanosecond uv-dye-laser pulses,” Phys. Scr. 36, 890–894 (1987).
[CrossRef]

W. Schade, J. Bublitz, K.-P. Nick, V. Helbig, “Time-resolved laser-induced fluorescence spectroscopy for diagnostics of oil pollution in water,” in Laser in Remote Sensing, V. Klein, K. Weber, Ch. Werner, eds. (Springer-Verlag, Berlin, 1992), pp. 53–61.

Hengstermann, T.

Houston, W. R.

R. M. Measures, W. R. Houston, D. G. Stephenson, “Laser induced fluorescent decay spectra—a new form of environmental signature,” Opt. Eng. 13, 494–501 (1974).

Inman, S. M.

S. M. Inman, P. Thibado, G. A. Theriault, S. H. Lieberman, “Development of a pulsed laser, fiber-optic-based fluorimeter: determination of fluorescence decay times of polycyclic aromatic hydrocarbons in sea water,” Anal. Chim. Acta 239, 45–51 (1990).
[CrossRef]

S. H. Lieberman, S. M. Inman, G. A. Theriault, “Use of time-resolved spectral fluorometry for improving specifity,” in Chemical, Biochemical, and Environmental Fiber Sensors, R. A. Lieberman, M. T. Wlodarczyk, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1172, 94–98 (1989).

S. H. Lieberman, S. M. Inman, G. A. Theriault, S. S. Cooper, P. G. Malone, Y. Shimizu, P. W. Lurk, “Fiber-optic based chemical sensors for in situ measurement of metals and aromatic organic compounds in seawater and soil systems,” in Environment and Pollution Measurement Sensors and Systems, H. O. Nielsen, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1269, 175–184 (1990).

Koechler, C.

Langhans, G.

W. Schade, G. Langhans, V. Helbig, “Lifetime measurements of V II levels using tunable subnanosecond uv-dye-laser pulses,” Phys. Scr. 36, 890–894 (1987).
[CrossRef]

Lewitzka, F.

U. Panne, F. Lewitzka, R. Niessner, “Fibre optical sensors for detection of atmospheric and hydrospheric polycyclic aromatic hydrocarbons,” Analusis 20, 533–542 (1992).

Lieberman, S. H.

S. M. Inman, P. Thibado, G. A. Theriault, S. H. Lieberman, “Development of a pulsed laser, fiber-optic-based fluorimeter: determination of fluorescence decay times of polycyclic aromatic hydrocarbons in sea water,” Anal. Chim. Acta 239, 45–51 (1990).
[CrossRef]

S. H. Lieberman, S. M. Inman, G. A. Theriault, “Use of time-resolved spectral fluorometry for improving specifity,” in Chemical, Biochemical, and Environmental Fiber Sensors, R. A. Lieberman, M. T. Wlodarczyk, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1172, 94–98 (1989).

G. A. Theriault, R. Newbery, J. M. Andrews, S. E. Apitz, S. H. Lieberman, “Fiber optic fluorometer based on a dual wavelength laser excitation source,” in Chemical, Biochemical, and Environmental Fiber Sensors IV, R. A. Lieberman, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1796, 115–123 (1992).

S. H. Lieberman, S. M. Inman, G. A. Theriault, S. S. Cooper, P. G. Malone, Y. Shimizu, P. W. Lurk, “Fiber-optic based chemical sensors for in situ measurement of metals and aromatic organic compounds in seawater and soil systems,” in Environment and Pollution Measurement Sensors and Systems, H. O. Nielsen, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1269, 175–184 (1990).

S. E. Apitz, G. A. Theriault, S. H. Lieberman, “Optimization of the optical characteristics of a fiber-optic guided laser fluorescence technique for the in-situ evaluation of fuels in soils,” in Environmental and Process Monitoring Technologies, T. Vo-Dinh, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1637, 241–254 (1992).

Lurk, P. W.

S. H. Lieberman, S. M. Inman, G. A. Theriault, S. S. Cooper, P. G. Malone, Y. Shimizu, P. W. Lurk, “Fiber-optic based chemical sensors for in situ measurement of metals and aromatic organic compounds in seawater and soil systems,” in Environment and Pollution Measurement Sensors and Systems, H. O. Nielsen, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1269, 175–184 (1990).

Lynggaard-Jensen, A.

N. H. Eisum, A. Lynggaard-Jensen, “The development of a fluorimeter using laser induced single-shot fluorescence lifetime spectroscopy,” in Environment and Pollution Measurement Sensors and Systems, H. O. Nielsen, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1269, 167–174 (1990).

Ma, J.

Y.-B. Zhu, J. Ma, “Study on determination of micro amount oil in water by laser time-resolution fluorescence spectroscopic technique,” in Environmental and Process Monitoring Technologies, T. Vo-Dinh, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1637, 285–290 (1992).

Malone, P. G.

S. H. Lieberman, S. M. Inman, G. A. Theriault, S. S. Cooper, P. G. Malone, Y. Shimizu, P. W. Lurk, “Fiber-optic based chemical sensors for in situ measurement of metals and aromatic organic compounds in seawater and soil systems,” in Environment and Pollution Measurement Sensors and Systems, H. O. Nielsen, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1269, 175–184 (1990).

Marfunin, A. S.

A. S. Marfunin, Spectroscopy, Luminescence and Radiation Centers in Minerals (Springer-Verlag, Berlin, 1979).
[CrossRef]

Measures, R. M.

R. M. Measures, W. R. Houston, D. G. Stephenson, “Laser induced fluorescent decay spectra—a new form of environmental signature,” Opt. Eng. 13, 494–501 (1974).

Newbery, R.

G. A. Theriault, R. Newbery, J. M. Andrews, S. E. Apitz, S. H. Lieberman, “Fiber optic fluorometer based on a dual wavelength laser excitation source,” in Chemical, Biochemical, and Environmental Fiber Sensors IV, R. A. Lieberman, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1796, 115–123 (1992).

Nick, K.-P.

W. Schade, J. Bublitz, K.-P. Nick, V. Helbig, “Time-resolved laser-induced fluorescence spectroscopy for diagnostics of oil pollution in water,” in Laser in Remote Sensing, V. Klein, K. Weber, Ch. Werner, eds. (Springer-Verlag, Berlin, 1992), pp. 53–61.

Niessner, R.

U. Panne, F. Lewitzka, R. Niessner, “Fibre optical sensors for detection of atmospheric and hydrospheric polycyclic aromatic hydrocarbons,” Analusis 20, 533–542 (1992).

R. Niessner, U. Panne, H. Schröder, “Fibre-optic sensors for the determination of polynuclear aromatic hydrocarbons with time-resolved, laser-induced fluorescence,” Anal. Chim. Acta 255, 231–243 (1991).
[CrossRef]

R. Niessner, W. Roberts, P. Wilbring, “Fiber optical sensor system using a tunable laser for detection of PAH’s on particles and in water,” in Chemical, Biochemical, and Environmental Fiber Sensors, R. A. Lieberman, M. T. Wlodarczyk, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1172, 145–156 (1989).

Oesgaard, K.

K. Oesgaard, “Determination of environmental pollutants by direct fluorescence spectroscopy,” Trace Anal. 3, 163–212 (1984).

Omenetto, N.

Panne, U.

U. Panne, F. Lewitzka, R. Niessner, “Fibre optical sensors for detection of atmospheric and hydrospheric polycyclic aromatic hydrocarbons,” Analusis 20, 533–542 (1992).

R. Niessner, U. Panne, H. Schröder, “Fibre-optic sensors for the determination of polynuclear aromatic hydrocarbons with time-resolved, laser-induced fluorescence,” Anal. Chim. Acta 255, 231–243 (1991).
[CrossRef]

Qi, Pan

Rayner, D. M.

Reuter, R.

Roberts, W.

R. Niessner, W. Roberts, P. Wilbring, “Fiber optical sensor system using a tunable laser for detection of PAH’s on particles and in water,” in Chemical, Biochemical, and Environmental Fiber Sensors, R. A. Lieberman, M. T. Wlodarczyk, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1172, 145–156 (1989).

Rossi, G.

Schade, W.

W. Schade, J. Bublitz, “New laser-induced fluorescence trace analysis of pollutants in water and soil,” Laser Optoelektron. 24(4), 41–48 (1993).

W. Schade, G. Langhans, V. Helbig, “Lifetime measurements of V II levels using tunable subnanosecond uv-dye-laser pulses,” Phys. Scr. 36, 890–894 (1987).
[CrossRef]

W. Schade, J. Bublitz, “Time-resolved laser spectroscopy for the trace analysis of PAH-molecules in water and in the soil,” in Proceedings of the Eleventh International Conference on Laser Spectroscopy, L. Bloomfield, T. Gallagher, D. Larson, eds. (American Institute of Physics, New York, 1994), pp. 261–263.

W. Schade, J. Bublitz, K.-P. Nick, V. Helbig, “Time-resolved laser-induced fluorescence spectroscopy for diagnostics of oil pollution in water,” in Laser in Remote Sensing, V. Klein, K. Weber, Ch. Werner, eds. (Springer-Verlag, Berlin, 1992), pp. 53–61.

Schröder, H.

R. Niessner, U. Panne, H. Schröder, “Fibre-optic sensors for the determination of polynuclear aromatic hydrocarbons with time-resolved, laser-induced fluorescence,” Anal. Chim. Acta 255, 231–243 (1991).
[CrossRef]

Shimizu, Y.

S. H. Lieberman, S. M. Inman, G. A. Theriault, S. S. Cooper, P. G. Malone, Y. Shimizu, P. W. Lurk, “Fiber-optic based chemical sensors for in situ measurement of metals and aromatic organic compounds in seawater and soil systems,” in Environment and Pollution Measurement Sensors and Systems, H. O. Nielsen, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1269, 175–184 (1990).

Stephenson, D. G.

R. M. Measures, W. R. Houston, D. G. Stephenson, “Laser induced fluorescent decay spectra—a new form of environmental signature,” Opt. Eng. 13, 494–501 (1974).

Szabo, A. G.

Theriault, G. A.

S. M. Inman, P. Thibado, G. A. Theriault, S. H. Lieberman, “Development of a pulsed laser, fiber-optic-based fluorimeter: determination of fluorescence decay times of polycyclic aromatic hydrocarbons in sea water,” Anal. Chim. Acta 239, 45–51 (1990).
[CrossRef]

S. H. Lieberman, S. M. Inman, G. A. Theriault, “Use of time-resolved spectral fluorometry for improving specifity,” in Chemical, Biochemical, and Environmental Fiber Sensors, R. A. Lieberman, M. T. Wlodarczyk, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1172, 94–98 (1989).

G. A. Theriault, R. Newbery, J. M. Andrews, S. E. Apitz, S. H. Lieberman, “Fiber optic fluorometer based on a dual wavelength laser excitation source,” in Chemical, Biochemical, and Environmental Fiber Sensors IV, R. A. Lieberman, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1796, 115–123 (1992).

S. E. Apitz, G. A. Theriault, S. H. Lieberman, “Optimization of the optical characteristics of a fiber-optic guided laser fluorescence technique for the in-situ evaluation of fuels in soils,” in Environmental and Process Monitoring Technologies, T. Vo-Dinh, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1637, 241–254 (1992).

S. H. Lieberman, S. M. Inman, G. A. Theriault, S. S. Cooper, P. G. Malone, Y. Shimizu, P. W. Lurk, “Fiber-optic based chemical sensors for in situ measurement of metals and aromatic organic compounds in seawater and soil systems,” in Environment and Pollution Measurement Sensors and Systems, H. O. Nielsen, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1269, 175–184 (1990).

Thibado, P.

S. M. Inman, P. Thibado, G. A. Theriault, S. H. Lieberman, “Development of a pulsed laser, fiber-optic-based fluorimeter: determination of fluorescence decay times of polycyclic aromatic hydrocarbons in sea water,” Anal. Chim. Acta 239, 45–51 (1990).
[CrossRef]

Wilbring, P.

R. Niessner, W. Roberts, P. Wilbring, “Fiber optical sensor system using a tunable laser for detection of PAH’s on particles and in water,” in Chemical, Biochemical, and Environmental Fiber Sensors, R. A. Lieberman, M. T. Wlodarczyk, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1172, 145–156 (1989).

Zhu, Y.-B.

Y.-B. Zhu, J. Ma, “Study on determination of micro amount oil in water by laser time-resolution fluorescence spectroscopic technique,” in Environmental and Process Monitoring Technologies, T. Vo-Dinh, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1637, 285–290 (1992).

Ziechmann, W.

W. Ziechmann, Huminstoffe (Verlag Chemie, Weinheim, Germany, 1980).

Anal. Chim. Acta (2)

S. M. Inman, P. Thibado, G. A. Theriault, S. H. Lieberman, “Development of a pulsed laser, fiber-optic-based fluorimeter: determination of fluorescence decay times of polycyclic aromatic hydrocarbons in sea water,” Anal. Chim. Acta 239, 45–51 (1990).
[CrossRef]

R. Niessner, U. Panne, H. Schröder, “Fibre-optic sensors for the determination of polynuclear aromatic hydrocarbons with time-resolved, laser-induced fluorescence,” Anal. Chim. Acta 255, 231–243 (1991).
[CrossRef]

Analusis (1)

U. Panne, F. Lewitzka, R. Niessner, “Fibre optical sensors for detection of atmospheric and hydrospheric polycyclic aromatic hydrocarbons,” Analusis 20, 533–542 (1992).

Appl. Opt. (3)

Appl. Spectrosc. (1)

Laser Optoelektron. (1)

W. Schade, J. Bublitz, “New laser-induced fluorescence trace analysis of pollutants in water and soil,” Laser Optoelektron. 24(4), 41–48 (1993).

Opt. Eng. (1)

R. M. Measures, W. R. Houston, D. G. Stephenson, “Laser induced fluorescent decay spectra—a new form of environmental signature,” Opt. Eng. 13, 494–501 (1974).

Phys. Scr. (1)

W. Schade, G. Langhans, V. Helbig, “Lifetime measurements of V II levels using tunable subnanosecond uv-dye-laser pulses,” Phys. Scr. 36, 890–894 (1987).
[CrossRef]

Trace Anal. (1)

K. Oesgaard, “Determination of environmental pollutants by direct fluorescence spectroscopy,” Trace Anal. 3, 163–212 (1984).

Other (15)

R. Niessner, W. Roberts, P. Wilbring, “Fiber optical sensor system using a tunable laser for detection of PAH’s on particles and in water,” in Chemical, Biochemical, and Environmental Fiber Sensors, R. A. Lieberman, M. T. Wlodarczyk, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1172, 145–156 (1989).

S. H. Lieberman, S. M. Inman, G. A. Theriault, S. S. Cooper, P. G. Malone, Y. Shimizu, P. W. Lurk, “Fiber-optic based chemical sensors for in situ measurement of metals and aromatic organic compounds in seawater and soil systems,” in Environment and Pollution Measurement Sensors and Systems, H. O. Nielsen, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1269, 175–184 (1990).

S. E. Apitz, G. A. Theriault, S. H. Lieberman, “Optimization of the optical characteristics of a fiber-optic guided laser fluorescence technique for the in-situ evaluation of fuels in soils,” in Environmental and Process Monitoring Technologies, T. Vo-Dinh, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1637, 241–254 (1992).

W. Schade, J. Bublitz, K.-P. Nick, V. Helbig, “Time-resolved laser-induced fluorescence spectroscopy for diagnostics of oil pollution in water,” in Laser in Remote Sensing, V. Klein, K. Weber, Ch. Werner, eds. (Springer-Verlag, Berlin, 1992), pp. 53–61.

Y.-B. Zhu, J. Ma, “Study on determination of micro amount oil in water by laser time-resolution fluorescence spectroscopic technique,” in Environmental and Process Monitoring Technologies, T. Vo-Dinh, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1637, 285–290 (1992).

G. D. Gillispie, R. W. St. Germain, “In-situ tunable laser fluorescence of hydrocarbons,” in Environmental and Process Monitoring Technologies, T. Vo-Dinh, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1637, 151–162 (1992).

N. H. Eisum, A. Lynggaard-Jensen, “The development of a fluorimeter using laser induced single-shot fluorescence lifetime spectroscopy,” in Environment and Pollution Measurement Sensors and Systems, H. O. Nielsen, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1269, 167–174 (1990).

S. H. Lieberman, S. M. Inman, G. A. Theriault, “Use of time-resolved spectral fluorometry for improving specifity,” in Chemical, Biochemical, and Environmental Fiber Sensors, R. A. Lieberman, M. T. Wlodarczyk, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 1172, 94–98 (1989).

J. B. Birks, Photophysics of Aromatic Hydrocarbons (Wiley, London, 1972).

I. B. Berlman, Handbook of Fluorescence Spectra of Aromatic Molecules (Academic, New York, 1971).

G. A. Theriault, R. Newbery, J. M. Andrews, S. E. Apitz, S. H. Lieberman, “Fiber optic fluorometer based on a dual wavelength laser excitation source,” in Chemical, Biochemical, and Environmental Fiber Sensors IV, R. A. Lieberman, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1796, 115–123 (1992).

W. Schade, J. Bublitz, “Time-resolved laser spectroscopy for the trace analysis of PAH-molecules in water and in the soil,” in Proceedings of the Eleventh International Conference on Laser Spectroscopy, L. Bloomfield, T. Gallagher, D. Larson, eds. (American Institute of Physics, New York, 1994), pp. 261–263.

W. Ziechmann, Huminstoffe (Verlag Chemie, Weinheim, Germany, 1980).

U.-B. Goers, “Untersuchungen zur laserinduzierten Fluoreszenz von Gelbstoffen und Chlorophyll in Tiedegewässern,” Ph.D. dissertation (University of Hamburg, Hamburg, 1991).

A. S. Marfunin, Spectroscopy, Luminescence and Radiation Centers in Minerals (Springer-Verlag, Berlin, 1979).
[CrossRef]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Time-resolved LIF spectra of (a) natural water and (b) a 10-mg/L engine oil– (15W-40HD) water mixture. The excitation was performed with a nitrogen laser at 337 nm. The data analysis of the decay spectra [(c), (d)] for the 400-nm fixed wavelength gives a fluorescence-decay curve for (c) natural water and (d) a 10-mg/L engine oil (15W-40HD) polluted-water sample.

Fig. 2
Fig. 2

(a), (b) Time-resolved fluorescence intensities of oil–water mixtures with different concentrations of engine oil (15W-40HD) in unpolluted water: (a) Results of numerical simulations. Starting with the decay of pure water (left curve) the oil concentration is increased in steps of 5 mg/L up 50 mg/L oil (right curve). (b) Experimental results for excitation at 337 nm and observation at 400 nm. The left curve shows the decay of pure water, followed by the decay spectra of mixtures with 5, 10, and 50 mg/L (right curve) oil in water. (c), (d) Results of numerical simulations for time-integrated fluorescence intensities, depending on the concentration of engine oil in a water sample: (c) Absolute values of early and late fluorescence intensities I 1 and I 2. (d) Ratio I 2/I 1 for different values of the parameter r [see Eq. (6)], starting with r = 1/500 (left curve) and followed by r = 1/100, 1/50, 1/20, 1/10, 1/5, 1/2, and 1/1.

Fig. 3
Fig. 3

Time-integrated LIF-spectra of (a) humic acid, (b) ligninsulfonic acid. The concentrations are 100 mg/L in double-distilled water, and the excitation is performed with a nitrogen laser at 337 nm.

Fig. 4
Fig. 4

Experimental results for time-integrated fluorescence detection at 400 nm of (a), (b) engine oil– (15W-40HD) water mixtures and (c), (d) diesel-fuel–water mixtures with different oil–diesel-fuel concentrations. The excitation is performed at 337 nm.

Fig. 5
Fig. 5

Ratio of time-integrated fluorescence intensities I 2/I 1 measured at 400 nm and different engine-oil concentrations in quartz sand after excitation at 337 nm.

Fig. 6
Fig. 6

(a) Experimental setup for time-integrated fluorescence detection, (b) block diagram of the counter system, (c) accuracy of the ratio I 2/I 1, depending on the number of detected photons for an oil–water mixture of 10 mg/L, (d) dependency of the ratio I 2/I 1 on the ratio of detected photons and laser pulses (△ experimental data, ○ calculations).

Fig. 7
Fig. 7

(a) Absorption spectrum of 1.5 mL/L benzene in cyclohexane (UV grade), (b) absorption spectrum of 0.01 mg/L pyrene in cyclohexane (UV grade).

Fig. 8
Fig. 8

Time-resolved fluorescence spectra of (a) 100 mL/L benzene in cyclohexane (UV grade) after excitation at 248 nm, (b) 0.1 mg/L pyrene in cyclohexane (UV grade) after excitation at 337 nm.

Fig. 9
Fig. 9

Time-resolved intensity spectra of (a) natural water and (b) a 10 mg/L engine-oil–water mixture. The excitation was performed with a KrF-excimer laser at 248 nm.

Fig. 10
Fig. 10

Site plan of the industrial sewer.

Fig. 11
Fig. 11

(a) Site plan and (b) experimental results of diesel-fuel contaminations in a vertical soil layer near a leaking diesel-gas pump.

Tables (1)

Tables Icon

Table 1 Experimental Results for the Ratio I 2/I 1 and the Corresponding Concentrations for the Different Positions where the Data were Takena

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

d [ M 1 * ] d t = - ( k se + k iq + k XM ) [ M 1 * ] .
I f ( t ) = a exp [ - ( t / τ f ) ] ,
τ f = 1 k se + k iq + k XM .
I f ( t ) = i = 1 n a i exp [ - ( t / τ i ) ] .
a o 1 , o 2 , o 3 a o 1 , o 2 , o 3 x Δ a , a w 1 , w 2 a w 1 , w 2 ( 1 - x Δ a ) ,
r = i = 1 2 a w i j = 1 3 a o j .

Metrics