Abstract

We present a review of the emerging optically addressed ferroelectric memory with nondestructive readout as a nonvolatile memory technology, identify its high-impact applications, and project on some novel device designs and architectures that will enable its realization. Based on the high-speed bidirectional polarization-dependent photoresponse, simulation of a readout circuit for a 16-kbit VLSI ferromemory chip yields read-access times of ~20 ns and read-cycle times of ~30 ns (~34 ns and ~44 ns, respectively, within a framework of a radiation-hard environment), easily surpassing those of the conventional electrical destructive readout. Extension of the simulation for a 64-kbit memory shows that the read-access and -cycle times are only marginally increased to ~21 ns and ~31 ns, respectively (~38 ns and ~48 ns, with a radiation-hard readout circuitry). Commercial realization of the optical nondestructive readout, however, would require a reduction in the incident (optical) power by roughly an order of magnitude for the readout or an enhancement in the delivered power-to-size ratio of semiconductor lasers for compact implementation. We present a new two-capacitor memory-cell configuration that provides an enhanced bipolar optoelectronic response from the edges of the capacitor at incident power as low as ~2 mW/μm2. A novel device design based on lead zirconate titanate with the c axis parallel to the substrate is suggested to reduce the requirement of incident optical power further by orders of magnitude.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. E. Land, “Longitudinal electro-optic effects and photosensitivities of lead zirconate titanate thin films,” J. Am. Ceram. Soc. 72, 2059–2064 (1989).
    [CrossRef]
  2. S. J. Martin, M. A. Butler, C. E. Land, “Ferroelectric optical image comparator using PLZT thin films,” Electron. Lett. 24, 1486–1487 (1988).
    [CrossRef]
  3. M. A. Butler, S. J. Martin, C. E. Land, “Photoinduced currents in PZT thin films,” Appl. Opt. 28, 5105–5109 (1989).
    [CrossRef] [PubMed]
  4. G. H. Haertling, “Electro-optic ceramics and devices,” in Electronic Ceramics, L. M. Levinson, ed. (Dekker, New York, 1987), pp. 371–492.
  5. S. Thakoor, “Nondestructive readout (NDRO) from ferroelectric PZT thin film capacitors,” in Ceramic Transactions: Ferroelectric Films, A. S. Bhalla, K. M. Nair, eds. (American Ceramic Society, Westerville, Ohio, 1991), Vol. 25, pp. 251–264.
  6. S. Thakoor, A. P. Thakoor, S. E. Bernacki, “Photoresponse from thin ferroelectric films of lead zirconate titanate,” presented at the Third International Symposium on Integrated Ferroelectrics, Colorado Springs, Colo., 3–5 April 1991.
  7. S. Thakoor, “High-speed nondestructive readout from thin film ferroelectric memory,” Appl. Phys. Lett. 60, 3319–3321 (1992).
    [CrossRef]
  8. S. Thakoor, J. Maserjian, J. Perry, “An optical probe for ferroelectric thin film memory capacitors,” Integrated Ferroelectrics 4, 333–340 (1994).
    [CrossRef]
  9. S. Sinharoy, H. Buhay, D. R. Lampe, M. H. Francombe, “Integration of ferroelectric thin films into nonvolatile memories,” J. Vac. Sci. Technol. A 10, 1554–1561 (1992).
    [CrossRef]
  10. S. Y. Wu, “A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor,” IEEE Trans. Electron Devices ED-21, 499–504 (1974).
  11. K. Sugibuchi, Y. Kurogi, N. Endo, “Ferroelectric field-effect memory device using Bi4Ti3O12 film,” J. Appl. Phys. 46, 2877–2881 (1975).
    [CrossRef]
  12. S. Sinharoy, H. Buhay, D. R. Lampe, M. H. Francombe, “Processing and characterization of ferroelectric BaMgF4 and Bi4Ti3O12 films for nonvolatile memory field-effect transistor (FEMFET) devices,” presented at the IEEE International Symposium on Applied Ferroelectrics, Greenville, S.C., 31 August–2 September, 1992.
  13. J. T. Evans, R. Womack, “An experimental 512-bit nonvolatile memory with ferroelectric storage cell,” IEEE J. Solid-State Circuits SSC-23, 1171–1176 (1988).
    [CrossRef]
  14. D. Bondurant, F. Gnandinger, “Ferroelectric nonvolatile RAM’s,” IEEE Spectrum 26(7), 30–33 (1989).
    [CrossRef]
  15. J. F. Scott, C. A. Paz, De Araujo, “Ferroelectric memories,” Science 246, 1400–1405 (1989).
    [CrossRef] [PubMed]
  16. S. Thakoor, “High-speed optoelectronic response from the edges of lead zirconate titanate thin film capacitors,” Appl. Phys. Lett. 63, 3233–3235 (1993).
    [CrossRef]
  17. S. Thakoor, “High-speed optoelectronic nondestructive readout from ferroelectric thin film capacitors,” Ferroelectrics 134, 355–363 (1992).
    [CrossRef]
  18. S. Thakoor, E. Olson, R. H. Nixon, “Optically addressable ferroelectric memory and its applications,” Integrated Ferroelectrics 4, 257–269 (1994).
    [CrossRef]
  19. M. Lakata, S. Thakoor, “Automated ferroelectric capacitor testing system,” NASA Tech. Briefs 18(2), 30 (1994).
  20. G. A. Soli, B. R. Blaes, M. G. Buehler, K. Ray, Y. S. Lin, “CRRES microelectronic test chip orbital data II,” IEEE Trans. Nucl. Sci. 39, 1840–1845 (1992).
    [CrossRef]
  21. R. A. Morgan, K. Kojima, T. Mullally, G. D. Guth, M. W. Focht, R. E. Leibenguth, M. Asom, “High-power coherently coupled 8 × 8 vertical-cavity surface-emitting laser array,” Appl. Phys. Lett. 61, 1160–1162 (1992); A. von Lehmen, C. Chang-Hasnain, J. Wullert, L. Carrion, N. Stoffel, L. Florez, J. Harbison, “Independently addressable InGaAs/GaAs vertical-cavity surface-emitting laser arrays,” Electron. Lett. 27, 583–585 (1991); D. Mehuys, D. F. Welch, R. Parke, R. G. Waarts, A. Hardy, D. Scifres, “High-power diffraction-limited emission from monolithically integrated active grating master oscillator power amplifier,” Electron. Lett. 27, 492–494 (1991).
    [CrossRef]
  22. S. Thakoor, “Enhanced fatigue and retention in ferroelectric thin film memory capacitors by post-top-electrode anneal treatment,” J. Appl. Phys. 75, 5409–5414 (1994).
    [CrossRef]
  23. S. Thakoor, J. Maserjian, “Photoresponse probe of the space charge distribution in ferroelectric PZT thin film memory capacitors,” J. Vac. Sci. Technol. A 12, 295–299 (1994).
    [CrossRef]
  24. S. Thakoor, “Noninvasive optical probe of ferroelectric films,” Nasa Tech. Briefs 17(5), 54 (1993).
  25. L. D. Chang, M. Z. Tseng, E. L. Hu, “Epitaxial MgO buffer layers for YBa2Cu3O7-x thin films on GaAs,” Appl. Phys. Lett. 60, 1753–1755 (1992); B. M. Clemens, C. W. Nieh, J. A. Kittl, W. L. Johnson, J. Y. Josefowicz, A. T. Hunter, “Nucleation and growth of YBaCuO on SrTiO3,” Appl. Phys. Lett. 53, 1871–1873 (1988).
    [CrossRef]
  26. K. Nashimoto, D. K. Fork, “Epitaxial growth of MgO on GaAs (001) for growing epitaxial BaTiO3 thin films by pulsed laser deposition,” Appl. Phys. Lett. 60, 1199–1201 (1992).
    [CrossRef]
  27. W.-Y. Hsu, R. Raj, “MgO epitaxial thin films on (100) GaAs as a substrate for the growth of oriented PbTiO3,” Appl. Phys. Lett. 60, 3105–3107 (1992); B. S. Kwak, A. Erbil, B. J. Wilkins, J. D. Budai, M. F. Chrisholm, L. A. Boatner, “Strain relaxation by domain formation in epitaxial ferroelectric thin films,” Phys. Rev. Lett. 68, 3733–1873 (1992).
    [CrossRef] [PubMed]
  28. R. Ramesh, T. Sands, V. G. Keramidas, “Effect of crystal-lographic orientation on ferroelectric properties of PbZr0.2Ti0.8O3 thin films,” Appl. Phys. Lett. 63, 731–733 (1993).
    [CrossRef]
  29. M. Bass, P. A. Franken, J. F. Ward, G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9, 446–448 (1962).
    [CrossRef]
  30. M. Bass, P. A. Franken, J. F. Ward, “Optical rectification,” Phys. Rev. A 138, 534–542 (1965).
  31. B. N. Morozov, Yu. M. Aivazyan, “Optical rectification and its applications (review),” Sov. J. Quantum Electron. 10, 1–16 (1980); V. M. Nesterenko, B. N. Morozov, “Utilization of optical detection in measuring laser power output,” Sov. J. Quantum Electron. 1, 496–499 (1971).
    [CrossRef]
  32. S. Thakoor, A. P. Thakoor, “Improved ferroelectric memories with nondestructive readout,” NASA Tech. Briefs 18(11), 40 (1994).
  33. S. Thakoor, “High spatial resolution noninvasive optical evaluation tool,” JPL New Technol. Rep. 19393/8994 (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Calif., 1994).
  34. S. Thakoor, J. M. Morookian, H. Hemmati, A. P. Thakoor, “Photoresponse from ferroelectric capacitors: optical probing and conditioning of ferroelectric thin-film memories,” presented at the IEEE International Symposium of Applied Ferroelectrics, University Park, Pa., 7–10 August 1994; S. Thakoor, A. P. Thakoor, L. E. Cross, “Optical noninvasive evaluation of ferroelectric films and memory capacitors,” in Materials for Smart Systems, Vol. 360 of MRS Proceedings Series (Materials Research Society, Pittsburgh, Pa., to be published).

1994 (6)

S. Thakoor, J. Maserjian, J. Perry, “An optical probe for ferroelectric thin film memory capacitors,” Integrated Ferroelectrics 4, 333–340 (1994).
[CrossRef]

S. Thakoor, E. Olson, R. H. Nixon, “Optically addressable ferroelectric memory and its applications,” Integrated Ferroelectrics 4, 257–269 (1994).
[CrossRef]

M. Lakata, S. Thakoor, “Automated ferroelectric capacitor testing system,” NASA Tech. Briefs 18(2), 30 (1994).

S. Thakoor, “Enhanced fatigue and retention in ferroelectric thin film memory capacitors by post-top-electrode anneal treatment,” J. Appl. Phys. 75, 5409–5414 (1994).
[CrossRef]

S. Thakoor, J. Maserjian, “Photoresponse probe of the space charge distribution in ferroelectric PZT thin film memory capacitors,” J. Vac. Sci. Technol. A 12, 295–299 (1994).
[CrossRef]

S. Thakoor, A. P. Thakoor, “Improved ferroelectric memories with nondestructive readout,” NASA Tech. Briefs 18(11), 40 (1994).

1993 (3)

S. Thakoor, “Noninvasive optical probe of ferroelectric films,” Nasa Tech. Briefs 17(5), 54 (1993).

R. Ramesh, T. Sands, V. G. Keramidas, “Effect of crystal-lographic orientation on ferroelectric properties of PbZr0.2Ti0.8O3 thin films,” Appl. Phys. Lett. 63, 731–733 (1993).
[CrossRef]

S. Thakoor, “High-speed optoelectronic response from the edges of lead zirconate titanate thin film capacitors,” Appl. Phys. Lett. 63, 3233–3235 (1993).
[CrossRef]

1992 (8)

S. Thakoor, “High-speed optoelectronic nondestructive readout from ferroelectric thin film capacitors,” Ferroelectrics 134, 355–363 (1992).
[CrossRef]

G. A. Soli, B. R. Blaes, M. G. Buehler, K. Ray, Y. S. Lin, “CRRES microelectronic test chip orbital data II,” IEEE Trans. Nucl. Sci. 39, 1840–1845 (1992).
[CrossRef]

R. A. Morgan, K. Kojima, T. Mullally, G. D. Guth, M. W. Focht, R. E. Leibenguth, M. Asom, “High-power coherently coupled 8 × 8 vertical-cavity surface-emitting laser array,” Appl. Phys. Lett. 61, 1160–1162 (1992); A. von Lehmen, C. Chang-Hasnain, J. Wullert, L. Carrion, N. Stoffel, L. Florez, J. Harbison, “Independently addressable InGaAs/GaAs vertical-cavity surface-emitting laser arrays,” Electron. Lett. 27, 583–585 (1991); D. Mehuys, D. F. Welch, R. Parke, R. G. Waarts, A. Hardy, D. Scifres, “High-power diffraction-limited emission from monolithically integrated active grating master oscillator power amplifier,” Electron. Lett. 27, 492–494 (1991).
[CrossRef]

S. Sinharoy, H. Buhay, D. R. Lampe, M. H. Francombe, “Integration of ferroelectric thin films into nonvolatile memories,” J. Vac. Sci. Technol. A 10, 1554–1561 (1992).
[CrossRef]

S. Thakoor, “High-speed nondestructive readout from thin film ferroelectric memory,” Appl. Phys. Lett. 60, 3319–3321 (1992).
[CrossRef]

L. D. Chang, M. Z. Tseng, E. L. Hu, “Epitaxial MgO buffer layers for YBa2Cu3O7-x thin films on GaAs,” Appl. Phys. Lett. 60, 1753–1755 (1992); B. M. Clemens, C. W. Nieh, J. A. Kittl, W. L. Johnson, J. Y. Josefowicz, A. T. Hunter, “Nucleation and growth of YBaCuO on SrTiO3,” Appl. Phys. Lett. 53, 1871–1873 (1988).
[CrossRef]

K. Nashimoto, D. K. Fork, “Epitaxial growth of MgO on GaAs (001) for growing epitaxial BaTiO3 thin films by pulsed laser deposition,” Appl. Phys. Lett. 60, 1199–1201 (1992).
[CrossRef]

W.-Y. Hsu, R. Raj, “MgO epitaxial thin films on (100) GaAs as a substrate for the growth of oriented PbTiO3,” Appl. Phys. Lett. 60, 3105–3107 (1992); B. S. Kwak, A. Erbil, B. J. Wilkins, J. D. Budai, M. F. Chrisholm, L. A. Boatner, “Strain relaxation by domain formation in epitaxial ferroelectric thin films,” Phys. Rev. Lett. 68, 3733–1873 (1992).
[CrossRef] [PubMed]

1989 (4)

M. A. Butler, S. J. Martin, C. E. Land, “Photoinduced currents in PZT thin films,” Appl. Opt. 28, 5105–5109 (1989).
[CrossRef] [PubMed]

C. E. Land, “Longitudinal electro-optic effects and photosensitivities of lead zirconate titanate thin films,” J. Am. Ceram. Soc. 72, 2059–2064 (1989).
[CrossRef]

D. Bondurant, F. Gnandinger, “Ferroelectric nonvolatile RAM’s,” IEEE Spectrum 26(7), 30–33 (1989).
[CrossRef]

J. F. Scott, C. A. Paz, De Araujo, “Ferroelectric memories,” Science 246, 1400–1405 (1989).
[CrossRef] [PubMed]

1988 (2)

S. J. Martin, M. A. Butler, C. E. Land, “Ferroelectric optical image comparator using PLZT thin films,” Electron. Lett. 24, 1486–1487 (1988).
[CrossRef]

J. T. Evans, R. Womack, “An experimental 512-bit nonvolatile memory with ferroelectric storage cell,” IEEE J. Solid-State Circuits SSC-23, 1171–1176 (1988).
[CrossRef]

1980 (1)

B. N. Morozov, Yu. M. Aivazyan, “Optical rectification and its applications (review),” Sov. J. Quantum Electron. 10, 1–16 (1980); V. M. Nesterenko, B. N. Morozov, “Utilization of optical detection in measuring laser power output,” Sov. J. Quantum Electron. 1, 496–499 (1971).
[CrossRef]

1975 (1)

K. Sugibuchi, Y. Kurogi, N. Endo, “Ferroelectric field-effect memory device using Bi4Ti3O12 film,” J. Appl. Phys. 46, 2877–2881 (1975).
[CrossRef]

1974 (1)

S. Y. Wu, “A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor,” IEEE Trans. Electron Devices ED-21, 499–504 (1974).

1965 (1)

M. Bass, P. A. Franken, J. F. Ward, “Optical rectification,” Phys. Rev. A 138, 534–542 (1965).

1962 (1)

M. Bass, P. A. Franken, J. F. Ward, G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9, 446–448 (1962).
[CrossRef]

Aivazyan, Yu. M.

B. N. Morozov, Yu. M. Aivazyan, “Optical rectification and its applications (review),” Sov. J. Quantum Electron. 10, 1–16 (1980); V. M. Nesterenko, B. N. Morozov, “Utilization of optical detection in measuring laser power output,” Sov. J. Quantum Electron. 1, 496–499 (1971).
[CrossRef]

Araujo, De

J. F. Scott, C. A. Paz, De Araujo, “Ferroelectric memories,” Science 246, 1400–1405 (1989).
[CrossRef] [PubMed]

Asom, M.

R. A. Morgan, K. Kojima, T. Mullally, G. D. Guth, M. W. Focht, R. E. Leibenguth, M. Asom, “High-power coherently coupled 8 × 8 vertical-cavity surface-emitting laser array,” Appl. Phys. Lett. 61, 1160–1162 (1992); A. von Lehmen, C. Chang-Hasnain, J. Wullert, L. Carrion, N. Stoffel, L. Florez, J. Harbison, “Independently addressable InGaAs/GaAs vertical-cavity surface-emitting laser arrays,” Electron. Lett. 27, 583–585 (1991); D. Mehuys, D. F. Welch, R. Parke, R. G. Waarts, A. Hardy, D. Scifres, “High-power diffraction-limited emission from monolithically integrated active grating master oscillator power amplifier,” Electron. Lett. 27, 492–494 (1991).
[CrossRef]

Bass, M.

M. Bass, P. A. Franken, J. F. Ward, “Optical rectification,” Phys. Rev. A 138, 534–542 (1965).

M. Bass, P. A. Franken, J. F. Ward, G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9, 446–448 (1962).
[CrossRef]

Bernacki, S. E.

S. Thakoor, A. P. Thakoor, S. E. Bernacki, “Photoresponse from thin ferroelectric films of lead zirconate titanate,” presented at the Third International Symposium on Integrated Ferroelectrics, Colorado Springs, Colo., 3–5 April 1991.

Blaes, B. R.

G. A. Soli, B. R. Blaes, M. G. Buehler, K. Ray, Y. S. Lin, “CRRES microelectronic test chip orbital data II,” IEEE Trans. Nucl. Sci. 39, 1840–1845 (1992).
[CrossRef]

Bondurant, D.

D. Bondurant, F. Gnandinger, “Ferroelectric nonvolatile RAM’s,” IEEE Spectrum 26(7), 30–33 (1989).
[CrossRef]

Buehler, M. G.

G. A. Soli, B. R. Blaes, M. G. Buehler, K. Ray, Y. S. Lin, “CRRES microelectronic test chip orbital data II,” IEEE Trans. Nucl. Sci. 39, 1840–1845 (1992).
[CrossRef]

Buhay, H.

S. Sinharoy, H. Buhay, D. R. Lampe, M. H. Francombe, “Integration of ferroelectric thin films into nonvolatile memories,” J. Vac. Sci. Technol. A 10, 1554–1561 (1992).
[CrossRef]

S. Sinharoy, H. Buhay, D. R. Lampe, M. H. Francombe, “Processing and characterization of ferroelectric BaMgF4 and Bi4Ti3O12 films for nonvolatile memory field-effect transistor (FEMFET) devices,” presented at the IEEE International Symposium on Applied Ferroelectrics, Greenville, S.C., 31 August–2 September, 1992.

Butler, M. A.

M. A. Butler, S. J. Martin, C. E. Land, “Photoinduced currents in PZT thin films,” Appl. Opt. 28, 5105–5109 (1989).
[CrossRef] [PubMed]

S. J. Martin, M. A. Butler, C. E. Land, “Ferroelectric optical image comparator using PLZT thin films,” Electron. Lett. 24, 1486–1487 (1988).
[CrossRef]

Chang, L. D.

L. D. Chang, M. Z. Tseng, E. L. Hu, “Epitaxial MgO buffer layers for YBa2Cu3O7-x thin films on GaAs,” Appl. Phys. Lett. 60, 1753–1755 (1992); B. M. Clemens, C. W. Nieh, J. A. Kittl, W. L. Johnson, J. Y. Josefowicz, A. T. Hunter, “Nucleation and growth of YBaCuO on SrTiO3,” Appl. Phys. Lett. 53, 1871–1873 (1988).
[CrossRef]

Endo, N.

K. Sugibuchi, Y. Kurogi, N. Endo, “Ferroelectric field-effect memory device using Bi4Ti3O12 film,” J. Appl. Phys. 46, 2877–2881 (1975).
[CrossRef]

Evans, J. T.

J. T. Evans, R. Womack, “An experimental 512-bit nonvolatile memory with ferroelectric storage cell,” IEEE J. Solid-State Circuits SSC-23, 1171–1176 (1988).
[CrossRef]

Focht, M. W.

R. A. Morgan, K. Kojima, T. Mullally, G. D. Guth, M. W. Focht, R. E. Leibenguth, M. Asom, “High-power coherently coupled 8 × 8 vertical-cavity surface-emitting laser array,” Appl. Phys. Lett. 61, 1160–1162 (1992); A. von Lehmen, C. Chang-Hasnain, J. Wullert, L. Carrion, N. Stoffel, L. Florez, J. Harbison, “Independently addressable InGaAs/GaAs vertical-cavity surface-emitting laser arrays,” Electron. Lett. 27, 583–585 (1991); D. Mehuys, D. F. Welch, R. Parke, R. G. Waarts, A. Hardy, D. Scifres, “High-power diffraction-limited emission from monolithically integrated active grating master oscillator power amplifier,” Electron. Lett. 27, 492–494 (1991).
[CrossRef]

Fork, D. K.

K. Nashimoto, D. K. Fork, “Epitaxial growth of MgO on GaAs (001) for growing epitaxial BaTiO3 thin films by pulsed laser deposition,” Appl. Phys. Lett. 60, 1199–1201 (1992).
[CrossRef]

Francombe, M. H.

S. Sinharoy, H. Buhay, D. R. Lampe, M. H. Francombe, “Integration of ferroelectric thin films into nonvolatile memories,” J. Vac. Sci. Technol. A 10, 1554–1561 (1992).
[CrossRef]

S. Sinharoy, H. Buhay, D. R. Lampe, M. H. Francombe, “Processing and characterization of ferroelectric BaMgF4 and Bi4Ti3O12 films for nonvolatile memory field-effect transistor (FEMFET) devices,” presented at the IEEE International Symposium on Applied Ferroelectrics, Greenville, S.C., 31 August–2 September, 1992.

Franken, P. A.

M. Bass, P. A. Franken, J. F. Ward, “Optical rectification,” Phys. Rev. A 138, 534–542 (1965).

M. Bass, P. A. Franken, J. F. Ward, G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9, 446–448 (1962).
[CrossRef]

Gnandinger, F.

D. Bondurant, F. Gnandinger, “Ferroelectric nonvolatile RAM’s,” IEEE Spectrum 26(7), 30–33 (1989).
[CrossRef]

Guth, G. D.

R. A. Morgan, K. Kojima, T. Mullally, G. D. Guth, M. W. Focht, R. E. Leibenguth, M. Asom, “High-power coherently coupled 8 × 8 vertical-cavity surface-emitting laser array,” Appl. Phys. Lett. 61, 1160–1162 (1992); A. von Lehmen, C. Chang-Hasnain, J. Wullert, L. Carrion, N. Stoffel, L. Florez, J. Harbison, “Independently addressable InGaAs/GaAs vertical-cavity surface-emitting laser arrays,” Electron. Lett. 27, 583–585 (1991); D. Mehuys, D. F. Welch, R. Parke, R. G. Waarts, A. Hardy, D. Scifres, “High-power diffraction-limited emission from monolithically integrated active grating master oscillator power amplifier,” Electron. Lett. 27, 492–494 (1991).
[CrossRef]

Haertling, G. H.

G. H. Haertling, “Electro-optic ceramics and devices,” in Electronic Ceramics, L. M. Levinson, ed. (Dekker, New York, 1987), pp. 371–492.

Hemmati, H.

S. Thakoor, J. M. Morookian, H. Hemmati, A. P. Thakoor, “Photoresponse from ferroelectric capacitors: optical probing and conditioning of ferroelectric thin-film memories,” presented at the IEEE International Symposium of Applied Ferroelectrics, University Park, Pa., 7–10 August 1994; S. Thakoor, A. P. Thakoor, L. E. Cross, “Optical noninvasive evaluation of ferroelectric films and memory capacitors,” in Materials for Smart Systems, Vol. 360 of MRS Proceedings Series (Materials Research Society, Pittsburgh, Pa., to be published).

Hsu, W.-Y.

W.-Y. Hsu, R. Raj, “MgO epitaxial thin films on (100) GaAs as a substrate for the growth of oriented PbTiO3,” Appl. Phys. Lett. 60, 3105–3107 (1992); B. S. Kwak, A. Erbil, B. J. Wilkins, J. D. Budai, M. F. Chrisholm, L. A. Boatner, “Strain relaxation by domain formation in epitaxial ferroelectric thin films,” Phys. Rev. Lett. 68, 3733–1873 (1992).
[CrossRef] [PubMed]

Hu, E. L.

L. D. Chang, M. Z. Tseng, E. L. Hu, “Epitaxial MgO buffer layers for YBa2Cu3O7-x thin films on GaAs,” Appl. Phys. Lett. 60, 1753–1755 (1992); B. M. Clemens, C. W. Nieh, J. A. Kittl, W. L. Johnson, J. Y. Josefowicz, A. T. Hunter, “Nucleation and growth of YBaCuO on SrTiO3,” Appl. Phys. Lett. 53, 1871–1873 (1988).
[CrossRef]

Keramidas, V. G.

R. Ramesh, T. Sands, V. G. Keramidas, “Effect of crystal-lographic orientation on ferroelectric properties of PbZr0.2Ti0.8O3 thin films,” Appl. Phys. Lett. 63, 731–733 (1993).
[CrossRef]

Kojima, K.

R. A. Morgan, K. Kojima, T. Mullally, G. D. Guth, M. W. Focht, R. E. Leibenguth, M. Asom, “High-power coherently coupled 8 × 8 vertical-cavity surface-emitting laser array,” Appl. Phys. Lett. 61, 1160–1162 (1992); A. von Lehmen, C. Chang-Hasnain, J. Wullert, L. Carrion, N. Stoffel, L. Florez, J. Harbison, “Independently addressable InGaAs/GaAs vertical-cavity surface-emitting laser arrays,” Electron. Lett. 27, 583–585 (1991); D. Mehuys, D. F. Welch, R. Parke, R. G. Waarts, A. Hardy, D. Scifres, “High-power diffraction-limited emission from monolithically integrated active grating master oscillator power amplifier,” Electron. Lett. 27, 492–494 (1991).
[CrossRef]

Kurogi, Y.

K. Sugibuchi, Y. Kurogi, N. Endo, “Ferroelectric field-effect memory device using Bi4Ti3O12 film,” J. Appl. Phys. 46, 2877–2881 (1975).
[CrossRef]

Lakata, M.

M. Lakata, S. Thakoor, “Automated ferroelectric capacitor testing system,” NASA Tech. Briefs 18(2), 30 (1994).

Lampe, D. R.

S. Sinharoy, H. Buhay, D. R. Lampe, M. H. Francombe, “Integration of ferroelectric thin films into nonvolatile memories,” J. Vac. Sci. Technol. A 10, 1554–1561 (1992).
[CrossRef]

S. Sinharoy, H. Buhay, D. R. Lampe, M. H. Francombe, “Processing and characterization of ferroelectric BaMgF4 and Bi4Ti3O12 films for nonvolatile memory field-effect transistor (FEMFET) devices,” presented at the IEEE International Symposium on Applied Ferroelectrics, Greenville, S.C., 31 August–2 September, 1992.

Land, C. E.

C. E. Land, “Longitudinal electro-optic effects and photosensitivities of lead zirconate titanate thin films,” J. Am. Ceram. Soc. 72, 2059–2064 (1989).
[CrossRef]

M. A. Butler, S. J. Martin, C. E. Land, “Photoinduced currents in PZT thin films,” Appl. Opt. 28, 5105–5109 (1989).
[CrossRef] [PubMed]

S. J. Martin, M. A. Butler, C. E. Land, “Ferroelectric optical image comparator using PLZT thin films,” Electron. Lett. 24, 1486–1487 (1988).
[CrossRef]

Leibenguth, R. E.

R. A. Morgan, K. Kojima, T. Mullally, G. D. Guth, M. W. Focht, R. E. Leibenguth, M. Asom, “High-power coherently coupled 8 × 8 vertical-cavity surface-emitting laser array,” Appl. Phys. Lett. 61, 1160–1162 (1992); A. von Lehmen, C. Chang-Hasnain, J. Wullert, L. Carrion, N. Stoffel, L. Florez, J. Harbison, “Independently addressable InGaAs/GaAs vertical-cavity surface-emitting laser arrays,” Electron. Lett. 27, 583–585 (1991); D. Mehuys, D. F. Welch, R. Parke, R. G. Waarts, A. Hardy, D. Scifres, “High-power diffraction-limited emission from monolithically integrated active grating master oscillator power amplifier,” Electron. Lett. 27, 492–494 (1991).
[CrossRef]

Lin, Y. S.

G. A. Soli, B. R. Blaes, M. G. Buehler, K. Ray, Y. S. Lin, “CRRES microelectronic test chip orbital data II,” IEEE Trans. Nucl. Sci. 39, 1840–1845 (1992).
[CrossRef]

Martin, S. J.

M. A. Butler, S. J. Martin, C. E. Land, “Photoinduced currents in PZT thin films,” Appl. Opt. 28, 5105–5109 (1989).
[CrossRef] [PubMed]

S. J. Martin, M. A. Butler, C. E. Land, “Ferroelectric optical image comparator using PLZT thin films,” Electron. Lett. 24, 1486–1487 (1988).
[CrossRef]

Maserjian, J.

S. Thakoor, J. Maserjian, “Photoresponse probe of the space charge distribution in ferroelectric PZT thin film memory capacitors,” J. Vac. Sci. Technol. A 12, 295–299 (1994).
[CrossRef]

S. Thakoor, J. Maserjian, J. Perry, “An optical probe for ferroelectric thin film memory capacitors,” Integrated Ferroelectrics 4, 333–340 (1994).
[CrossRef]

Morgan, R. A.

R. A. Morgan, K. Kojima, T. Mullally, G. D. Guth, M. W. Focht, R. E. Leibenguth, M. Asom, “High-power coherently coupled 8 × 8 vertical-cavity surface-emitting laser array,” Appl. Phys. Lett. 61, 1160–1162 (1992); A. von Lehmen, C. Chang-Hasnain, J. Wullert, L. Carrion, N. Stoffel, L. Florez, J. Harbison, “Independently addressable InGaAs/GaAs vertical-cavity surface-emitting laser arrays,” Electron. Lett. 27, 583–585 (1991); D. Mehuys, D. F. Welch, R. Parke, R. G. Waarts, A. Hardy, D. Scifres, “High-power diffraction-limited emission from monolithically integrated active grating master oscillator power amplifier,” Electron. Lett. 27, 492–494 (1991).
[CrossRef]

Morookian, J. M.

S. Thakoor, J. M. Morookian, H. Hemmati, A. P. Thakoor, “Photoresponse from ferroelectric capacitors: optical probing and conditioning of ferroelectric thin-film memories,” presented at the IEEE International Symposium of Applied Ferroelectrics, University Park, Pa., 7–10 August 1994; S. Thakoor, A. P. Thakoor, L. E. Cross, “Optical noninvasive evaluation of ferroelectric films and memory capacitors,” in Materials for Smart Systems, Vol. 360 of MRS Proceedings Series (Materials Research Society, Pittsburgh, Pa., to be published).

Morozov, B. N.

B. N. Morozov, Yu. M. Aivazyan, “Optical rectification and its applications (review),” Sov. J. Quantum Electron. 10, 1–16 (1980); V. M. Nesterenko, B. N. Morozov, “Utilization of optical detection in measuring laser power output,” Sov. J. Quantum Electron. 1, 496–499 (1971).
[CrossRef]

Mullally, T.

R. A. Morgan, K. Kojima, T. Mullally, G. D. Guth, M. W. Focht, R. E. Leibenguth, M. Asom, “High-power coherently coupled 8 × 8 vertical-cavity surface-emitting laser array,” Appl. Phys. Lett. 61, 1160–1162 (1992); A. von Lehmen, C. Chang-Hasnain, J. Wullert, L. Carrion, N. Stoffel, L. Florez, J. Harbison, “Independently addressable InGaAs/GaAs vertical-cavity surface-emitting laser arrays,” Electron. Lett. 27, 583–585 (1991); D. Mehuys, D. F. Welch, R. Parke, R. G. Waarts, A. Hardy, D. Scifres, “High-power diffraction-limited emission from monolithically integrated active grating master oscillator power amplifier,” Electron. Lett. 27, 492–494 (1991).
[CrossRef]

Nashimoto, K.

K. Nashimoto, D. K. Fork, “Epitaxial growth of MgO on GaAs (001) for growing epitaxial BaTiO3 thin films by pulsed laser deposition,” Appl. Phys. Lett. 60, 1199–1201 (1992).
[CrossRef]

Nixon, R. H.

S. Thakoor, E. Olson, R. H. Nixon, “Optically addressable ferroelectric memory and its applications,” Integrated Ferroelectrics 4, 257–269 (1994).
[CrossRef]

Olson, E.

S. Thakoor, E. Olson, R. H. Nixon, “Optically addressable ferroelectric memory and its applications,” Integrated Ferroelectrics 4, 257–269 (1994).
[CrossRef]

Paz, C. A.

J. F. Scott, C. A. Paz, De Araujo, “Ferroelectric memories,” Science 246, 1400–1405 (1989).
[CrossRef] [PubMed]

Perry, J.

S. Thakoor, J. Maserjian, J. Perry, “An optical probe for ferroelectric thin film memory capacitors,” Integrated Ferroelectrics 4, 333–340 (1994).
[CrossRef]

Raj, R.

W.-Y. Hsu, R. Raj, “MgO epitaxial thin films on (100) GaAs as a substrate for the growth of oriented PbTiO3,” Appl. Phys. Lett. 60, 3105–3107 (1992); B. S. Kwak, A. Erbil, B. J. Wilkins, J. D. Budai, M. F. Chrisholm, L. A. Boatner, “Strain relaxation by domain formation in epitaxial ferroelectric thin films,” Phys. Rev. Lett. 68, 3733–1873 (1992).
[CrossRef] [PubMed]

Ramesh, R.

R. Ramesh, T. Sands, V. G. Keramidas, “Effect of crystal-lographic orientation on ferroelectric properties of PbZr0.2Ti0.8O3 thin films,” Appl. Phys. Lett. 63, 731–733 (1993).
[CrossRef]

Ray, K.

G. A. Soli, B. R. Blaes, M. G. Buehler, K. Ray, Y. S. Lin, “CRRES microelectronic test chip orbital data II,” IEEE Trans. Nucl. Sci. 39, 1840–1845 (1992).
[CrossRef]

Sands, T.

R. Ramesh, T. Sands, V. G. Keramidas, “Effect of crystal-lographic orientation on ferroelectric properties of PbZr0.2Ti0.8O3 thin films,” Appl. Phys. Lett. 63, 731–733 (1993).
[CrossRef]

Scott, J. F.

J. F. Scott, C. A. Paz, De Araujo, “Ferroelectric memories,” Science 246, 1400–1405 (1989).
[CrossRef] [PubMed]

Sinharoy, S.

S. Sinharoy, H. Buhay, D. R. Lampe, M. H. Francombe, “Integration of ferroelectric thin films into nonvolatile memories,” J. Vac. Sci. Technol. A 10, 1554–1561 (1992).
[CrossRef]

S. Sinharoy, H. Buhay, D. R. Lampe, M. H. Francombe, “Processing and characterization of ferroelectric BaMgF4 and Bi4Ti3O12 films for nonvolatile memory field-effect transistor (FEMFET) devices,” presented at the IEEE International Symposium on Applied Ferroelectrics, Greenville, S.C., 31 August–2 September, 1992.

Soli, G. A.

G. A. Soli, B. R. Blaes, M. G. Buehler, K. Ray, Y. S. Lin, “CRRES microelectronic test chip orbital data II,” IEEE Trans. Nucl. Sci. 39, 1840–1845 (1992).
[CrossRef]

Sugibuchi, K.

K. Sugibuchi, Y. Kurogi, N. Endo, “Ferroelectric field-effect memory device using Bi4Ti3O12 film,” J. Appl. Phys. 46, 2877–2881 (1975).
[CrossRef]

Thakoor, A. P.

S. Thakoor, A. P. Thakoor, “Improved ferroelectric memories with nondestructive readout,” NASA Tech. Briefs 18(11), 40 (1994).

S. Thakoor, A. P. Thakoor, S. E. Bernacki, “Photoresponse from thin ferroelectric films of lead zirconate titanate,” presented at the Third International Symposium on Integrated Ferroelectrics, Colorado Springs, Colo., 3–5 April 1991.

S. Thakoor, J. M. Morookian, H. Hemmati, A. P. Thakoor, “Photoresponse from ferroelectric capacitors: optical probing and conditioning of ferroelectric thin-film memories,” presented at the IEEE International Symposium of Applied Ferroelectrics, University Park, Pa., 7–10 August 1994; S. Thakoor, A. P. Thakoor, L. E. Cross, “Optical noninvasive evaluation of ferroelectric films and memory capacitors,” in Materials for Smart Systems, Vol. 360 of MRS Proceedings Series (Materials Research Society, Pittsburgh, Pa., to be published).

Thakoor, S.

S. Thakoor, J. Maserjian, J. Perry, “An optical probe for ferroelectric thin film memory capacitors,” Integrated Ferroelectrics 4, 333–340 (1994).
[CrossRef]

M. Lakata, S. Thakoor, “Automated ferroelectric capacitor testing system,” NASA Tech. Briefs 18(2), 30 (1994).

S. Thakoor, E. Olson, R. H. Nixon, “Optically addressable ferroelectric memory and its applications,” Integrated Ferroelectrics 4, 257–269 (1994).
[CrossRef]

S. Thakoor, A. P. Thakoor, “Improved ferroelectric memories with nondestructive readout,” NASA Tech. Briefs 18(11), 40 (1994).

S. Thakoor, “Enhanced fatigue and retention in ferroelectric thin film memory capacitors by post-top-electrode anneal treatment,” J. Appl. Phys. 75, 5409–5414 (1994).
[CrossRef]

S. Thakoor, J. Maserjian, “Photoresponse probe of the space charge distribution in ferroelectric PZT thin film memory capacitors,” J. Vac. Sci. Technol. A 12, 295–299 (1994).
[CrossRef]

S. Thakoor, “Noninvasive optical probe of ferroelectric films,” Nasa Tech. Briefs 17(5), 54 (1993).

S. Thakoor, “High-speed optoelectronic response from the edges of lead zirconate titanate thin film capacitors,” Appl. Phys. Lett. 63, 3233–3235 (1993).
[CrossRef]

S. Thakoor, “High-speed optoelectronic nondestructive readout from ferroelectric thin film capacitors,” Ferroelectrics 134, 355–363 (1992).
[CrossRef]

S. Thakoor, “High-speed nondestructive readout from thin film ferroelectric memory,” Appl. Phys. Lett. 60, 3319–3321 (1992).
[CrossRef]

S. Thakoor, “Nondestructive readout (NDRO) from ferroelectric PZT thin film capacitors,” in Ceramic Transactions: Ferroelectric Films, A. S. Bhalla, K. M. Nair, eds. (American Ceramic Society, Westerville, Ohio, 1991), Vol. 25, pp. 251–264.

S. Thakoor, A. P. Thakoor, S. E. Bernacki, “Photoresponse from thin ferroelectric films of lead zirconate titanate,” presented at the Third International Symposium on Integrated Ferroelectrics, Colorado Springs, Colo., 3–5 April 1991.

S. Thakoor, “High spatial resolution noninvasive optical evaluation tool,” JPL New Technol. Rep. 19393/8994 (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Calif., 1994).

S. Thakoor, J. M. Morookian, H. Hemmati, A. P. Thakoor, “Photoresponse from ferroelectric capacitors: optical probing and conditioning of ferroelectric thin-film memories,” presented at the IEEE International Symposium of Applied Ferroelectrics, University Park, Pa., 7–10 August 1994; S. Thakoor, A. P. Thakoor, L. E. Cross, “Optical noninvasive evaluation of ferroelectric films and memory capacitors,” in Materials for Smart Systems, Vol. 360 of MRS Proceedings Series (Materials Research Society, Pittsburgh, Pa., to be published).

Tseng, M. Z.

L. D. Chang, M. Z. Tseng, E. L. Hu, “Epitaxial MgO buffer layers for YBa2Cu3O7-x thin films on GaAs,” Appl. Phys. Lett. 60, 1753–1755 (1992); B. M. Clemens, C. W. Nieh, J. A. Kittl, W. L. Johnson, J. Y. Josefowicz, A. T. Hunter, “Nucleation and growth of YBaCuO on SrTiO3,” Appl. Phys. Lett. 53, 1871–1873 (1988).
[CrossRef]

Ward, J. F.

M. Bass, P. A. Franken, J. F. Ward, “Optical rectification,” Phys. Rev. A 138, 534–542 (1965).

M. Bass, P. A. Franken, J. F. Ward, G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9, 446–448 (1962).
[CrossRef]

Weinreich, G.

M. Bass, P. A. Franken, J. F. Ward, G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9, 446–448 (1962).
[CrossRef]

Womack, R.

J. T. Evans, R. Womack, “An experimental 512-bit nonvolatile memory with ferroelectric storage cell,” IEEE J. Solid-State Circuits SSC-23, 1171–1176 (1988).
[CrossRef]

Wu, S. Y.

S. Y. Wu, “A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor,” IEEE Trans. Electron Devices ED-21, 499–504 (1974).

Appl. Opt. (1)

Appl. Phys. Lett. (7)

S. Thakoor, “High-speed nondestructive readout from thin film ferroelectric memory,” Appl. Phys. Lett. 60, 3319–3321 (1992).
[CrossRef]

S. Thakoor, “High-speed optoelectronic response from the edges of lead zirconate titanate thin film capacitors,” Appl. Phys. Lett. 63, 3233–3235 (1993).
[CrossRef]

R. A. Morgan, K. Kojima, T. Mullally, G. D. Guth, M. W. Focht, R. E. Leibenguth, M. Asom, “High-power coherently coupled 8 × 8 vertical-cavity surface-emitting laser array,” Appl. Phys. Lett. 61, 1160–1162 (1992); A. von Lehmen, C. Chang-Hasnain, J. Wullert, L. Carrion, N. Stoffel, L. Florez, J. Harbison, “Independently addressable InGaAs/GaAs vertical-cavity surface-emitting laser arrays,” Electron. Lett. 27, 583–585 (1991); D. Mehuys, D. F. Welch, R. Parke, R. G. Waarts, A. Hardy, D. Scifres, “High-power diffraction-limited emission from monolithically integrated active grating master oscillator power amplifier,” Electron. Lett. 27, 492–494 (1991).
[CrossRef]

L. D. Chang, M. Z. Tseng, E. L. Hu, “Epitaxial MgO buffer layers for YBa2Cu3O7-x thin films on GaAs,” Appl. Phys. Lett. 60, 1753–1755 (1992); B. M. Clemens, C. W. Nieh, J. A. Kittl, W. L. Johnson, J. Y. Josefowicz, A. T. Hunter, “Nucleation and growth of YBaCuO on SrTiO3,” Appl. Phys. Lett. 53, 1871–1873 (1988).
[CrossRef]

K. Nashimoto, D. K. Fork, “Epitaxial growth of MgO on GaAs (001) for growing epitaxial BaTiO3 thin films by pulsed laser deposition,” Appl. Phys. Lett. 60, 1199–1201 (1992).
[CrossRef]

W.-Y. Hsu, R. Raj, “MgO epitaxial thin films on (100) GaAs as a substrate for the growth of oriented PbTiO3,” Appl. Phys. Lett. 60, 3105–3107 (1992); B. S. Kwak, A. Erbil, B. J. Wilkins, J. D. Budai, M. F. Chrisholm, L. A. Boatner, “Strain relaxation by domain formation in epitaxial ferroelectric thin films,” Phys. Rev. Lett. 68, 3733–1873 (1992).
[CrossRef] [PubMed]

R. Ramesh, T. Sands, V. G. Keramidas, “Effect of crystal-lographic orientation on ferroelectric properties of PbZr0.2Ti0.8O3 thin films,” Appl. Phys. Lett. 63, 731–733 (1993).
[CrossRef]

Electron. Lett. (1)

S. J. Martin, M. A. Butler, C. E. Land, “Ferroelectric optical image comparator using PLZT thin films,” Electron. Lett. 24, 1486–1487 (1988).
[CrossRef]

Ferroelectrics (1)

S. Thakoor, “High-speed optoelectronic nondestructive readout from ferroelectric thin film capacitors,” Ferroelectrics 134, 355–363 (1992).
[CrossRef]

IEEE J. Solid-State Circuits (1)

J. T. Evans, R. Womack, “An experimental 512-bit nonvolatile memory with ferroelectric storage cell,” IEEE J. Solid-State Circuits SSC-23, 1171–1176 (1988).
[CrossRef]

IEEE Spectrum (1)

D. Bondurant, F. Gnandinger, “Ferroelectric nonvolatile RAM’s,” IEEE Spectrum 26(7), 30–33 (1989).
[CrossRef]

IEEE Trans. Electron Devices (1)

S. Y. Wu, “A new ferroelectric memory device, metal-ferroelectric-semiconductor transistor,” IEEE Trans. Electron Devices ED-21, 499–504 (1974).

IEEE Trans. Nucl. Sci. (1)

G. A. Soli, B. R. Blaes, M. G. Buehler, K. Ray, Y. S. Lin, “CRRES microelectronic test chip orbital data II,” IEEE Trans. Nucl. Sci. 39, 1840–1845 (1992).
[CrossRef]

Integrated Ferroelectrics (2)

S. Thakoor, E. Olson, R. H. Nixon, “Optically addressable ferroelectric memory and its applications,” Integrated Ferroelectrics 4, 257–269 (1994).
[CrossRef]

S. Thakoor, J. Maserjian, J. Perry, “An optical probe for ferroelectric thin film memory capacitors,” Integrated Ferroelectrics 4, 333–340 (1994).
[CrossRef]

J. Am. Ceram. Soc. (1)

C. E. Land, “Longitudinal electro-optic effects and photosensitivities of lead zirconate titanate thin films,” J. Am. Ceram. Soc. 72, 2059–2064 (1989).
[CrossRef]

J. Appl. Phys. (2)

K. Sugibuchi, Y. Kurogi, N. Endo, “Ferroelectric field-effect memory device using Bi4Ti3O12 film,” J. Appl. Phys. 46, 2877–2881 (1975).
[CrossRef]

S. Thakoor, “Enhanced fatigue and retention in ferroelectric thin film memory capacitors by post-top-electrode anneal treatment,” J. Appl. Phys. 75, 5409–5414 (1994).
[CrossRef]

J. Vac. Sci. Technol. A (2)

S. Thakoor, J. Maserjian, “Photoresponse probe of the space charge distribution in ferroelectric PZT thin film memory capacitors,” J. Vac. Sci. Technol. A 12, 295–299 (1994).
[CrossRef]

S. Sinharoy, H. Buhay, D. R. Lampe, M. H. Francombe, “Integration of ferroelectric thin films into nonvolatile memories,” J. Vac. Sci. Technol. A 10, 1554–1561 (1992).
[CrossRef]

NASA Tech. Briefs (2)

M. Lakata, S. Thakoor, “Automated ferroelectric capacitor testing system,” NASA Tech. Briefs 18(2), 30 (1994).

S. Thakoor, “Noninvasive optical probe of ferroelectric films,” Nasa Tech. Briefs 17(5), 54 (1993).

S. Thakoor, A. P. Thakoor, “Improved ferroelectric memories with nondestructive readout,” NASA Tech. Briefs 18(11), 40 (1994).

Phys. Rev. A (1)

M. Bass, P. A. Franken, J. F. Ward, “Optical rectification,” Phys. Rev. A 138, 534–542 (1965).

Phys. Rev. Lett. (1)

M. Bass, P. A. Franken, J. F. Ward, G. Weinreich, “Optical rectification,” Phys. Rev. Lett. 9, 446–448 (1962).
[CrossRef]

Science (1)

J. F. Scott, C. A. Paz, De Araujo, “Ferroelectric memories,” Science 246, 1400–1405 (1989).
[CrossRef] [PubMed]

Sov. J. Quantum Electron. (1)

B. N. Morozov, Yu. M. Aivazyan, “Optical rectification and its applications (review),” Sov. J. Quantum Electron. 10, 1–16 (1980); V. M. Nesterenko, B. N. Morozov, “Utilization of optical detection in measuring laser power output,” Sov. J. Quantum Electron. 1, 496–499 (1971).
[CrossRef]

Other (6)

S. Thakoor, “High spatial resolution noninvasive optical evaluation tool,” JPL New Technol. Rep. 19393/8994 (Jet Propulsion Laboratory, California Institute of Technology, Pasadena, Calif., 1994).

S. Thakoor, J. M. Morookian, H. Hemmati, A. P. Thakoor, “Photoresponse from ferroelectric capacitors: optical probing and conditioning of ferroelectric thin-film memories,” presented at the IEEE International Symposium of Applied Ferroelectrics, University Park, Pa., 7–10 August 1994; S. Thakoor, A. P. Thakoor, L. E. Cross, “Optical noninvasive evaluation of ferroelectric films and memory capacitors,” in Materials for Smart Systems, Vol. 360 of MRS Proceedings Series (Materials Research Society, Pittsburgh, Pa., to be published).

S. Sinharoy, H. Buhay, D. R. Lampe, M. H. Francombe, “Processing and characterization of ferroelectric BaMgF4 and Bi4Ti3O12 films for nonvolatile memory field-effect transistor (FEMFET) devices,” presented at the IEEE International Symposium on Applied Ferroelectrics, Greenville, S.C., 31 August–2 September, 1992.

G. H. Haertling, “Electro-optic ceramics and devices,” in Electronic Ceramics, L. M. Levinson, ed. (Dekker, New York, 1987), pp. 371–492.

S. Thakoor, “Nondestructive readout (NDRO) from ferroelectric PZT thin film capacitors,” in Ceramic Transactions: Ferroelectric Films, A. S. Bhalla, K. M. Nair, eds. (American Ceramic Society, Westerville, Ohio, 1991), Vol. 25, pp. 251–264.

S. Thakoor, A. P. Thakoor, S. E. Bernacki, “Photoresponse from thin ferroelectric films of lead zirconate titanate,” presented at the Third International Symposium on Integrated Ferroelectrics, Colorado Springs, Colo., 3–5 April 1991.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

(a) Schematic cross section of device configuration A, (b) schematic cross section of modified device configuration B to maximize the thermally triggered NDRO response, (c) schematic cross section of new device configuration C that maximizes the newly observed optoelectronic NDRO response. CKT, circuit.

Fig. 2
Fig. 2

(a) Block diagram of the memory-chip configuration, (b) circuit diagram of a typical column-read functional cell. CKTS, circuits.

Fig. 3
Fig. 3

Illustration of an optically addressable ferroelectric-memory–semiconductor-laser dual-chip pack. EEL, edge-emitting laser; VCSEL, vertical-cavity surface-emitting laser.

Fig. 4
Fig. 4

Layout of a 16-kbit optically addressable ferroelectric chip utilizing bars of edge-emitting lasers made surface emitting by etching of mirrors or a diffraction grating.

Fig. 5
Fig. 5

Summary of the optoelectronic effect observed from a combination of two ferroelectric capacitors: the illumination profiles used (first row) and the respective photoresponses obtained (second and third rows).

Fig. 6
Fig. 6

(a) NDRO photoresponse signal from a ferroelectric test structure in the dark (noise signal) consisting of a combination of two ferroelectric capacitors with central illumination, as illustrated schematically in Fig. 5(b). (b), (c) Photoresponses (measured as the voltage drop across a 50-Ω impedance) in response to the 6-ns laser pulse at a 532-nm wavelength for the positively poled and the negatively poled states of the two-ferrocapacitor memory cell, respectively. (d), (e) Net photoresponse obtained as a difference of the pulse illuminated signal and the dark signal for the positively [(b) and (a)] and the negatively poled states [(c) and (a)], respectively.

Tables (1)

Tables Icon

Table 1 Simulation Results

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

T access = T b + T c + T e .

Metrics