Abstract

An electrostatically controlled flexible mirror has been fabricated on a silicon chip by means of bulk micromachining. The mirror has a 10.5 mm × 10.5 mm square aperture and consists of a 0.5-μm-thick tensile-stressed silicon-nitride diaphragm coated with a 0.2-μm-thick reflective aluminum layer. The reflecting surface is initially plane with a mean-square deviation of ∼λ/8 for λ = 633 nm. The shape of the reflecting surface is controlled electrostatically by an array of integrated actuators. Good initial optical quality and the possibility of electrostatic control of the reflecting surface make the on-chip mirror useful for various electro-optical applications.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. E. Petersen, “Silicon as a mechanical material,” Proc. IEEE 70, 420–457 (1982).
    [CrossRef]
  2. T. Kwa, R. Wolfenbuttel, “Integrated grating/detector array fabricated in silicon using micromachining techniques,” Sensors Actuators A 31, 259–266 (1992).
    [CrossRef]
  3. M. Hisanaga, T. Koumura, T. Nattori, “Fabrication of three-dimensionally shaped Si diaphragm dynamic focusing mirror,” in Proceedings of the IEEE Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 30–35.
  4. L. J. Hornbeck, “128 × 128 deformable mirror device,” IEEE Trans. Electron Devices ED-30, 539–545 (1983).
    [CrossRef]
  5. R. P. Grosso, M. Yellin, “The membrane mirror as an adaptive optical element,” J. Opt. Soc. Am. 67, 399–406 (1977).
    [CrossRef]
  6. D. Malacara, Optical Shop Testing (Wiley, New York, 1992), Chap. 2, pp. 51–94.
  7. M. Takeda, H. Ina, S. Kobayashi, “Fourier transform method of fringe-pattern analysis for computer-based topography and interferometry,” J. Opt. Soc. Am. 72, 156–160 (1982).
    [CrossRef]
  8. A. Tikhonov, A. Samarskii, Equations of Mathematical Physics (Pergamon, London, 1963), Chap. 4, pp. 474–484.

1992 (1)

T. Kwa, R. Wolfenbuttel, “Integrated grating/detector array fabricated in silicon using micromachining techniques,” Sensors Actuators A 31, 259–266 (1992).
[CrossRef]

1983 (1)

L. J. Hornbeck, “128 × 128 deformable mirror device,” IEEE Trans. Electron Devices ED-30, 539–545 (1983).
[CrossRef]

1982 (2)

1977 (1)

Grosso, R. P.

Hisanaga, M.

M. Hisanaga, T. Koumura, T. Nattori, “Fabrication of three-dimensionally shaped Si diaphragm dynamic focusing mirror,” in Proceedings of the IEEE Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 30–35.

Hornbeck, L. J.

L. J. Hornbeck, “128 × 128 deformable mirror device,” IEEE Trans. Electron Devices ED-30, 539–545 (1983).
[CrossRef]

Ina, H.

Kobayashi, S.

Koumura, T.

M. Hisanaga, T. Koumura, T. Nattori, “Fabrication of three-dimensionally shaped Si diaphragm dynamic focusing mirror,” in Proceedings of the IEEE Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 30–35.

Kwa, T.

T. Kwa, R. Wolfenbuttel, “Integrated grating/detector array fabricated in silicon using micromachining techniques,” Sensors Actuators A 31, 259–266 (1992).
[CrossRef]

Malacara, D.

D. Malacara, Optical Shop Testing (Wiley, New York, 1992), Chap. 2, pp. 51–94.

Nattori, T.

M. Hisanaga, T. Koumura, T. Nattori, “Fabrication of three-dimensionally shaped Si diaphragm dynamic focusing mirror,” in Proceedings of the IEEE Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 30–35.

Petersen, K. E.

K. E. Petersen, “Silicon as a mechanical material,” Proc. IEEE 70, 420–457 (1982).
[CrossRef]

Samarskii, A.

A. Tikhonov, A. Samarskii, Equations of Mathematical Physics (Pergamon, London, 1963), Chap. 4, pp. 474–484.

Takeda, M.

Tikhonov, A.

A. Tikhonov, A. Samarskii, Equations of Mathematical Physics (Pergamon, London, 1963), Chap. 4, pp. 474–484.

Wolfenbuttel, R.

T. Kwa, R. Wolfenbuttel, “Integrated grating/detector array fabricated in silicon using micromachining techniques,” Sensors Actuators A 31, 259–266 (1992).
[CrossRef]

Yellin, M.

IEEE Trans. Electron Devices (1)

L. J. Hornbeck, “128 × 128 deformable mirror device,” IEEE Trans. Electron Devices ED-30, 539–545 (1983).
[CrossRef]

J. Opt. Soc. Am. (2)

Proc. IEEE (1)

K. E. Petersen, “Silicon as a mechanical material,” Proc. IEEE 70, 420–457 (1982).
[CrossRef]

Sensors Actuators A (1)

T. Kwa, R. Wolfenbuttel, “Integrated grating/detector array fabricated in silicon using micromachining techniques,” Sensors Actuators A 31, 259–266 (1992).
[CrossRef]

Other (3)

M. Hisanaga, T. Koumura, T. Nattori, “Fabrication of three-dimensionally shaped Si diaphragm dynamic focusing mirror,” in Proceedings of the IEEE Conference on Micro Electro Mechanical Systems (Institute of Electrical and Electronics Engineers, New York, 1993), pp. 30–35.

D. Malacara, Optical Shop Testing (Wiley, New York, 1992), Chap. 2, pp. 51–94.

A. Tikhonov, A. Samarskii, Equations of Mathematical Physics (Pergamon, London, 1963), Chap. 4, pp. 474–484.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic of an integrated adaptive mirror.

Fig. 2
Fig. 2

Assembled flexible mirror mounted on a piece of printed board.

Fig. 3
Fig. 3

Interferometric pattern of the initial reflective surface of a nine-channel adaptive mirror and surface reconstruction.

Fig. 4
Fig. 4

Interferometric pattern of a nine-channel adaptive mirror electrostatically deflected by the central actuator and corresponding surface reconstruction.

Fig. 5
Fig. 5

Interferometric pattern of a nine-channel adaptive mirror electrostatically deflected by the side actuator and corresponding surface reconstruction.

Fig. 6
Fig. 6

Interferometric pattern of a nine-channel adaptive mirror electrostatically deflected by the corner actuator and corresponding surface reconstruction.

Fig. 7
Fig. 7

Interferometric pattern of the superposition of three response functions.

Fig. 8
Fig. 8

Schematic of the experimental setup used for measurement of the dynamics of the adaptive mirror response.

Fig. 9
Fig. 9

Dynamics of the mirror response to a 2-ms-long rectangular input pulse.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Δ U ( x , y ) = ρ ( x , y ) / T , U c = Z c ,
2 / R = P / T ,
ρ ( x , y ) 0 V 2 ( x , y ) / 2 S 2 ,

Metrics