Abstract

We report on a multiphoton-timing distributed temperature sensor (DTS) based on the concept of distributed anti-Stokes Raman thermometry. The sensor combines the advantage of very high spatial resolution (40 cm) with moderate measurement times. In 5 min it is possible to determine the temperature of as many as 4000 points along an optical fiber with an accuracy ΔT < 2 °C. The new feature of the DTS system is the combination of a fast single-photon avalanche diode with specially designed real-time signal-processing electronics. We discuss various parameters that affect the operation of analog and photon-timing DTS systems. Particular emphasis is put on the consequences of the nonideal behavior of sensor components and the corresponding correction procedures.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. H. Hartog, “A distributed temperature sensor based on liquid core fibers,” J. Lightwave Technol. LT-1, 498–509 (1983).
    [CrossRef]
  2. M. C. Farries, M. E. Ferman, R. I. Laming, S. B. Poole, D. A. Payne, A. P. Leach, “Distributed temperature sensor using Nd3+ doped optical fiber,” Electron. Lett. 22, 418–419 (1986).
    [CrossRef]
  3. P. Lecoy, M. Groos, L. Guenadez, “New fiberoptic distributed temperature sensor II,” in Fiber Optic Sensors II, A. V. Scheggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.798, 131–136 (1987).
  4. J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Temperature distribution measurement using Raman ratio thermometry,” in Fiber Optic and Laser Sensors III, E. L. Moore, O. G. Ramer, eds., Proc. Soc. Photo-Opt. Instrum. Eng.566, 249–256, (1985).
  5. J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed fiber Raman temperature sensor using semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
    [CrossRef]
  6. A. H. Hartog, A. P. Leach, M. P. Gold, “Distributed temperature sensing in solid core fibers,” Electron. Lett. 21, 1061–1062 (1985).
    [CrossRef]
  7. YORK DTS-80 Data Sheet (York V.S.O.P., York House, School Lane, Chandler's Ford, Hampshire S05 3DG, UK, 1992).
  8. R. Stierlin, J. Ricka, B. Zysset, R. Bättig, H. P. Weber, Th. Binkert, W. J. Borer, “Distributed fiber-optic temperature sensor using single photon counting detection,” Appl. Opt. 26, 1368–1370 (1987).
    [CrossRef] [PubMed]
  9. D. O. Connor, D. Philips, Time Correlated Single Photon Counting (Academic, London, 1984).
  10. D. A. Thorncraft, M. G. Sceats, S. B. Poole, “An ultra high resolution distributed temperature sensor,” in Proceedings of the 16th Australian Conference on Optical Fibre Technology (Institute of Radio Electronics Engineers of Australia, Edge-cliff, Australia, 1991), pp. 183–186.
  11. P. B. Coates, “The correction for photon ‘pile-up’ in the measurement of radioactive lifetimes,” J. Phys. E 2, 878–879 (1968).
    [CrossRef]
  12. S. Cova, M. Bertolaccini, C. Bussolati, “The measurement of luminescence waveforms by single-photon techniques,” Phys. Status Solidi A 18, 11–62 (1972).
    [CrossRef]
  13. See, for example, Lee Croy's Research Instrumentation Catalog (Le Croy, 700 Chestnut Ridge Road, N.Y. 10977-6499, 1992) orStanford Research Systems' Scientific and Engineering Instruments Catalog (Stanford Research Systems, 1290-D Reamwood Ave., Sunnyvale, Calif. 94089, 1992/93).
  14. M. Wüthrich, J. Ricka, “Verfahren zur Eimittlung eines Häufigleib-Zeitprofils von Ereiguissen souie Vorrichtung zur Durchführung des Verfahrens,” European and U.S. patentP4213717.9April (1992).
  15. D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977).
  16. R. H. Stolen, E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
    [CrossRef]
  17. F. L. Galeener, J. C. Mikelsen, R. H. Geils, W. J. Mosby, “The relative Raman cross section of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett. 32, 34–36 (1978).
    [CrossRef]
  18. P. di Vita, U. Rossi, “The backscattering technique: its field of applicability in fiber diagnostics and attenuation measurements,” Opt. Quantum Electron. 11, 17–22 (1980).
    [CrossRef]
  19. S. D. Personick, “Photon probe: an optical time-domain reflec-tometer,” Bell Syst. Tech. J. 56, 355–366 (1977).
  20. B. L. Danielson, “Optical fiber characterization,” Natl. Bur. Stand. (U.S.) Spec. Publ. 637 (1982).
  21. B. Culshaw, J. Dakin, Optical Fiber Sensors Vol. 2: Systems and Applications (Artech House, Norwood, Mass, 1989).
  22. M. Höbel, J. Ricka, “Dead-time and afterpulsing corrections in multiphoton timing with nonideal detectors,” Rev. Sci. Instrum. 65, 2326–2336 (1994).
    [CrossRef]
  23. P. J. Samson, “Analysis of the wavelength dependance of Raman backscatter in optical fiber thermometry,” Electron. Lett. 26, 163–165 (1990).
    [CrossRef]
  24. EG&G Emitters and Detectors, short form catalog and data sheets for the cited modules (EG&G Canada Ltd., Optoelectronics Division, 22001 Dumberry Road, Vaudreuil, Quebec, J7V 8P7, Canada, 1994).
  25. Mitsubishi PD8XX2 Data Sheet (Mitsubishi Electronic, Gother Strasse 8, 40880 Ratingen, Germany, 1994).
  26. M. Höbel, M. Wüthrich, J. Ricka, T. Binkert, “A fast multi time-interval analyser with real-time processing capability,” Rev. Sci. Instrum. 65, 2123–2129 (1994).
    [CrossRef]
  27. A. W. Lightstone, R. J. McIntyre, “Photon counting silicon avalanche photodiodes for photon correlation spectroscopy,” in Photon Correlation Techniques and Applications, Vol. 1 of OSA Proceedings (Optical Society of America, Washington, D.C., 1988), pp. 183–191.
  28. S. Cova, M. Ghioni, A. Lacaita, G. Ripamonti, “Avalanche photodiodes optimized for single-photon detection,” in Proceedings of the Seventh International Conference on Laser Satellite Ranging and Instrumentation (OCA, Grasse, France, 1989), pp. 201–208.
  29. R. G. W. Brown, K. D. Ridley, J. C. Rarity, “Characterization of silicon avalanche photodiodes for photon correlation measurements 1: Passive quenching,” Appl. Opt. 25, 4122–4126 (1986).
    [CrossRef] [PubMed]
  30. S. Cova, A. Longioni, G. Ripamonti, “Active quenching and gating circuits for single photon avalanche photodiodes (SPADs),” IEEE Trans. Nucl. Sci. NS-29, 599–601 (1982).
    [CrossRef]
  31. R. G. W. Brown, K. D. Ridley, J. C. Rarity, “Characterization of silicon avalanche photodiodes for photon correlation measurements 2: Active quenching,” Appl. Opt. 26, 2383–2389 (1987).
    [CrossRef] [PubMed]
  32. L.-Qi. Li, L. M. Davis, “Single photon avalanche diode for single molecule detection,” Rev. Sci. Instrum. 64, 1524–1529 (1993).
    [CrossRef]
  33. Solid State Photon Counting Module Data Sheet (Faculty of Nuclear Science and Physics Engineering, Czech Technical University, Brehova 7, 11519 Prague 1, Czech Republic, 1992).
  34. SILENA SPAD and Model 8618 Active Quenching Module Data Sheet (SILENA Spa, Via Firenze 3, 20063 Cermusco, Italy).
  35. I. Prochazka, K. Hamal, B. Sopko, J. Ricka, M. Höbel, “An all solid state picosecond photon counting system for spectroscopy,” in Proceedings of the International Symposium on Ultrafast Processes in Spectroscopy (IOP, Bristol, UK, 1991), pp. 147–149.
  36. S. Cova, A. Longoni, A. Andreoni, “Toward picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
    [CrossRef]
  37. P. E. Schmid, “Optical absorption in heavily doped silicon,” Phys. Rev. B 23, 5531–5536 (1981).
    [CrossRef]
  38. G. Ripamonti, S. Cova, “Carrier diffusion effects in the time response of a fast photodiode,” Solid State Electron. 28, 925–931 (1985).
    [CrossRef]
  39. P. R. Morkel, K. P. Jedrzejewski, E. R. Taylor, D. N. Payne, “Short-pulse, high power Q-switched fiber laser,” IEEE Photon. Technol. Lett. 4, 545–547 (1992).
    [CrossRef]
  40. R. H. Stolen, “Nonlinearity in Fiber Transmission,” Proc. IEEE 68, 1232–1236 (1980).
    [CrossRef]
  41. H. Dautet, P. Deschamps, B. Dion, A. D. McGregor, D. Mac-Sween, R. J. McIntyre, P. Trottier, P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Appl. Opt. 32, 3894–3900 (1993).
    [PubMed]
  42. X. Sun, F. M. Davidson, “Photon counting with silicon avalanche diodes,” J. Lightwave Technol. 10, 1023–1032 (1992).
    [CrossRef]
  43. M. Ghioni, G. Ripamonti, “Improving the performance of commercially available Geiger-mode avalanche photodiodes,” Rev. Sci. Instrum. 62, 163–167 (1991).
    [CrossRef]
  44. A. Lacaita, M. Ghioni, S. Cova, “Double epitaxy improves single-photon avalanche diode performance,” Electron. Lett. 25, 841–843 (1989).
    [CrossRef]

1994 (2)

M. Höbel, J. Ricka, “Dead-time and afterpulsing corrections in multiphoton timing with nonideal detectors,” Rev. Sci. Instrum. 65, 2326–2336 (1994).
[CrossRef]

M. Höbel, M. Wüthrich, J. Ricka, T. Binkert, “A fast multi time-interval analyser with real-time processing capability,” Rev. Sci. Instrum. 65, 2123–2129 (1994).
[CrossRef]

1993 (2)

1992 (2)

X. Sun, F. M. Davidson, “Photon counting with silicon avalanche diodes,” J. Lightwave Technol. 10, 1023–1032 (1992).
[CrossRef]

P. R. Morkel, K. P. Jedrzejewski, E. R. Taylor, D. N. Payne, “Short-pulse, high power Q-switched fiber laser,” IEEE Photon. Technol. Lett. 4, 545–547 (1992).
[CrossRef]

1991 (1)

M. Ghioni, G. Ripamonti, “Improving the performance of commercially available Geiger-mode avalanche photodiodes,” Rev. Sci. Instrum. 62, 163–167 (1991).
[CrossRef]

1990 (1)

P. J. Samson, “Analysis of the wavelength dependance of Raman backscatter in optical fiber thermometry,” Electron. Lett. 26, 163–165 (1990).
[CrossRef]

1989 (1)

A. Lacaita, M. Ghioni, S. Cova, “Double epitaxy improves single-photon avalanche diode performance,” Electron. Lett. 25, 841–843 (1989).
[CrossRef]

1987 (2)

1986 (2)

M. C. Farries, M. E. Ferman, R. I. Laming, S. B. Poole, D. A. Payne, A. P. Leach, “Distributed temperature sensor using Nd3+ doped optical fiber,” Electron. Lett. 22, 418–419 (1986).
[CrossRef]

R. G. W. Brown, K. D. Ridley, J. C. Rarity, “Characterization of silicon avalanche photodiodes for photon correlation measurements 1: Passive quenching,” Appl. Opt. 25, 4122–4126 (1986).
[CrossRef] [PubMed]

1985 (3)

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed fiber Raman temperature sensor using semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

A. H. Hartog, A. P. Leach, M. P. Gold, “Distributed temperature sensing in solid core fibers,” Electron. Lett. 21, 1061–1062 (1985).
[CrossRef]

G. Ripamonti, S. Cova, “Carrier diffusion effects in the time response of a fast photodiode,” Solid State Electron. 28, 925–931 (1985).
[CrossRef]

1983 (1)

A. H. Hartog, “A distributed temperature sensor based on liquid core fibers,” J. Lightwave Technol. LT-1, 498–509 (1983).
[CrossRef]

1982 (2)

S. Cova, A. Longioni, G. Ripamonti, “Active quenching and gating circuits for single photon avalanche photodiodes (SPADs),” IEEE Trans. Nucl. Sci. NS-29, 599–601 (1982).
[CrossRef]

B. L. Danielson, “Optical fiber characterization,” Natl. Bur. Stand. (U.S.) Spec. Publ. 637 (1982).

1981 (2)

S. Cova, A. Longoni, A. Andreoni, “Toward picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

P. E. Schmid, “Optical absorption in heavily doped silicon,” Phys. Rev. B 23, 5531–5536 (1981).
[CrossRef]

1980 (2)

R. H. Stolen, “Nonlinearity in Fiber Transmission,” Proc. IEEE 68, 1232–1236 (1980).
[CrossRef]

P. di Vita, U. Rossi, “The backscattering technique: its field of applicability in fiber diagnostics and attenuation measurements,” Opt. Quantum Electron. 11, 17–22 (1980).
[CrossRef]

1978 (1)

F. L. Galeener, J. C. Mikelsen, R. H. Geils, W. J. Mosby, “The relative Raman cross section of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett. 32, 34–36 (1978).
[CrossRef]

1977 (1)

S. D. Personick, “Photon probe: an optical time-domain reflec-tometer,” Bell Syst. Tech. J. 56, 355–366 (1977).

1973 (1)

R. H. Stolen, E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
[CrossRef]

1972 (1)

S. Cova, M. Bertolaccini, C. Bussolati, “The measurement of luminescence waveforms by single-photon techniques,” Phys. Status Solidi A 18, 11–62 (1972).
[CrossRef]

1968 (1)

P. B. Coates, “The correction for photon ‘pile-up’ in the measurement of radioactive lifetimes,” J. Phys. E 2, 878–879 (1968).
[CrossRef]

Andreoni, A.

S. Cova, A. Longoni, A. Andreoni, “Toward picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

Bättig, R.

Bertolaccini, M.

S. Cova, M. Bertolaccini, C. Bussolati, “The measurement of luminescence waveforms by single-photon techniques,” Phys. Status Solidi A 18, 11–62 (1972).
[CrossRef]

Bibby, G. W.

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed fiber Raman temperature sensor using semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Temperature distribution measurement using Raman ratio thermometry,” in Fiber Optic and Laser Sensors III, E. L. Moore, O. G. Ramer, eds., Proc. Soc. Photo-Opt. Instrum. Eng.566, 249–256, (1985).

Binkert, T.

M. Höbel, M. Wüthrich, J. Ricka, T. Binkert, “A fast multi time-interval analyser with real-time processing capability,” Rev. Sci. Instrum. 65, 2123–2129 (1994).
[CrossRef]

Binkert, Th.

Borer, W. J.

Brown, R. G. W.

Bussolati, C.

S. Cova, M. Bertolaccini, C. Bussolati, “The measurement of luminescence waveforms by single-photon techniques,” Phys. Status Solidi A 18, 11–62 (1972).
[CrossRef]

Coates, P. B.

P. B. Coates, “The correction for photon ‘pile-up’ in the measurement of radioactive lifetimes,” J. Phys. E 2, 878–879 (1968).
[CrossRef]

Connor, D. O.

D. O. Connor, D. Philips, Time Correlated Single Photon Counting (Academic, London, 1984).

Cova, S.

A. Lacaita, M. Ghioni, S. Cova, “Double epitaxy improves single-photon avalanche diode performance,” Electron. Lett. 25, 841–843 (1989).
[CrossRef]

G. Ripamonti, S. Cova, “Carrier diffusion effects in the time response of a fast photodiode,” Solid State Electron. 28, 925–931 (1985).
[CrossRef]

S. Cova, A. Longioni, G. Ripamonti, “Active quenching and gating circuits for single photon avalanche photodiodes (SPADs),” IEEE Trans. Nucl. Sci. NS-29, 599–601 (1982).
[CrossRef]

S. Cova, A. Longoni, A. Andreoni, “Toward picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

S. Cova, M. Bertolaccini, C. Bussolati, “The measurement of luminescence waveforms by single-photon techniques,” Phys. Status Solidi A 18, 11–62 (1972).
[CrossRef]

S. Cova, M. Ghioni, A. Lacaita, G. Ripamonti, “Avalanche photodiodes optimized for single-photon detection,” in Proceedings of the Seventh International Conference on Laser Satellite Ranging and Instrumentation (OCA, Grasse, France, 1989), pp. 201–208.

Culshaw, B.

B. Culshaw, J. Dakin, Optical Fiber Sensors Vol. 2: Systems and Applications (Artech House, Norwood, Mass, 1989).

Dakin, J.

B. Culshaw, J. Dakin, Optical Fiber Sensors Vol. 2: Systems and Applications (Artech House, Norwood, Mass, 1989).

Dakin, J. P.

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed fiber Raman temperature sensor using semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Temperature distribution measurement using Raman ratio thermometry,” in Fiber Optic and Laser Sensors III, E. L. Moore, O. G. Ramer, eds., Proc. Soc. Photo-Opt. Instrum. Eng.566, 249–256, (1985).

Danielson, B. L.

B. L. Danielson, “Optical fiber characterization,” Natl. Bur. Stand. (U.S.) Spec. Publ. 637 (1982).

Dautet, H.

Davidson, F. M.

X. Sun, F. M. Davidson, “Photon counting with silicon avalanche diodes,” J. Lightwave Technol. 10, 1023–1032 (1992).
[CrossRef]

Davis, L. M.

L.-Qi. Li, L. M. Davis, “Single photon avalanche diode for single molecule detection,” Rev. Sci. Instrum. 64, 1524–1529 (1993).
[CrossRef]

Deschamps, P.

di Vita, P.

P. di Vita, U. Rossi, “The backscattering technique: its field of applicability in fiber diagnostics and attenuation measurements,” Opt. Quantum Electron. 11, 17–22 (1980).
[CrossRef]

Dion, B.

Farries, M. C.

M. C. Farries, M. E. Ferman, R. I. Laming, S. B. Poole, D. A. Payne, A. P. Leach, “Distributed temperature sensor using Nd3+ doped optical fiber,” Electron. Lett. 22, 418–419 (1986).
[CrossRef]

Ferman, M. E.

M. C. Farries, M. E. Ferman, R. I. Laming, S. B. Poole, D. A. Payne, A. P. Leach, “Distributed temperature sensor using Nd3+ doped optical fiber,” Electron. Lett. 22, 418–419 (1986).
[CrossRef]

Galeener, F. L.

F. L. Galeener, J. C. Mikelsen, R. H. Geils, W. J. Mosby, “The relative Raman cross section of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett. 32, 34–36 (1978).
[CrossRef]

Geils, R. H.

F. L. Galeener, J. C. Mikelsen, R. H. Geils, W. J. Mosby, “The relative Raman cross section of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett. 32, 34–36 (1978).
[CrossRef]

Ghioni, M.

M. Ghioni, G. Ripamonti, “Improving the performance of commercially available Geiger-mode avalanche photodiodes,” Rev. Sci. Instrum. 62, 163–167 (1991).
[CrossRef]

A. Lacaita, M. Ghioni, S. Cova, “Double epitaxy improves single-photon avalanche diode performance,” Electron. Lett. 25, 841–843 (1989).
[CrossRef]

S. Cova, M. Ghioni, A. Lacaita, G. Ripamonti, “Avalanche photodiodes optimized for single-photon detection,” in Proceedings of the Seventh International Conference on Laser Satellite Ranging and Instrumentation (OCA, Grasse, France, 1989), pp. 201–208.

Gold, M. P.

A. H. Hartog, A. P. Leach, M. P. Gold, “Distributed temperature sensing in solid core fibers,” Electron. Lett. 21, 1061–1062 (1985).
[CrossRef]

Groos, M.

P. Lecoy, M. Groos, L. Guenadez, “New fiberoptic distributed temperature sensor II,” in Fiber Optic Sensors II, A. V. Scheggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.798, 131–136 (1987).

Guenadez, L.

P. Lecoy, M. Groos, L. Guenadez, “New fiberoptic distributed temperature sensor II,” in Fiber Optic Sensors II, A. V. Scheggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.798, 131–136 (1987).

Hamal, K.

I. Prochazka, K. Hamal, B. Sopko, J. Ricka, M. Höbel, “An all solid state picosecond photon counting system for spectroscopy,” in Proceedings of the International Symposium on Ultrafast Processes in Spectroscopy (IOP, Bristol, UK, 1991), pp. 147–149.

Hartog, A. H.

A. H. Hartog, A. P. Leach, M. P. Gold, “Distributed temperature sensing in solid core fibers,” Electron. Lett. 21, 1061–1062 (1985).
[CrossRef]

A. H. Hartog, “A distributed temperature sensor based on liquid core fibers,” J. Lightwave Technol. LT-1, 498–509 (1983).
[CrossRef]

Höbel, M.

M. Höbel, J. Ricka, “Dead-time and afterpulsing corrections in multiphoton timing with nonideal detectors,” Rev. Sci. Instrum. 65, 2326–2336 (1994).
[CrossRef]

M. Höbel, M. Wüthrich, J. Ricka, T. Binkert, “A fast multi time-interval analyser with real-time processing capability,” Rev. Sci. Instrum. 65, 2123–2129 (1994).
[CrossRef]

I. Prochazka, K. Hamal, B. Sopko, J. Ricka, M. Höbel, “An all solid state picosecond photon counting system for spectroscopy,” in Proceedings of the International Symposium on Ultrafast Processes in Spectroscopy (IOP, Bristol, UK, 1991), pp. 147–149.

Ippen, E. P.

R. H. Stolen, E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
[CrossRef]

Jedrzejewski, K. P.

P. R. Morkel, K. P. Jedrzejewski, E. R. Taylor, D. N. Payne, “Short-pulse, high power Q-switched fiber laser,” IEEE Photon. Technol. Lett. 4, 545–547 (1992).
[CrossRef]

Lacaita, A.

A. Lacaita, M. Ghioni, S. Cova, “Double epitaxy improves single-photon avalanche diode performance,” Electron. Lett. 25, 841–843 (1989).
[CrossRef]

S. Cova, M. Ghioni, A. Lacaita, G. Ripamonti, “Avalanche photodiodes optimized for single-photon detection,” in Proceedings of the Seventh International Conference on Laser Satellite Ranging and Instrumentation (OCA, Grasse, France, 1989), pp. 201–208.

Laming, R. I.

M. C. Farries, M. E. Ferman, R. I. Laming, S. B. Poole, D. A. Payne, A. P. Leach, “Distributed temperature sensor using Nd3+ doped optical fiber,” Electron. Lett. 22, 418–419 (1986).
[CrossRef]

Leach, A. P.

M. C. Farries, M. E. Ferman, R. I. Laming, S. B. Poole, D. A. Payne, A. P. Leach, “Distributed temperature sensor using Nd3+ doped optical fiber,” Electron. Lett. 22, 418–419 (1986).
[CrossRef]

A. H. Hartog, A. P. Leach, M. P. Gold, “Distributed temperature sensing in solid core fibers,” Electron. Lett. 21, 1061–1062 (1985).
[CrossRef]

Lecoy, P.

P. Lecoy, M. Groos, L. Guenadez, “New fiberoptic distributed temperature sensor II,” in Fiber Optic Sensors II, A. V. Scheggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.798, 131–136 (1987).

Li, L.-Qi.

L.-Qi. Li, L. M. Davis, “Single photon avalanche diode for single molecule detection,” Rev. Sci. Instrum. 64, 1524–1529 (1993).
[CrossRef]

Lightstone, A. W.

A. W. Lightstone, R. J. McIntyre, “Photon counting silicon avalanche photodiodes for photon correlation spectroscopy,” in Photon Correlation Techniques and Applications, Vol. 1 of OSA Proceedings (Optical Society of America, Washington, D.C., 1988), pp. 183–191.

Long, D. A.

D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977).

Longioni, A.

S. Cova, A. Longioni, G. Ripamonti, “Active quenching and gating circuits for single photon avalanche photodiodes (SPADs),” IEEE Trans. Nucl. Sci. NS-29, 599–601 (1982).
[CrossRef]

Longoni, A.

S. Cova, A. Longoni, A. Andreoni, “Toward picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

Mac-Sween, D.

McGregor, A. D.

McIntyre, R. J.

H. Dautet, P. Deschamps, B. Dion, A. D. McGregor, D. Mac-Sween, R. J. McIntyre, P. Trottier, P. Webb, “Photon counting techniques with silicon avalanche photodiodes,” Appl. Opt. 32, 3894–3900 (1993).
[PubMed]

A. W. Lightstone, R. J. McIntyre, “Photon counting silicon avalanche photodiodes for photon correlation spectroscopy,” in Photon Correlation Techniques and Applications, Vol. 1 of OSA Proceedings (Optical Society of America, Washington, D.C., 1988), pp. 183–191.

Mikelsen, J. C.

F. L. Galeener, J. C. Mikelsen, R. H. Geils, W. J. Mosby, “The relative Raman cross section of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett. 32, 34–36 (1978).
[CrossRef]

Morkel, P. R.

P. R. Morkel, K. P. Jedrzejewski, E. R. Taylor, D. N. Payne, “Short-pulse, high power Q-switched fiber laser,” IEEE Photon. Technol. Lett. 4, 545–547 (1992).
[CrossRef]

Mosby, W. J.

F. L. Galeener, J. C. Mikelsen, R. H. Geils, W. J. Mosby, “The relative Raman cross section of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett. 32, 34–36 (1978).
[CrossRef]

Payne, D. A.

M. C. Farries, M. E. Ferman, R. I. Laming, S. B. Poole, D. A. Payne, A. P. Leach, “Distributed temperature sensor using Nd3+ doped optical fiber,” Electron. Lett. 22, 418–419 (1986).
[CrossRef]

Payne, D. N.

P. R. Morkel, K. P. Jedrzejewski, E. R. Taylor, D. N. Payne, “Short-pulse, high power Q-switched fiber laser,” IEEE Photon. Technol. Lett. 4, 545–547 (1992).
[CrossRef]

Personick, S. D.

S. D. Personick, “Photon probe: an optical time-domain reflec-tometer,” Bell Syst. Tech. J. 56, 355–366 (1977).

Philips, D.

D. O. Connor, D. Philips, Time Correlated Single Photon Counting (Academic, London, 1984).

Poole, S. B.

M. C. Farries, M. E. Ferman, R. I. Laming, S. B. Poole, D. A. Payne, A. P. Leach, “Distributed temperature sensor using Nd3+ doped optical fiber,” Electron. Lett. 22, 418–419 (1986).
[CrossRef]

D. A. Thorncraft, M. G. Sceats, S. B. Poole, “An ultra high resolution distributed temperature sensor,” in Proceedings of the 16th Australian Conference on Optical Fibre Technology (Institute of Radio Electronics Engineers of Australia, Edge-cliff, Australia, 1991), pp. 183–186.

Pratt, D. J.

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed fiber Raman temperature sensor using semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Temperature distribution measurement using Raman ratio thermometry,” in Fiber Optic and Laser Sensors III, E. L. Moore, O. G. Ramer, eds., Proc. Soc. Photo-Opt. Instrum. Eng.566, 249–256, (1985).

Prochazka, I.

I. Prochazka, K. Hamal, B. Sopko, J. Ricka, M. Höbel, “An all solid state picosecond photon counting system for spectroscopy,” in Proceedings of the International Symposium on Ultrafast Processes in Spectroscopy (IOP, Bristol, UK, 1991), pp. 147–149.

Rarity, J. C.

Ricka, J.

M. Höbel, M. Wüthrich, J. Ricka, T. Binkert, “A fast multi time-interval analyser with real-time processing capability,” Rev. Sci. Instrum. 65, 2123–2129 (1994).
[CrossRef]

M. Höbel, J. Ricka, “Dead-time and afterpulsing corrections in multiphoton timing with nonideal detectors,” Rev. Sci. Instrum. 65, 2326–2336 (1994).
[CrossRef]

R. Stierlin, J. Ricka, B. Zysset, R. Bättig, H. P. Weber, Th. Binkert, W. J. Borer, “Distributed fiber-optic temperature sensor using single photon counting detection,” Appl. Opt. 26, 1368–1370 (1987).
[CrossRef] [PubMed]

M. Wüthrich, J. Ricka, “Verfahren zur Eimittlung eines Häufigleib-Zeitprofils von Ereiguissen souie Vorrichtung zur Durchführung des Verfahrens,” European and U.S. patentP4213717.9April (1992).

I. Prochazka, K. Hamal, B. Sopko, J. Ricka, M. Höbel, “An all solid state picosecond photon counting system for spectroscopy,” in Proceedings of the International Symposium on Ultrafast Processes in Spectroscopy (IOP, Bristol, UK, 1991), pp. 147–149.

Ridley, K. D.

Ripamonti, G.

M. Ghioni, G. Ripamonti, “Improving the performance of commercially available Geiger-mode avalanche photodiodes,” Rev. Sci. Instrum. 62, 163–167 (1991).
[CrossRef]

G. Ripamonti, S. Cova, “Carrier diffusion effects in the time response of a fast photodiode,” Solid State Electron. 28, 925–931 (1985).
[CrossRef]

S. Cova, A. Longioni, G. Ripamonti, “Active quenching and gating circuits for single photon avalanche photodiodes (SPADs),” IEEE Trans. Nucl. Sci. NS-29, 599–601 (1982).
[CrossRef]

S. Cova, M. Ghioni, A. Lacaita, G. Ripamonti, “Avalanche photodiodes optimized for single-photon detection,” in Proceedings of the Seventh International Conference on Laser Satellite Ranging and Instrumentation (OCA, Grasse, France, 1989), pp. 201–208.

Ross, J. N.

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed fiber Raman temperature sensor using semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Temperature distribution measurement using Raman ratio thermometry,” in Fiber Optic and Laser Sensors III, E. L. Moore, O. G. Ramer, eds., Proc. Soc. Photo-Opt. Instrum. Eng.566, 249–256, (1985).

Rossi, U.

P. di Vita, U. Rossi, “The backscattering technique: its field of applicability in fiber diagnostics and attenuation measurements,” Opt. Quantum Electron. 11, 17–22 (1980).
[CrossRef]

Samson, P. J.

P. J. Samson, “Analysis of the wavelength dependance of Raman backscatter in optical fiber thermometry,” Electron. Lett. 26, 163–165 (1990).
[CrossRef]

Sceats, M. G.

D. A. Thorncraft, M. G. Sceats, S. B. Poole, “An ultra high resolution distributed temperature sensor,” in Proceedings of the 16th Australian Conference on Optical Fibre Technology (Institute of Radio Electronics Engineers of Australia, Edge-cliff, Australia, 1991), pp. 183–186.

Schmid, P. E.

P. E. Schmid, “Optical absorption in heavily doped silicon,” Phys. Rev. B 23, 5531–5536 (1981).
[CrossRef]

Sopko, B.

I. Prochazka, K. Hamal, B. Sopko, J. Ricka, M. Höbel, “An all solid state picosecond photon counting system for spectroscopy,” in Proceedings of the International Symposium on Ultrafast Processes in Spectroscopy (IOP, Bristol, UK, 1991), pp. 147–149.

Stierlin, R.

Stolen, R. H.

R. H. Stolen, “Nonlinearity in Fiber Transmission,” Proc. IEEE 68, 1232–1236 (1980).
[CrossRef]

R. H. Stolen, E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
[CrossRef]

Sun, X.

X. Sun, F. M. Davidson, “Photon counting with silicon avalanche diodes,” J. Lightwave Technol. 10, 1023–1032 (1992).
[CrossRef]

Taylor, E. R.

P. R. Morkel, K. P. Jedrzejewski, E. R. Taylor, D. N. Payne, “Short-pulse, high power Q-switched fiber laser,” IEEE Photon. Technol. Lett. 4, 545–547 (1992).
[CrossRef]

Thorncraft, D. A.

D. A. Thorncraft, M. G. Sceats, S. B. Poole, “An ultra high resolution distributed temperature sensor,” in Proceedings of the 16th Australian Conference on Optical Fibre Technology (Institute of Radio Electronics Engineers of Australia, Edge-cliff, Australia, 1991), pp. 183–186.

Trottier, P.

Webb, P.

Weber, H. P.

Wüthrich, M.

M. Höbel, M. Wüthrich, J. Ricka, T. Binkert, “A fast multi time-interval analyser with real-time processing capability,” Rev. Sci. Instrum. 65, 2123–2129 (1994).
[CrossRef]

M. Wüthrich, J. Ricka, “Verfahren zur Eimittlung eines Häufigleib-Zeitprofils von Ereiguissen souie Vorrichtung zur Durchführung des Verfahrens,” European and U.S. patentP4213717.9April (1992).

Zysset, B.

Appl. Opt. (4)

Appl. Phys. Lett. (1)

F. L. Galeener, J. C. Mikelsen, R. H. Geils, W. J. Mosby, “The relative Raman cross section of vitreous SiO2, GeO2, B2O3, and P2O5,” Appl. Phys. Lett. 32, 34–36 (1978).
[CrossRef]

Appl. Phys. Lett. (1)

R. H. Stolen, E. P. Ippen, “Raman gain in glass optical waveguides,” Appl. Phys. Lett. 22, 276–278 (1973).
[CrossRef]

Bell Syst. Tech. J. (1)

S. D. Personick, “Photon probe: an optical time-domain reflec-tometer,” Bell Syst. Tech. J. 56, 355–366 (1977).

Electron. Lett. (1)

A. Lacaita, M. Ghioni, S. Cova, “Double epitaxy improves single-photon avalanche diode performance,” Electron. Lett. 25, 841–843 (1989).
[CrossRef]

Electron. Lett. (4)

M. C. Farries, M. E. Ferman, R. I. Laming, S. B. Poole, D. A. Payne, A. P. Leach, “Distributed temperature sensor using Nd3+ doped optical fiber,” Electron. Lett. 22, 418–419 (1986).
[CrossRef]

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Distributed fiber Raman temperature sensor using semiconductor light source and detector,” Electron. Lett. 21, 569–570 (1985).
[CrossRef]

A. H. Hartog, A. P. Leach, M. P. Gold, “Distributed temperature sensing in solid core fibers,” Electron. Lett. 21, 1061–1062 (1985).
[CrossRef]

P. J. Samson, “Analysis of the wavelength dependance of Raman backscatter in optical fiber thermometry,” Electron. Lett. 26, 163–165 (1990).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

P. R. Morkel, K. P. Jedrzejewski, E. R. Taylor, D. N. Payne, “Short-pulse, high power Q-switched fiber laser,” IEEE Photon. Technol. Lett. 4, 545–547 (1992).
[CrossRef]

IEEE Trans. Nucl. Sci. (1)

S. Cova, A. Longioni, G. Ripamonti, “Active quenching and gating circuits for single photon avalanche photodiodes (SPADs),” IEEE Trans. Nucl. Sci. NS-29, 599–601 (1982).
[CrossRef]

J. Lightwave Technol. (1)

A. H. Hartog, “A distributed temperature sensor based on liquid core fibers,” J. Lightwave Technol. LT-1, 498–509 (1983).
[CrossRef]

J. Lightwave Technol. (1)

X. Sun, F. M. Davidson, “Photon counting with silicon avalanche diodes,” J. Lightwave Technol. 10, 1023–1032 (1992).
[CrossRef]

J. Phys. E (1)

P. B. Coates, “The correction for photon ‘pile-up’ in the measurement of radioactive lifetimes,” J. Phys. E 2, 878–879 (1968).
[CrossRef]

Natl. Bur. Stand. (U.S.) Spec. Publ. (1)

B. L. Danielson, “Optical fiber characterization,” Natl. Bur. Stand. (U.S.) Spec. Publ. 637 (1982).

Opt. Quantum Electron. (1)

P. di Vita, U. Rossi, “The backscattering technique: its field of applicability in fiber diagnostics and attenuation measurements,” Opt. Quantum Electron. 11, 17–22 (1980).
[CrossRef]

Phys. Rev. B (1)

P. E. Schmid, “Optical absorption in heavily doped silicon,” Phys. Rev. B 23, 5531–5536 (1981).
[CrossRef]

Phys. Status Solidi A (1)

S. Cova, M. Bertolaccini, C. Bussolati, “The measurement of luminescence waveforms by single-photon techniques,” Phys. Status Solidi A 18, 11–62 (1972).
[CrossRef]

Proc. IEEE (1)

R. H. Stolen, “Nonlinearity in Fiber Transmission,” Proc. IEEE 68, 1232–1236 (1980).
[CrossRef]

Rev. Sci. Instrum. (1)

M. Höbel, M. Wüthrich, J. Ricka, T. Binkert, “A fast multi time-interval analyser with real-time processing capability,” Rev. Sci. Instrum. 65, 2123–2129 (1994).
[CrossRef]

Rev. Sci. Instrum. (2)

L.-Qi. Li, L. M. Davis, “Single photon avalanche diode for single molecule detection,” Rev. Sci. Instrum. 64, 1524–1529 (1993).
[CrossRef]

S. Cova, A. Longoni, A. Andreoni, “Toward picosecond resolution with single-photon avalanche diodes,” Rev. Sci. Instrum. 52, 408–412 (1981).
[CrossRef]

Rev. Sci. Instrum. (2)

M. Höbel, J. Ricka, “Dead-time and afterpulsing corrections in multiphoton timing with nonideal detectors,” Rev. Sci. Instrum. 65, 2326–2336 (1994).
[CrossRef]

M. Ghioni, G. Ripamonti, “Improving the performance of commercially available Geiger-mode avalanche photodiodes,” Rev. Sci. Instrum. 62, 163–167 (1991).
[CrossRef]

Solid State Electron. (1)

G. Ripamonti, S. Cova, “Carrier diffusion effects in the time response of a fast photodiode,” Solid State Electron. 28, 925–931 (1985).
[CrossRef]

Other (16)

Solid State Photon Counting Module Data Sheet (Faculty of Nuclear Science and Physics Engineering, Czech Technical University, Brehova 7, 11519 Prague 1, Czech Republic, 1992).

SILENA SPAD and Model 8618 Active Quenching Module Data Sheet (SILENA Spa, Via Firenze 3, 20063 Cermusco, Italy).

I. Prochazka, K. Hamal, B. Sopko, J. Ricka, M. Höbel, “An all solid state picosecond photon counting system for spectroscopy,” in Proceedings of the International Symposium on Ultrafast Processes in Spectroscopy (IOP, Bristol, UK, 1991), pp. 147–149.

A. W. Lightstone, R. J. McIntyre, “Photon counting silicon avalanche photodiodes for photon correlation spectroscopy,” in Photon Correlation Techniques and Applications, Vol. 1 of OSA Proceedings (Optical Society of America, Washington, D.C., 1988), pp. 183–191.

S. Cova, M. Ghioni, A. Lacaita, G. Ripamonti, “Avalanche photodiodes optimized for single-photon detection,” in Proceedings of the Seventh International Conference on Laser Satellite Ranging and Instrumentation (OCA, Grasse, France, 1989), pp. 201–208.

EG&G Emitters and Detectors, short form catalog and data sheets for the cited modules (EG&G Canada Ltd., Optoelectronics Division, 22001 Dumberry Road, Vaudreuil, Quebec, J7V 8P7, Canada, 1994).

Mitsubishi PD8XX2 Data Sheet (Mitsubishi Electronic, Gother Strasse 8, 40880 Ratingen, Germany, 1994).

See, for example, Lee Croy's Research Instrumentation Catalog (Le Croy, 700 Chestnut Ridge Road, N.Y. 10977-6499, 1992) orStanford Research Systems' Scientific and Engineering Instruments Catalog (Stanford Research Systems, 1290-D Reamwood Ave., Sunnyvale, Calif. 94089, 1992/93).

M. Wüthrich, J. Ricka, “Verfahren zur Eimittlung eines Häufigleib-Zeitprofils von Ereiguissen souie Vorrichtung zur Durchführung des Verfahrens,” European and U.S. patentP4213717.9April (1992).

D. A. Long, Raman Spectroscopy (McGraw-Hill, New York, 1977).

YORK DTS-80 Data Sheet (York V.S.O.P., York House, School Lane, Chandler's Ford, Hampshire S05 3DG, UK, 1992).

P. Lecoy, M. Groos, L. Guenadez, “New fiberoptic distributed temperature sensor II,” in Fiber Optic Sensors II, A. V. Scheggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.798, 131–136 (1987).

J. P. Dakin, D. J. Pratt, G. W. Bibby, J. N. Ross, “Temperature distribution measurement using Raman ratio thermometry,” in Fiber Optic and Laser Sensors III, E. L. Moore, O. G. Ramer, eds., Proc. Soc. Photo-Opt. Instrum. Eng.566, 249–256, (1985).

B. Culshaw, J. Dakin, Optical Fiber Sensors Vol. 2: Systems and Applications (Artech House, Norwood, Mass, 1989).

D. O. Connor, D. Philips, Time Correlated Single Photon Counting (Academic, London, 1984).

D. A. Thorncraft, M. G. Sceats, S. B. Poole, “An ultra high resolution distributed temperature sensor,” in Proceedings of the 16th Australian Conference on Optical Fibre Technology (Institute of Radio Electronics Engineers of Australia, Edge-cliff, Australia, 1991), pp. 183–186.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (11)

Fig. 1
Fig. 1

Typical setup of a distributed temperature sensor with a high-power laser diode as the light source and a solid-state APD as the detector. Short laser pulses are coupled into the sensor fiber, which is arranged as a closed loop. Controlled by fiber-optic switch 2, the pulses are alternately coupled into both ends. Fiber-optic switch 1 selects one of the two Raman components. The signal ratio in the two branches is adjusted in such a way that the intensities of both Raman components are approximately the same. The output pulses of the detector are finally processed in a suitable electronic circuit. LD, laser diode; S, Stokes branch; AS, anti-Stokes branch.

Fig. 2
Fig. 2

Relationship between the fiber length and optimum operating wavelength λ0 for two different detectors. For comparison purposes the curve for uniform detector response is also indicated (dashed curve).

Fig. 3
Fig. 3

Reduction factor D(T, b, I0) for the differential relative temperature sensitivity at room temperature with different values of the blocking factor b. A typical value of 200 has been assumed for the ratio m of the backscattered Rayleigh and Stokes signals. We consider the case of uniform quantum efficiency at the Rayleigh and Raman wavelengths and identical losses in both fiber branches. A coupling ratio of 1:6.4 that yields R(T) = 1 at room temperature is chosen.

Fig. 4
Fig. 4

Block diagram of the prototype MTIA, MTIA-1. The arrival of detector output pulses (Event In) in synchronized with the 250-MHz clock cycle. The value of a tic counter that corresponds to the arrival time is temporarily stored in the time mark register. This frozen 12-bit timing information defines an address of the 4096 × 16-bit RAM for which an incrementation cycle is initiated. The incrementation is finished after 44 ns, and no additional time is needed for postprocessing or data readout. All operations of the analyzer are PC-controlled through parallel interfaces.

Fig. 5
Fig. 5

Distortions of an experimental OTDR trace resulting from combined dead-time and afterpulsing effects. The curve shows a section of a sensor fiber that is situated immediately behind a strong reflex.

Fig. 6
Fig. 6

Pulse response of three different SPAD's recorded with the MTIA-1 in the single-photon counting regime; 500-ps pulses at λ0 = 850 nm were used for the excitation.

Fig. 7
Fig. 7

(a) Dark count rate, (b) photon-detection probability, and (c) integral afterpulsing probability for the active quenched SPAD module at different bias voltages. The breakdown voltage of the detector is ∼26.5 V, and the dead time is 100–120 ns, depending on the bias voltage.

Fig. 8
Fig. 8

Temperature profile of a 900-m-long sensor fiber at room temperature that features a 5-m-long section heated to 160 °C. Note the absence of afterpulsing effects in the resulting temperature trace, demonstrating the high efficiency of the correction of the detector's nonidealities.

Fig. 9
Fig. 9

Temperature trace of two 30-cm-long heated sections of the sensor fiber (80 °C) that are separated by a 40-cm section at room temperature.

Fig. 10
Fig. 10

Temperature error of measurements with a sensor fiber at constant temperature and different data acquisition times. Data are shown for experimental results with and without deconvolution. The dashed curve indicates the expected values when the system parameters of the DTS-1 are used, and the solid curve gives the value for an ideal sensor operating at the theoretical shot noise limit.

Fig. 11
Fig. 11

Comparison of temperature traces measured with the multiphoton-timing DTS-1 prototype and the commercial analog sensor YORK DTS-80. Note the different data acquisition times (YORK, 40 s, DTS-1, 45 min) and the different spatial resolutions (YORK, 1 m; DTS-1, 0.4 m) of the two sensors.

Equations (24)

Equations on this page are rendered with MathJax. Learn more.

d σ AS d Ω | x 1 λ AS 4 1 exp [ hc Δ ν k B T ( x ) ] 1 ,
d σ S d Ω | x 1 λ S 4 1 1 exp [ hc Δ ν k B T ( x ) ] .
R [ T ( x ) ] = P AS [ T ( x ) ] P S [ T ( x ) ] = ( λ S λ AS ) 4 exp [ T 0 T ( x ) ] , where T 0 = hc Δ ν k B .
S Δ = 1 R ( T ) d R ( T ) d T = hc Δ ν k B T 2 = T 0 T 2 .
R [ T ( x ) ] = { I AS END 1 [ T ( x ) ] I AS END 2 [ T ( x ) ] } 1 / 2 { I S END 1 [ T ( x ) ] I S END 2 [ T ( x ) ] } 1 / 2 .
P AS [ T ( x ) ] = 0.5 P 0 Δ t v g α AS [ T ( x ) ] S exp { [ α ( λ 0 ) + α ( λ AS ) ] x } ,
d σ AS d Ω | x
T ( x ) = T 0 ln [ 1 1 + Δ ( x ) ] + T 0 T 1 .
I ( λ AS ) = K 1 λ AS 4 exp { L σ [ 1 + ( 1 Δ ν λ AS ) 4 λ AS 4 ] } × η ( λ AS ) e λ AS hc .
L = λ AS 4 4 σ [ 1 + ( 1 Δ ν λ AS ) 3 ] [ 3 λ AS η ( λ AS ) η ( λ ) λ | λ AS ] .
I AS = k P AS η ( λ AS ) e λ AS hc , I S = P S η ( λ S ) e λ S hc .
I AS = I AS + bkP R η ( λ 0 ) e λ 0 hc + I 0 , I S = I S + b P R η ( λ 0 ) e λ 0 hc + I 0 ,
D ( T , b , I 0 ) = 1 1 + 1 R ( T ) [ bkm η ( λ 0 ) λ 0 η ( λ S ) λ S + I 0 hc η ( λ S ) e λ S P S ] .
p s j = η τ s I s j ,
Δ Ĩ s j Ĩ s j = Δ N id j N id j = ( N id j ) 1 / 2 .
R [ T ( L ) ] = [ N AS END 1 ( L ) N AS END 2 ( L ) ] 1 / 2 [ N S END 1 ( L ) N S END 2 ( L ) ] 1 / 2 = 1 m exp { L / 2 [ α ( λ AS ) α ( λ S ) ] } .
Δ R [ T ( L ) ] = ( { R [ T ( L ) ] N AS END 1 ( L ) } 2 [ Δ N AS END 1 ( L ) ] 2 + + { R [ T ( L ) ] N S END 2 ( L ) } 2 [ Δ N S END 2 ( L ) ] 2 ) 1 / 2 .
Δ R [ T ( L ) ] R [ T ( L ) ] = 1 2 [ ( 1 + exp { [ α ( λ AS ) + α ( λ 0 ) ] L } ) + 1 m ( 1 + exp { [ α ( λ S ) + α ( λ 0 ) ] L } ) ] 1 / 2 × [ N AS END 1 ( L ) ] 1 / 2 .
N meas j = ( N i = j n d j 1 N meas i ) ( p s j + p a j + p 0 ) .
N cor j = N meas j A j N 0 ( 1 1 N i = j n d j 1 N meas i ) = Ñ id j .
Δ N meas j = ( 1 1 N i = j n d j 1 N meas i ) × [ N id j ( 1 + c a + c 0 ) 1 n d ( N id j N ) 2 ( 1 + c a + c 0 ) 2 ] 1 / 2 .
Δ N cor j = ( 1 1 N i = j n d j 1 N meas i ) 1 × { [ 1 + ( N id j N ) 2 n d ] Δ 2 N meas j + Δ 2 A j + Δ 2 N 0 } 1 / 2 .
Δ Ĩ S j Ĩ S j = Δ N cor j N cor j = 1 ( N id j ) 1 / 2 F j .
F j = { [ 1 + n d ( N id j N ) 2 ] ( 1 + c a j + c 0 ) [ 1 n d ( N id j N ) 2 ( 1 + c a j + c 0 ) 2 ] } 1 / 2 .

Metrics