Abstract

We investigate the performance of free-space optical interconnection systems at the technology level. Specifically, three optical transmitter technologies, lead-lanthanum-zirconate-titanate and multiple-quantum-well modulators and vertical-cavity surface-emitting lasers, are evaluated. System performance is measured in terms of the achievable areal data throughput and the energy required per transmitted bit. It is shown that lead-lanthanum-zirconate-titanate modulator and vertical-cavity surface-emitting laser technologies are well suited for applications in which a large fan-out per transmitter is required but the total number of transmitters is relatively small. Multiple-quantum-well modulators, however, are good candidates for applications in which many transmitters with a limited fan-out are needed.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Feldman, S. Esener, C. Guest, S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Opt. 27, 1742–1751 (1988).
    [Crossref] [PubMed]
  2. R. K. Kostuk, J. W. Goodman, L. Hesselink, “Optical imaging applied to microelectronic chip-to-chip interconnections,” Appl. Opt. 24, 2851–2858 (1985).
    [Crossref] [PubMed]
  3. M. Feldman, C. Guest, T. Drabik, S. Esener, “Comparison between electrical and free-space optical interconnects for fine-grain processor arrays based on interconnect density capabilities,” Appl. Opt. 28, 3820–3829 (1989).
    [Crossref] [PubMed]
  4. F. Kiamilev, P. Marchand, A. Krishnamoorthy, S. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” J. Lightwave Technol. 9, 1674–1692 (1991).
    [Crossref]
  5. A. V. Krishnamoorthy, P. Marchand, F. Kiamilev, K. S. Urquhart, S. Esener, “Grain-size consideration for optoelectronic multistage interconnection network,” Appl. Opt. 31, 5480–5507 (1992).
    [Crossref] [PubMed]
  6. K. S. Urquhart, P. Marchand, Y. Fainman, S. H. Lee, “Diffractive optics applied to free-space optical interconnects,” Appl. Opt. 33, 3670–3682 (1994).
    [Crossref] [PubMed]
  7. G. Haertling, C. Land, “Hot pressed PLZT ferroelectric ceramics for electro-optics applications,” J. Am. Ceram. Soc. 56, 1–11 (1971).
    [Crossref]
  8. M. Title, S. H. Lee, “Modeling and characterization of embedded electrode performance on transverse electro-optic modulators,” Appl. Opt. 23, 85–98 (1990).
    [Crossref]
  9. B. Mansoorian, G. Marsden, V. Ozguz, C. Fan, S. Esener, “Characterization of a free-space optoelectronic interconnect system based on Si/PLZT smart pixels,” in Spatial Light Modulators and Applications, Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 128–131.
  10. D. A. B. Miller, D. S. Chemla, S. Schmitt-Rink, “Electrical field dependence of semiconductor quantum wells,” in Optical Nonlinearities and Instabilities in Semiconductors, H. Hays, ed. (Academic, New York, 1988), pp. 325–360.
  11. P. J. Stevens, G. Parry, “Limits to normal incidence electroabsorption modulation in GaAs/(GaAl) as multiple quantum well diodes,” J. Lightwave Technol. 7, 1101–1108 (1989).
    [Crossref]
  12. T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, M. G. Young, “Electric field screening by photogenerated holes in multiple quantum wells: a new mechanism for absorption saturation,” Appl. Phys. Lett. 57, 1081–1083 (1990).
    [Crossref]
  13. D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984).
    [Crossref]
  14. T. Sizer, T. K. Woodward, U. Keller, K. Sauer, T.-H. Chiu, D. L. Sivco, A. Y. Cho, “Measurement of carrier escape rates, exciton saturation intensity, and saturation density in electrically biased multiple-quantum-well modulators,” IEEE J. Quantum Electron. 30, 399–407 (1994).
    [Crossref]
  15. C. Fan, C W. Shih, M. W. Hansen, S. C. Esener, H. H. Wieder, “Quantum-confined Stark effect modulators at 1.06 mm on GaAs,” IEEE Photon. Technol. Lett. 5, 1383–1385 (1993).
    [Crossref]
  16. K. W. Goossen, J. E. Cunningham, M. B. Santos, W. Y. Jan, “Measurement of modulation saturation intensity in strain-balanced, undefected InGaAs/GaAsP modulators operating at 1.064 μm,” Appl. Phys. Lett. 63, 515–517 (1993).
    [Crossref]
  17. K. W. Jelley, R. W. H. Engellmann, K. Alavi, H. Lee, “Well size related limitations on maximum electroabsorption in GaAs/AlGaAs multiple quantum well structures,” Phys. Lett. 55, 70–72 (1989).
  18. M. Whitehead, A. Rivers, G. Parry, J. S. Roberts, C. Button, “Low-voltage multiple quantum well reflection modulator with ON:OFF ratio >100:1,” Electron. Lett. 25, 984–985 (1989).
    [Crossref]
  19. R. H. Yan, R. J. Simes, L. A. Coldren, A. C. Gossard, “Transverse modulators with a record reflection change of >20%/V using asymmetric Fabry–Perot structures,” Appl. Phys. Lett. 56, 1626–1628 (1990).
    [Crossref]
  20. B. Pezeshku, D. Thomas, J. S. Harris, “Optimization of modulation ratio and insertion loss in reflective electroabsorption modulators,” Phys. Lett. 57, 1491–1492 (1990).
  21. L. Coldren, S. Corzine, R. Feels, A. C. Fonard, K. K. Law, J. Merz, J. Scott, R. Simes, R. H. Yan, “High efficiency vertical cavity lasers and modulators,” in Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Device Physics and Applications, M. Razeghi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1362, 79–92 (1991).
  22. J. Jewell, G. Olbright, “Vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
    [Crossref]
  23. R. Geels, L. Coldren, “Submilliamp threshold vertical cavity laser diodes,” App. Phys. Lett. 57, 1605–1607 (1990).
    [Crossref]
  24. F. B. McCormick, “Free-space interconnection techniques,” in Photonics in Switching, J. E. Midwinter, ed. (Academic, New York, 1993), Vol. II, pp. 169–250.
  25. H. C. Casey, M. B. Panish, Heterostructure Lasers (Academic, New York, 1978), Part B, pp. 224–226.
  26. R. Geiger, P. Allen, N. Stroder, VLSI Design Techniques for Analog and Digital Circuits (McGraw-Hill, New York, 1990), pp. 590–593.
  27. H. B. Bakaglu, Circuits, Interconnections, and Packaging for VLSI (Addison-Wesley, Reading, Mass., 1990).
  28. C.-S. Li, H. S. Stone, Y. Kwark, C. M. Olsen, “Fully differential optical interconnections for high-speed digital systems,” IEEE Trans. Very-Large-Scale-Integrat. Syst. 1, 151–163 (1993).
    [Crossref]
  29. S. R. Forrest, “Sensitivity of avalanche photodetector receivers for high-bit-rate long-wavelength optical communication systems,” in Semiconductors and Semimetals, W. T. Tsang, ed. (Academic, New York, 1985), Vol. 22, pp. 329–387.
    [Crossref]
  30. A. L. Lentine, R. A. Novotny, T. J. Cloonan, L. M. F. Chirovsky, L. A. D’Asaro, G. Livescu, S. Hui, M. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, K. G. Glogovsky, T. K. Woodward, “4 × 4 arrays of FET-SEED embedded control 2 × 1 optoelectronic switching nodes with electrical fan-out,” IEEE Photon. Technol. Lett. 6, 1126–1129 (1994).
    [Crossref]

1994 (3)

K. S. Urquhart, P. Marchand, Y. Fainman, S. H. Lee, “Diffractive optics applied to free-space optical interconnects,” Appl. Opt. 33, 3670–3682 (1994).
[Crossref] [PubMed]

T. Sizer, T. K. Woodward, U. Keller, K. Sauer, T.-H. Chiu, D. L. Sivco, A. Y. Cho, “Measurement of carrier escape rates, exciton saturation intensity, and saturation density in electrically biased multiple-quantum-well modulators,” IEEE J. Quantum Electron. 30, 399–407 (1994).
[Crossref]

A. L. Lentine, R. A. Novotny, T. J. Cloonan, L. M. F. Chirovsky, L. A. D’Asaro, G. Livescu, S. Hui, M. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, K. G. Glogovsky, T. K. Woodward, “4 × 4 arrays of FET-SEED embedded control 2 × 1 optoelectronic switching nodes with electrical fan-out,” IEEE Photon. Technol. Lett. 6, 1126–1129 (1994).
[Crossref]

1993 (3)

C.-S. Li, H. S. Stone, Y. Kwark, C. M. Olsen, “Fully differential optical interconnections for high-speed digital systems,” IEEE Trans. Very-Large-Scale-Integrat. Syst. 1, 151–163 (1993).
[Crossref]

C. Fan, C W. Shih, M. W. Hansen, S. C. Esener, H. H. Wieder, “Quantum-confined Stark effect modulators at 1.06 mm on GaAs,” IEEE Photon. Technol. Lett. 5, 1383–1385 (1993).
[Crossref]

K. W. Goossen, J. E. Cunningham, M. B. Santos, W. Y. Jan, “Measurement of modulation saturation intensity in strain-balanced, undefected InGaAs/GaAsP modulators operating at 1.064 μm,” Appl. Phys. Lett. 63, 515–517 (1993).
[Crossref]

1992 (1)

1991 (2)

J. Jewell, G. Olbright, “Vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[Crossref]

F. Kiamilev, P. Marchand, A. Krishnamoorthy, S. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” J. Lightwave Technol. 9, 1674–1692 (1991).
[Crossref]

1990 (5)

M. Title, S. H. Lee, “Modeling and characterization of embedded electrode performance on transverse electro-optic modulators,” Appl. Opt. 23, 85–98 (1990).
[Crossref]

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, M. G. Young, “Electric field screening by photogenerated holes in multiple quantum wells: a new mechanism for absorption saturation,” Appl. Phys. Lett. 57, 1081–1083 (1990).
[Crossref]

R. H. Yan, R. J. Simes, L. A. Coldren, A. C. Gossard, “Transverse modulators with a record reflection change of >20%/V using asymmetric Fabry–Perot structures,” Appl. Phys. Lett. 56, 1626–1628 (1990).
[Crossref]

B. Pezeshku, D. Thomas, J. S. Harris, “Optimization of modulation ratio and insertion loss in reflective electroabsorption modulators,” Phys. Lett. 57, 1491–1492 (1990).

R. Geels, L. Coldren, “Submilliamp threshold vertical cavity laser diodes,” App. Phys. Lett. 57, 1605–1607 (1990).
[Crossref]

1989 (4)

K. W. Jelley, R. W. H. Engellmann, K. Alavi, H. Lee, “Well size related limitations on maximum electroabsorption in GaAs/AlGaAs multiple quantum well structures,” Phys. Lett. 55, 70–72 (1989).

M. Whitehead, A. Rivers, G. Parry, J. S. Roberts, C. Button, “Low-voltage multiple quantum well reflection modulator with ON:OFF ratio >100:1,” Electron. Lett. 25, 984–985 (1989).
[Crossref]

P. J. Stevens, G. Parry, “Limits to normal incidence electroabsorption modulation in GaAs/(GaAl) as multiple quantum well diodes,” J. Lightwave Technol. 7, 1101–1108 (1989).
[Crossref]

M. Feldman, C. Guest, T. Drabik, S. Esener, “Comparison between electrical and free-space optical interconnects for fine-grain processor arrays based on interconnect density capabilities,” Appl. Opt. 28, 3820–3829 (1989).
[Crossref] [PubMed]

1988 (1)

1985 (1)

1984 (1)

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984).
[Crossref]

1971 (1)

G. Haertling, C. Land, “Hot pressed PLZT ferroelectric ceramics for electro-optics applications,” J. Am. Ceram. Soc. 56, 1–11 (1971).
[Crossref]

Alavi, K.

K. W. Jelley, R. W. H. Engellmann, K. Alavi, H. Lee, “Well size related limitations on maximum electroabsorption in GaAs/AlGaAs multiple quantum well structures,” Phys. Lett. 55, 70–72 (1989).

Allen, P.

R. Geiger, P. Allen, N. Stroder, VLSI Design Techniques for Analog and Digital Circuits (McGraw-Hill, New York, 1990), pp. 590–593.

Bakaglu, H. B.

H. B. Bakaglu, Circuits, Interconnections, and Packaging for VLSI (Addison-Wesley, Reading, Mass., 1990).

Burrus, C. A.

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, M. G. Young, “Electric field screening by photogenerated holes in multiple quantum wells: a new mechanism for absorption saturation,” Appl. Phys. Lett. 57, 1081–1083 (1990).
[Crossref]

Button, C.

M. Whitehead, A. Rivers, G. Parry, J. S. Roberts, C. Button, “Low-voltage multiple quantum well reflection modulator with ON:OFF ratio >100:1,” Electron. Lett. 25, 984–985 (1989).
[Crossref]

Casey, H. C.

H. C. Casey, M. B. Panish, Heterostructure Lasers (Academic, New York, 1978), Part B, pp. 224–226.

Chemla, D. S.

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984).
[Crossref]

D. A. B. Miller, D. S. Chemla, S. Schmitt-Rink, “Electrical field dependence of semiconductor quantum wells,” in Optical Nonlinearities and Instabilities in Semiconductors, H. Hays, ed. (Academic, New York, 1988), pp. 325–360.

Chirovsky, L. M. F.

A. L. Lentine, R. A. Novotny, T. J. Cloonan, L. M. F. Chirovsky, L. A. D’Asaro, G. Livescu, S. Hui, M. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, K. G. Glogovsky, T. K. Woodward, “4 × 4 arrays of FET-SEED embedded control 2 × 1 optoelectronic switching nodes with electrical fan-out,” IEEE Photon. Technol. Lett. 6, 1126–1129 (1994).
[Crossref]

Chiu, T.-H.

T. Sizer, T. K. Woodward, U. Keller, K. Sauer, T.-H. Chiu, D. L. Sivco, A. Y. Cho, “Measurement of carrier escape rates, exciton saturation intensity, and saturation density in electrically biased multiple-quantum-well modulators,” IEEE J. Quantum Electron. 30, 399–407 (1994).
[Crossref]

Cho, A. Y.

T. Sizer, T. K. Woodward, U. Keller, K. Sauer, T.-H. Chiu, D. L. Sivco, A. Y. Cho, “Measurement of carrier escape rates, exciton saturation intensity, and saturation density in electrically biased multiple-quantum-well modulators,” IEEE J. Quantum Electron. 30, 399–407 (1994).
[Crossref]

Cloonan, T. J.

A. L. Lentine, R. A. Novotny, T. J. Cloonan, L. M. F. Chirovsky, L. A. D’Asaro, G. Livescu, S. Hui, M. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, K. G. Glogovsky, T. K. Woodward, “4 × 4 arrays of FET-SEED embedded control 2 × 1 optoelectronic switching nodes with electrical fan-out,” IEEE Photon. Technol. Lett. 6, 1126–1129 (1994).
[Crossref]

Coldren, L.

R. Geels, L. Coldren, “Submilliamp threshold vertical cavity laser diodes,” App. Phys. Lett. 57, 1605–1607 (1990).
[Crossref]

L. Coldren, S. Corzine, R. Feels, A. C. Fonard, K. K. Law, J. Merz, J. Scott, R. Simes, R. H. Yan, “High efficiency vertical cavity lasers and modulators,” in Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Device Physics and Applications, M. Razeghi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1362, 79–92 (1991).

Coldren, L. A.

R. H. Yan, R. J. Simes, L. A. Coldren, A. C. Gossard, “Transverse modulators with a record reflection change of >20%/V using asymmetric Fabry–Perot structures,” Appl. Phys. Lett. 56, 1626–1628 (1990).
[Crossref]

Corzine, S.

L. Coldren, S. Corzine, R. Feels, A. C. Fonard, K. K. Law, J. Merz, J. Scott, R. Simes, R. H. Yan, “High efficiency vertical cavity lasers and modulators,” in Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Device Physics and Applications, M. Razeghi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1362, 79–92 (1991).

Cunningham, J. E.

K. W. Goossen, J. E. Cunningham, M. B. Santos, W. Y. Jan, “Measurement of modulation saturation intensity in strain-balanced, undefected InGaAs/GaAsP modulators operating at 1.064 μm,” Appl. Phys. Lett. 63, 515–517 (1993).
[Crossref]

D’Asaro, L. A.

A. L. Lentine, R. A. Novotny, T. J. Cloonan, L. M. F. Chirovsky, L. A. D’Asaro, G. Livescu, S. Hui, M. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, K. G. Glogovsky, T. K. Woodward, “4 × 4 arrays of FET-SEED embedded control 2 × 1 optoelectronic switching nodes with electrical fan-out,” IEEE Photon. Technol. Lett. 6, 1126–1129 (1994).
[Crossref]

deMiguel, J. L.

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, M. G. Young, “Electric field screening by photogenerated holes in multiple quantum wells: a new mechanism for absorption saturation,” Appl. Phys. Lett. 57, 1081–1083 (1990).
[Crossref]

Drabik, T.

Engellmann, R. W. H.

K. W. Jelley, R. W. H. Engellmann, K. Alavi, H. Lee, “Well size related limitations on maximum electroabsorption in GaAs/AlGaAs multiple quantum well structures,” Phys. Lett. 55, 70–72 (1989).

Esener, S.

A. V. Krishnamoorthy, P. Marchand, F. Kiamilev, K. S. Urquhart, S. Esener, “Grain-size consideration for optoelectronic multistage interconnection network,” Appl. Opt. 31, 5480–5507 (1992).
[Crossref] [PubMed]

F. Kiamilev, P. Marchand, A. Krishnamoorthy, S. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” J. Lightwave Technol. 9, 1674–1692 (1991).
[Crossref]

M. Feldman, C. Guest, T. Drabik, S. Esener, “Comparison between electrical and free-space optical interconnects for fine-grain processor arrays based on interconnect density capabilities,” Appl. Opt. 28, 3820–3829 (1989).
[Crossref] [PubMed]

M. Feldman, S. Esener, C. Guest, S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Opt. 27, 1742–1751 (1988).
[Crossref] [PubMed]

B. Mansoorian, G. Marsden, V. Ozguz, C. Fan, S. Esener, “Characterization of a free-space optoelectronic interconnect system based on Si/PLZT smart pixels,” in Spatial Light Modulators and Applications, Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 128–131.

Esener, S. C.

C. Fan, C W. Shih, M. W. Hansen, S. C. Esener, H. H. Wieder, “Quantum-confined Stark effect modulators at 1.06 mm on GaAs,” IEEE Photon. Technol. Lett. 5, 1383–1385 (1993).
[Crossref]

Fainman, Y.

Fan, C.

C. Fan, C W. Shih, M. W. Hansen, S. C. Esener, H. H. Wieder, “Quantum-confined Stark effect modulators at 1.06 mm on GaAs,” IEEE Photon. Technol. Lett. 5, 1383–1385 (1993).
[Crossref]

B. Mansoorian, G. Marsden, V. Ozguz, C. Fan, S. Esener, “Characterization of a free-space optoelectronic interconnect system based on Si/PLZT smart pixels,” in Spatial Light Modulators and Applications, Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 128–131.

Feels, R.

L. Coldren, S. Corzine, R. Feels, A. C. Fonard, K. K. Law, J. Merz, J. Scott, R. Simes, R. H. Yan, “High efficiency vertical cavity lasers and modulators,” in Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Device Physics and Applications, M. Razeghi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1362, 79–92 (1991).

Feldman, M.

Focht, M. W.

A. L. Lentine, R. A. Novotny, T. J. Cloonan, L. M. F. Chirovsky, L. A. D’Asaro, G. Livescu, S. Hui, M. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, K. G. Glogovsky, T. K. Woodward, “4 × 4 arrays of FET-SEED embedded control 2 × 1 optoelectronic switching nodes with electrical fan-out,” IEEE Photon. Technol. Lett. 6, 1126–1129 (1994).
[Crossref]

Fonard, A. C.

L. Coldren, S. Corzine, R. Feels, A. C. Fonard, K. K. Law, J. Merz, J. Scott, R. Simes, R. H. Yan, “High efficiency vertical cavity lasers and modulators,” in Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Device Physics and Applications, M. Razeghi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1362, 79–92 (1991).

Forrest, S. R.

S. R. Forrest, “Sensitivity of avalanche photodetector receivers for high-bit-rate long-wavelength optical communication systems,” in Semiconductors and Semimetals, W. T. Tsang, ed. (Academic, New York, 1985), Vol. 22, pp. 329–387.
[Crossref]

Freund, J. M.

A. L. Lentine, R. A. Novotny, T. J. Cloonan, L. M. F. Chirovsky, L. A. D’Asaro, G. Livescu, S. Hui, M. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, K. G. Glogovsky, T. K. Woodward, “4 × 4 arrays of FET-SEED embedded control 2 × 1 optoelectronic switching nodes with electrical fan-out,” IEEE Photon. Technol. Lett. 6, 1126–1129 (1994).
[Crossref]

Geels, R.

R. Geels, L. Coldren, “Submilliamp threshold vertical cavity laser diodes,” App. Phys. Lett. 57, 1605–1607 (1990).
[Crossref]

Geiger, R.

R. Geiger, P. Allen, N. Stroder, VLSI Design Techniques for Analog and Digital Circuits (McGraw-Hill, New York, 1990), pp. 590–593.

Glogovsky, K. G.

A. L. Lentine, R. A. Novotny, T. J. Cloonan, L. M. F. Chirovsky, L. A. D’Asaro, G. Livescu, S. Hui, M. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, K. G. Glogovsky, T. K. Woodward, “4 × 4 arrays of FET-SEED embedded control 2 × 1 optoelectronic switching nodes with electrical fan-out,” IEEE Photon. Technol. Lett. 6, 1126–1129 (1994).
[Crossref]

Goodman, J. W.

Goossen, K. W.

K. W. Goossen, J. E. Cunningham, M. B. Santos, W. Y. Jan, “Measurement of modulation saturation intensity in strain-balanced, undefected InGaAs/GaAsP modulators operating at 1.064 μm,” Appl. Phys. Lett. 63, 515–517 (1993).
[Crossref]

Gossard, A. C.

R. H. Yan, R. J. Simes, L. A. Coldren, A. C. Gossard, “Transverse modulators with a record reflection change of >20%/V using asymmetric Fabry–Perot structures,” Appl. Phys. Lett. 56, 1626–1628 (1990).
[Crossref]

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984).
[Crossref]

Guest, C.

Guth, G. D.

A. L. Lentine, R. A. Novotny, T. J. Cloonan, L. M. F. Chirovsky, L. A. D’Asaro, G. Livescu, S. Hui, M. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, K. G. Glogovsky, T. K. Woodward, “4 × 4 arrays of FET-SEED embedded control 2 × 1 optoelectronic switching nodes with electrical fan-out,” IEEE Photon. Technol. Lett. 6, 1126–1129 (1994).
[Crossref]

Haertling, G.

G. Haertling, C. Land, “Hot pressed PLZT ferroelectric ceramics for electro-optics applications,” J. Am. Ceram. Soc. 56, 1–11 (1971).
[Crossref]

Hansen, M. W.

C. Fan, C W. Shih, M. W. Hansen, S. C. Esener, H. H. Wieder, “Quantum-confined Stark effect modulators at 1.06 mm on GaAs,” IEEE Photon. Technol. Lett. 5, 1383–1385 (1993).
[Crossref]

Harris, J. S.

B. Pezeshku, D. Thomas, J. S. Harris, “Optimization of modulation ratio and insertion loss in reflective electroabsorption modulators,” Phys. Lett. 57, 1491–1492 (1990).

Hesselink, L.

Hui, S.

A. L. Lentine, R. A. Novotny, T. J. Cloonan, L. M. F. Chirovsky, L. A. D’Asaro, G. Livescu, S. Hui, M. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, K. G. Glogovsky, T. K. Woodward, “4 × 4 arrays of FET-SEED embedded control 2 × 1 optoelectronic switching nodes with electrical fan-out,” IEEE Photon. Technol. Lett. 6, 1126–1129 (1994).
[Crossref]

Jan, W. Y.

K. W. Goossen, J. E. Cunningham, M. B. Santos, W. Y. Jan, “Measurement of modulation saturation intensity in strain-balanced, undefected InGaAs/GaAsP modulators operating at 1.064 μm,” Appl. Phys. Lett. 63, 515–517 (1993).
[Crossref]

Jelley, K. W.

K. W. Jelley, R. W. H. Engellmann, K. Alavi, H. Lee, “Well size related limitations on maximum electroabsorption in GaAs/AlGaAs multiple quantum well structures,” Phys. Lett. 55, 70–72 (1989).

Jewell, J.

J. Jewell, G. Olbright, “Vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[Crossref]

Johnson, B. C.

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, M. G. Young, “Electric field screening by photogenerated holes in multiple quantum wells: a new mechanism for absorption saturation,” Appl. Phys. Lett. 57, 1081–1083 (1990).
[Crossref]

Keller, U.

T. Sizer, T. K. Woodward, U. Keller, K. Sauer, T.-H. Chiu, D. L. Sivco, A. Y. Cho, “Measurement of carrier escape rates, exciton saturation intensity, and saturation density in electrically biased multiple-quantum-well modulators,” IEEE J. Quantum Electron. 30, 399–407 (1994).
[Crossref]

Kiamilev, F.

A. V. Krishnamoorthy, P. Marchand, F. Kiamilev, K. S. Urquhart, S. Esener, “Grain-size consideration for optoelectronic multistage interconnection network,” Appl. Opt. 31, 5480–5507 (1992).
[Crossref] [PubMed]

F. Kiamilev, P. Marchand, A. Krishnamoorthy, S. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” J. Lightwave Technol. 9, 1674–1692 (1991).
[Crossref]

Koren, U.

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, M. G. Young, “Electric field screening by photogenerated holes in multiple quantum wells: a new mechanism for absorption saturation,” Appl. Phys. Lett. 57, 1081–1083 (1990).
[Crossref]

Kostuk, R. K.

Krishnamoorthy, A.

F. Kiamilev, P. Marchand, A. Krishnamoorthy, S. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” J. Lightwave Technol. 9, 1674–1692 (1991).
[Crossref]

Krishnamoorthy, A. V.

Kwark, Y.

C.-S. Li, H. S. Stone, Y. Kwark, C. M. Olsen, “Fully differential optical interconnections for high-speed digital systems,” IEEE Trans. Very-Large-Scale-Integrat. Syst. 1, 151–163 (1993).
[Crossref]

Land, C.

G. Haertling, C. Land, “Hot pressed PLZT ferroelectric ceramics for electro-optics applications,” J. Am. Ceram. Soc. 56, 1–11 (1971).
[Crossref]

Law, K. K.

L. Coldren, S. Corzine, R. Feels, A. C. Fonard, K. K. Law, J. Merz, J. Scott, R. Simes, R. H. Yan, “High efficiency vertical cavity lasers and modulators,” in Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Device Physics and Applications, M. Razeghi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1362, 79–92 (1991).

Lee, H.

K. W. Jelley, R. W. H. Engellmann, K. Alavi, H. Lee, “Well size related limitations on maximum electroabsorption in GaAs/AlGaAs multiple quantum well structures,” Phys. Lett. 55, 70–72 (1989).

Lee, S. H.

K. S. Urquhart, P. Marchand, Y. Fainman, S. H. Lee, “Diffractive optics applied to free-space optical interconnects,” Appl. Opt. 33, 3670–3682 (1994).
[Crossref] [PubMed]

F. Kiamilev, P. Marchand, A. Krishnamoorthy, S. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” J. Lightwave Technol. 9, 1674–1692 (1991).
[Crossref]

M. Title, S. H. Lee, “Modeling and characterization of embedded electrode performance on transverse electro-optic modulators,” Appl. Opt. 23, 85–98 (1990).
[Crossref]

M. Feldman, S. Esener, C. Guest, S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Opt. 27, 1742–1751 (1988).
[Crossref] [PubMed]

Leibenguth, R. E.

A. L. Lentine, R. A. Novotny, T. J. Cloonan, L. M. F. Chirovsky, L. A. D’Asaro, G. Livescu, S. Hui, M. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, K. G. Glogovsky, T. K. Woodward, “4 × 4 arrays of FET-SEED embedded control 2 × 1 optoelectronic switching nodes with electrical fan-out,” IEEE Photon. Technol. Lett. 6, 1126–1129 (1994).
[Crossref]

Lentine, A. L.

A. L. Lentine, R. A. Novotny, T. J. Cloonan, L. M. F. Chirovsky, L. A. D’Asaro, G. Livescu, S. Hui, M. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, K. G. Glogovsky, T. K. Woodward, “4 × 4 arrays of FET-SEED embedded control 2 × 1 optoelectronic switching nodes with electrical fan-out,” IEEE Photon. Technol. Lett. 6, 1126–1129 (1994).
[Crossref]

Li, C.-S.

C.-S. Li, H. S. Stone, Y. Kwark, C. M. Olsen, “Fully differential optical interconnections for high-speed digital systems,” IEEE Trans. Very-Large-Scale-Integrat. Syst. 1, 151–163 (1993).
[Crossref]

Livescu, G.

A. L. Lentine, R. A. Novotny, T. J. Cloonan, L. M. F. Chirovsky, L. A. D’Asaro, G. Livescu, S. Hui, M. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, K. G. Glogovsky, T. K. Woodward, “4 × 4 arrays of FET-SEED embedded control 2 × 1 optoelectronic switching nodes with electrical fan-out,” IEEE Photon. Technol. Lett. 6, 1126–1129 (1994).
[Crossref]

Mansoorian, B.

B. Mansoorian, G. Marsden, V. Ozguz, C. Fan, S. Esener, “Characterization of a free-space optoelectronic interconnect system based on Si/PLZT smart pixels,” in Spatial Light Modulators and Applications, Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 128–131.

Marchand, P.

Marsden, G.

B. Mansoorian, G. Marsden, V. Ozguz, C. Fan, S. Esener, “Characterization of a free-space optoelectronic interconnect system based on Si/PLZT smart pixels,” in Spatial Light Modulators and Applications, Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 128–131.

McCormick, F. B.

F. B. McCormick, “Free-space interconnection techniques,” in Photonics in Switching, J. E. Midwinter, ed. (Academic, New York, 1993), Vol. II, pp. 169–250.

Merz, J.

L. Coldren, S. Corzine, R. Feels, A. C. Fonard, K. K. Law, J. Merz, J. Scott, R. Simes, R. H. Yan, “High efficiency vertical cavity lasers and modulators,” in Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Device Physics and Applications, M. Razeghi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1362, 79–92 (1991).

Miller, B. I.

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, M. G. Young, “Electric field screening by photogenerated holes in multiple quantum wells: a new mechanism for absorption saturation,” Appl. Phys. Lett. 57, 1081–1083 (1990).
[Crossref]

Miller, D. A. B.

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984).
[Crossref]

D. A. B. Miller, D. S. Chemla, S. Schmitt-Rink, “Electrical field dependence of semiconductor quantum wells,” in Optical Nonlinearities and Instabilities in Semiconductors, H. Hays, ed. (Academic, New York, 1988), pp. 325–360.

Novotny, R. A.

A. L. Lentine, R. A. Novotny, T. J. Cloonan, L. M. F. Chirovsky, L. A. D’Asaro, G. Livescu, S. Hui, M. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, K. G. Glogovsky, T. K. Woodward, “4 × 4 arrays of FET-SEED embedded control 2 × 1 optoelectronic switching nodes with electrical fan-out,” IEEE Photon. Technol. Lett. 6, 1126–1129 (1994).
[Crossref]

Olbright, G.

J. Jewell, G. Olbright, “Vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[Crossref]

Olsen, C. M.

C.-S. Li, H. S. Stone, Y. Kwark, C. M. Olsen, “Fully differential optical interconnections for high-speed digital systems,” IEEE Trans. Very-Large-Scale-Integrat. Syst. 1, 151–163 (1993).
[Crossref]

Ozguz, V.

B. Mansoorian, G. Marsden, V. Ozguz, C. Fan, S. Esener, “Characterization of a free-space optoelectronic interconnect system based on Si/PLZT smart pixels,” in Spatial Light Modulators and Applications, Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 128–131.

Panish, M. B.

H. C. Casey, M. B. Panish, Heterostructure Lasers (Academic, New York, 1978), Part B, pp. 224–226.

Parry, G.

P. J. Stevens, G. Parry, “Limits to normal incidence electroabsorption modulation in GaAs/(GaAl) as multiple quantum well diodes,” J. Lightwave Technol. 7, 1101–1108 (1989).
[Crossref]

M. Whitehead, A. Rivers, G. Parry, J. S. Roberts, C. Button, “Low-voltage multiple quantum well reflection modulator with ON:OFF ratio >100:1,” Electron. Lett. 25, 984–985 (1989).
[Crossref]

Pastalan, J. Z.

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, M. G. Young, “Electric field screening by photogenerated holes in multiple quantum wells: a new mechanism for absorption saturation,” Appl. Phys. Lett. 57, 1081–1083 (1990).
[Crossref]

Pezeshku, B.

B. Pezeshku, D. Thomas, J. S. Harris, “Optimization of modulation ratio and insertion loss in reflective electroabsorption modulators,” Phys. Lett. 57, 1491–1492 (1990).

Rivers, A.

M. Whitehead, A. Rivers, G. Parry, J. S. Roberts, C. Button, “Low-voltage multiple quantum well reflection modulator with ON:OFF ratio >100:1,” Electron. Lett. 25, 984–985 (1989).
[Crossref]

Roberts, J. S.

M. Whitehead, A. Rivers, G. Parry, J. S. Roberts, C. Button, “Low-voltage multiple quantum well reflection modulator with ON:OFF ratio >100:1,” Electron. Lett. 25, 984–985 (1989).
[Crossref]

Santos, M. B.

K. W. Goossen, J. E. Cunningham, M. B. Santos, W. Y. Jan, “Measurement of modulation saturation intensity in strain-balanced, undefected InGaAs/GaAsP modulators operating at 1.064 μm,” Appl. Phys. Lett. 63, 515–517 (1993).
[Crossref]

Sauer, K.

T. Sizer, T. K. Woodward, U. Keller, K. Sauer, T.-H. Chiu, D. L. Sivco, A. Y. Cho, “Measurement of carrier escape rates, exciton saturation intensity, and saturation density in electrically biased multiple-quantum-well modulators,” IEEE J. Quantum Electron. 30, 399–407 (1994).
[Crossref]

Schmitt-Rink, S.

D. A. B. Miller, D. S. Chemla, S. Schmitt-Rink, “Electrical field dependence of semiconductor quantum wells,” in Optical Nonlinearities and Instabilities in Semiconductors, H. Hays, ed. (Academic, New York, 1988), pp. 325–360.

Scott, J.

L. Coldren, S. Corzine, R. Feels, A. C. Fonard, K. K. Law, J. Merz, J. Scott, R. Simes, R. H. Yan, “High efficiency vertical cavity lasers and modulators,” in Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Device Physics and Applications, M. Razeghi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1362, 79–92 (1991).

Shih, C W.

C. Fan, C W. Shih, M. W. Hansen, S. C. Esener, H. H. Wieder, “Quantum-confined Stark effect modulators at 1.06 mm on GaAs,” IEEE Photon. Technol. Lett. 5, 1383–1385 (1993).
[Crossref]

Simes, R.

L. Coldren, S. Corzine, R. Feels, A. C. Fonard, K. K. Law, J. Merz, J. Scott, R. Simes, R. H. Yan, “High efficiency vertical cavity lasers and modulators,” in Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Device Physics and Applications, M. Razeghi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1362, 79–92 (1991).

Simes, R. J.

R. H. Yan, R. J. Simes, L. A. Coldren, A. C. Gossard, “Transverse modulators with a record reflection change of >20%/V using asymmetric Fabry–Perot structures,” Appl. Phys. Lett. 56, 1626–1628 (1990).
[Crossref]

Sivco, D. L.

T. Sizer, T. K. Woodward, U. Keller, K. Sauer, T.-H. Chiu, D. L. Sivco, A. Y. Cho, “Measurement of carrier escape rates, exciton saturation intensity, and saturation density in electrically biased multiple-quantum-well modulators,” IEEE J. Quantum Electron. 30, 399–407 (1994).
[Crossref]

Sizer, T.

T. Sizer, T. K. Woodward, U. Keller, K. Sauer, T.-H. Chiu, D. L. Sivco, A. Y. Cho, “Measurement of carrier escape rates, exciton saturation intensity, and saturation density in electrically biased multiple-quantum-well modulators,” IEEE J. Quantum Electron. 30, 399–407 (1994).
[Crossref]

Smith, P. W.

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984).
[Crossref]

Stevens, P. J.

P. J. Stevens, G. Parry, “Limits to normal incidence electroabsorption modulation in GaAs/(GaAl) as multiple quantum well diodes,” J. Lightwave Technol. 7, 1101–1108 (1989).
[Crossref]

Stone, H. S.

C.-S. Li, H. S. Stone, Y. Kwark, C. M. Olsen, “Fully differential optical interconnections for high-speed digital systems,” IEEE Trans. Very-Large-Scale-Integrat. Syst. 1, 151–163 (1993).
[Crossref]

Stroder, N.

R. Geiger, P. Allen, N. Stroder, VLSI Design Techniques for Analog and Digital Circuits (McGraw-Hill, New York, 1990), pp. 590–593.

Thomas, D.

B. Pezeshku, D. Thomas, J. S. Harris, “Optimization of modulation ratio and insertion loss in reflective electroabsorption modulators,” Phys. Lett. 57, 1491–1492 (1990).

Title, M.

M. Title, S. H. Lee, “Modeling and characterization of embedded electrode performance on transverse electro-optic modulators,” Appl. Opt. 23, 85–98 (1990).
[Crossref]

Urquhart, K. S.

Whitehead, M.

M. Whitehead, A. Rivers, G. Parry, J. S. Roberts, C. Button, “Low-voltage multiple quantum well reflection modulator with ON:OFF ratio >100:1,” Electron. Lett. 25, 984–985 (1989).
[Crossref]

Wieder, H. H.

C. Fan, C W. Shih, M. W. Hansen, S. C. Esener, H. H. Wieder, “Quantum-confined Stark effect modulators at 1.06 mm on GaAs,” IEEE Photon. Technol. Lett. 5, 1383–1385 (1993).
[Crossref]

Wiegmann, W.

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984).
[Crossref]

Wood, T. H.

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, M. G. Young, “Electric field screening by photogenerated holes in multiple quantum wells: a new mechanism for absorption saturation,” Appl. Phys. Lett. 57, 1081–1083 (1990).
[Crossref]

Woodward, T. K.

T. Sizer, T. K. Woodward, U. Keller, K. Sauer, T.-H. Chiu, D. L. Sivco, A. Y. Cho, “Measurement of carrier escape rates, exciton saturation intensity, and saturation density in electrically biased multiple-quantum-well modulators,” IEEE J. Quantum Electron. 30, 399–407 (1994).
[Crossref]

A. L. Lentine, R. A. Novotny, T. J. Cloonan, L. M. F. Chirovsky, L. A. D’Asaro, G. Livescu, S. Hui, M. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, K. G. Glogovsky, T. K. Woodward, “4 × 4 arrays of FET-SEED embedded control 2 × 1 optoelectronic switching nodes with electrical fan-out,” IEEE Photon. Technol. Lett. 6, 1126–1129 (1994).
[Crossref]

Yan, R. H.

R. H. Yan, R. J. Simes, L. A. Coldren, A. C. Gossard, “Transverse modulators with a record reflection change of >20%/V using asymmetric Fabry–Perot structures,” Appl. Phys. Lett. 56, 1626–1628 (1990).
[Crossref]

L. Coldren, S. Corzine, R. Feels, A. C. Fonard, K. K. Law, J. Merz, J. Scott, R. Simes, R. H. Yan, “High efficiency vertical cavity lasers and modulators,” in Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Device Physics and Applications, M. Razeghi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1362, 79–92 (1991).

Young, M. G.

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, M. G. Young, “Electric field screening by photogenerated holes in multiple quantum wells: a new mechanism for absorption saturation,” Appl. Phys. Lett. 57, 1081–1083 (1990).
[Crossref]

App. Phys. Lett. (1)

R. Geels, L. Coldren, “Submilliamp threshold vertical cavity laser diodes,” App. Phys. Lett. 57, 1605–1607 (1990).
[Crossref]

Appl. Opt. (6)

Appl. Phys. Lett. (3)

T. H. Wood, J. Z. Pastalan, C. A. Burrus, B. C. Johnson, B. I. Miller, J. L. deMiguel, U. Koren, M. G. Young, “Electric field screening by photogenerated holes in multiple quantum wells: a new mechanism for absorption saturation,” Appl. Phys. Lett. 57, 1081–1083 (1990).
[Crossref]

K. W. Goossen, J. E. Cunningham, M. B. Santos, W. Y. Jan, “Measurement of modulation saturation intensity in strain-balanced, undefected InGaAs/GaAsP modulators operating at 1.064 μm,” Appl. Phys. Lett. 63, 515–517 (1993).
[Crossref]

R. H. Yan, R. J. Simes, L. A. Coldren, A. C. Gossard, “Transverse modulators with a record reflection change of >20%/V using asymmetric Fabry–Perot structures,” Appl. Phys. Lett. 56, 1626–1628 (1990).
[Crossref]

Electron. Lett. (1)

M. Whitehead, A. Rivers, G. Parry, J. S. Roberts, C. Button, “Low-voltage multiple quantum well reflection modulator with ON:OFF ratio >100:1,” Electron. Lett. 25, 984–985 (1989).
[Crossref]

IEEE J. Quantum Electron. (3)

D. S. Chemla, D. A. B. Miller, P. W. Smith, A. C. Gossard, W. Wiegmann, “Room temperature excitonic nonlinear absorption and refraction in GaAs/AlGaAs multiple quantum well structures,” IEEE J. Quantum Electron. QE-20, 265–275 (1984).
[Crossref]

T. Sizer, T. K. Woodward, U. Keller, K. Sauer, T.-H. Chiu, D. L. Sivco, A. Y. Cho, “Measurement of carrier escape rates, exciton saturation intensity, and saturation density in electrically biased multiple-quantum-well modulators,” IEEE J. Quantum Electron. 30, 399–407 (1994).
[Crossref]

J. Jewell, G. Olbright, “Vertical cavity surface emitting lasers,” IEEE J. Quantum Electron. 27, 1332–1346 (1991).
[Crossref]

IEEE Photon. Technol. Lett. (2)

A. L. Lentine, R. A. Novotny, T. J. Cloonan, L. M. F. Chirovsky, L. A. D’Asaro, G. Livescu, S. Hui, M. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, K. G. Glogovsky, T. K. Woodward, “4 × 4 arrays of FET-SEED embedded control 2 × 1 optoelectronic switching nodes with electrical fan-out,” IEEE Photon. Technol. Lett. 6, 1126–1129 (1994).
[Crossref]

C. Fan, C W. Shih, M. W. Hansen, S. C. Esener, H. H. Wieder, “Quantum-confined Stark effect modulators at 1.06 mm on GaAs,” IEEE Photon. Technol. Lett. 5, 1383–1385 (1993).
[Crossref]

IEEE Trans. Very-Large-Scale-Integrat. Syst. (1)

C.-S. Li, H. S. Stone, Y. Kwark, C. M. Olsen, “Fully differential optical interconnections for high-speed digital systems,” IEEE Trans. Very-Large-Scale-Integrat. Syst. 1, 151–163 (1993).
[Crossref]

J. Am. Ceram. Soc. (1)

G. Haertling, C. Land, “Hot pressed PLZT ferroelectric ceramics for electro-optics applications,” J. Am. Ceram. Soc. 56, 1–11 (1971).
[Crossref]

J. Lightwave Technol. (2)

F. Kiamilev, P. Marchand, A. Krishnamoorthy, S. Esener, S. H. Lee, “Performance comparison between optoelectronic and VLSI multistage interconnection networks,” J. Lightwave Technol. 9, 1674–1692 (1991).
[Crossref]

P. J. Stevens, G. Parry, “Limits to normal incidence electroabsorption modulation in GaAs/(GaAl) as multiple quantum well diodes,” J. Lightwave Technol. 7, 1101–1108 (1989).
[Crossref]

Phys. Lett. (2)

K. W. Jelley, R. W. H. Engellmann, K. Alavi, H. Lee, “Well size related limitations on maximum electroabsorption in GaAs/AlGaAs multiple quantum well structures,” Phys. Lett. 55, 70–72 (1989).

B. Pezeshku, D. Thomas, J. S. Harris, “Optimization of modulation ratio and insertion loss in reflective electroabsorption modulators,” Phys. Lett. 57, 1491–1492 (1990).

Other (8)

L. Coldren, S. Corzine, R. Feels, A. C. Fonard, K. K. Law, J. Merz, J. Scott, R. Simes, R. H. Yan, “High efficiency vertical cavity lasers and modulators,” in Physical Concepts of Materials for Novel Optoelectronic Device Applications II: Device Physics and Applications, M. Razeghi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1362, 79–92 (1991).

S. R. Forrest, “Sensitivity of avalanche photodetector receivers for high-bit-rate long-wavelength optical communication systems,” in Semiconductors and Semimetals, W. T. Tsang, ed. (Academic, New York, 1985), Vol. 22, pp. 329–387.
[Crossref]

F. B. McCormick, “Free-space interconnection techniques,” in Photonics in Switching, J. E. Midwinter, ed. (Academic, New York, 1993), Vol. II, pp. 169–250.

H. C. Casey, M. B. Panish, Heterostructure Lasers (Academic, New York, 1978), Part B, pp. 224–226.

R. Geiger, P. Allen, N. Stroder, VLSI Design Techniques for Analog and Digital Circuits (McGraw-Hill, New York, 1990), pp. 590–593.

H. B. Bakaglu, Circuits, Interconnections, and Packaging for VLSI (Addison-Wesley, Reading, Mass., 1990).

B. Mansoorian, G. Marsden, V. Ozguz, C. Fan, S. Esener, “Characterization of a free-space optoelectronic interconnect system based on Si/PLZT smart pixels,” in Spatial Light Modulators and Applications, Vol. 6 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 128–131.

D. A. B. Miller, D. S. Chemla, S. Schmitt-Rink, “Electrical field dependence of semiconductor quantum wells,” in Optical Nonlinearities and Instabilities in Semiconductors, H. Hays, ed. (Academic, New York, 1988), pp. 325–360.

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Block diagrams of a free-space optical interconnection system: (a) photonics layer definition; (b) description of an individual connection channel.

Fig. 2
Fig. 2

Normalized optical transmission versus applied voltage from a PLZT modulator; the dashed curve is calculated based on the ideal TV relationship, the solid curve is based on the modified model with Vα = 241 V and Vβ = 225 V, and the dotted curve is the experimental data from PLZT modulators with 40-μm electrode spacing.

Fig. 3
Fig. 3

Calculated PLZT modulator power efficiency as a function of electrical driving power at three data rates; a capacitance of 1 pF is used.

Fig. 4
Fig. 4

Absorbed optical intensity in a MQW modulator as a function of incident optical intensity: the solid curves are the experimental results from InGaAs/InAlGaAs MQW modulators fabricated at the University of California, San Diego, and the dashed curves are calculated with the Lorentzian line shape and the fitting parameters given in Table 2.

Fig. 5
Fig. 5

Calculated MQW modulator power efficiency versus input optical power with the typical k m parameter ratio (k m = 1.7) and the ratio from the best reported result (k m = 4); 20 μm × 20 μm and 40 μm × 40 μm modulator dimensions are used in both cases.

Fig. 6
Fig. 6

VCSEL power efficiency versus input electrical power for two values of threshold power; the corresponding laser parameters are listed in Table 5.

Fig. 7
Fig. 7

Three-stage cascaded buffer for driving large capacitance loads. Each stage is g times larger than the previous one.

Fig. 8
Fig. 8

Thermal power density versus bit rate for a PLZT modulator driver; the modulator capacitance is 1 pF.

Fig. 9
Fig. 9

Thermal power density in a MQW modulator driver circuit; the data shown are calculated with 5-V and 10-V modulation voltages and 50-W/cm2 and 100-W/cm2 optical intensities.

Fig. 10
Fig. 10

High-impedance optical receiver circuit with a single-stage CMOS inverter as the detector amplifier and a p-channel FET as the detector load: C d is the detector capacitance, C l is the drain-to-source capacitance of the p-channel FET, C g the gate capacitance of the CMOS inverter, and g m the transconductance of the CMOS driver.

Fig. 11
Fig. 11

Minimum detectable power versus bit rate.

Fig. 12
Fig. 12

Achievable fan-out per laser versus input electrical power with the technology parameters listed in Table 5.

Fig. 13
Fig. 13

Constant fan-out contours as a function of input electrical and optical power at a data rate of 100 Mbits/s for (a) PLZT modulators and (b) MQW modulators.

Fig. 14
Fig. 14

Area per MQW modulator in region II of Fig. 13(b) with the optimal electrical-to-optical power ratio.

Fig. 15
Fig. 15

Fan-out capabilities as functions of the number of transmitters at a data rate of 100 Mbits/s: 1-W electrical power is applied for all individual technologies; 0.6-W and 5-W optical power values are applied to the modulator technologies.

Fig. 16
Fig. 16

Electrical power dissipation as a function of the bit rate, the architecture, and the technology. The driver area on the right axis is calculated with the assumption of a 10-W/cm2 maximum power density. The top axis indicates the average optical energy per bit required by the PLZT technology.

Tables (5)

Tables Icon

Table 1 Summary of Symbols and Definitions Used

Tables Icon

Table 2 Multiple-Quantum-Well Device Parameters Used in Saturation Calculations

Tables Icon

Table 3 Calculated Absorption Slope Ratios (K m )

Tables Icon

Table 4 Optical Receiver Technology Parameters Used

Tables Icon

Table 5 Summary of Transmitter Technology Parameters

Equations (29)

Equations on this page are rendered with MathJax. Learn more.

N F = η os P e , o 2 P d ¯ ( BR , BER ) η T ( P e , BR ) ,
T ( V ) = sin 2 [ π 2 ( V V π ) 2 ] ,
T ( V ) = sin 2 [ π 2 ( V V α ) 2 + π 2 ( V V β ) ] ,
η plzt = T ( V b + Δ V 2 ) T ( V b Δ V 2 ) ,
V b = V α 2 2 [ ( 1 V β 2 2 V α 2 ) 1 / 2 1 V β ] ,
I abs ( V ) = I i k ( V ) 1 + I i I S ( V ) ,
η md = η mqw = [ K m 1 + P o / m A mqw I S ( V m ) 1 1 + P o / m A mqw I S ( 0 ) ] k ( 0 ) ,
η laser = ( 1 ρ th ) η e o ( 1 η e o ) ,
A dr = A 0 ζ i = 1 n g i 1 ,
P e / m = ( C mqw V m 2 BR 2 ) + [ P o / m r mqw 2 k ( 0 ) K m V m 1 + P o / m A mqw I S ( V m ) ] ,
P d ¯ ( BR , BER ) = h ν q η d Q ( i R 2 + i T 2 + i c 2 = i f 2 ) 1 / 2 ,
F η os P e , o / T 2 P d ¯ ( BR , BER ) η T ( P e / T , BR ) ,
P OH = ( 1 IL ) P o / m ,
P OL = P OH / CR ,
P o / m = P o / N .
P md ¯ = 1 2 ( P OH + P OL ) ,
P md ¯ = η os P d * ¯ F ,
P d * ¯ = ( 1 + 1 / CR ) ( 1 1 / CR ) P d ¯ ,
N F = η os P o 2 P d ¯ η md ,
η md = ( 1 IL ) ( 1 1 / CR )
η md = ( 1 / P o / m ) ( P OH P OL ) ,
P e / 1 P th / 1 + P o / 1 ( 1 η e o η e o ,
P o / 1 = P e / 1 P th / 1 ) η e o ( 1 η e o ) .
P e / 1 = P e / N ,
P o / 1 = P e N ( 1 ρ th ) η e o ( 1 η e o ) ,
ρ th = N P th / 1 P e
1 2 P o / 1 = η os P d ¯ F
N F = η os P e 2 P d ¯ η laser ,
η laser = ( 1 ρ th ) η e o ( 1 η e o )

Metrics