Abstract

A previously reported two-reflection, undeviating-beam total internal reflection (TIR) quarter-wave phase retarder is optimized. The specifications and characteristics of the device are sensitive to the refractive index n of the rhomb material. In particular, the size of the rhomb can be reduced by a factor of 11 for the same aperture size if a glass with n = 1.70 is used instead of one with n = 1.53. Optimal conditions are in the refractive-index interval n = 1.68–1.71. Coated rhombs of this type are mentioned.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. N. N. Nagib, M. S. El-Bahrawy, “Phase retarders with variable angles of total internal reflection,” Appl. Opt. 33, 1218–1222 (1994).
    [CrossRef] [PubMed]
  2. J. M. Bennett, H. E. Bennett, “Polarization,” in Handbook of Optics, W. G. Driscoll, ed. (McGraw-Hill, New York, 1978), Chap. 10, pp. 119–124.
  3. P. B. Clapham, M. J. Downs, R. J. King, “Some applications of thin films to polarization devices,” Appl. Opt. 8, 1965–1974 (1969).
    [CrossRef] [PubMed]
  4. D. Clarke, J. F. Grainger, Polarized Light and Optical Measurements (Pergamon, Oxford, 1971), Chap. 2, p. 70.
  5. V. A. Kizel, Yu. I. Krasilov, V. N. Shamraev, “Achromatic l/4 device,” Opt. Spectrosc. 17, 248–249119642.
  6. J. M. Bennett, “A critical evaluation of rhomb-type quarter-wave retarders,” Appl. Opt. 9, 2123–2129 (1970).
    [CrossRef] [PubMed]
  7. P. Chindaudom, K. Vedam, “Determination of the optical function n1l2 of vitreous silica by spectroscopic ellipsometry with an achromatic compensator,” Appl. Opt. 32, 6391–63981993.
    [CrossRef] [PubMed]
  8. W. G. Oldham, “Ellipsometry using a retardation plate as compensator,” J. Opt. Soc. Am. 57, 617–624 (1967).
    [CrossRef]
  9. H. Yokota, H. Sakata, M. Nishibori, K. Kinosita, “Ellipso-metric study of polished glass surfaces,” Surf. Sci. 16, 265–2731969.
    [CrossRef]
  10. R. J. King, M. J. Downs, “Ellipsometry applied to films on dielectric substrates,” Surf. Sci. 16, 288–302 (1969).
    [CrossRef]
  11. J. H. Apfel, “Graphical method to design internal reflection phase retarders,” Appl. Opt. 23, 1178–11831984.
    [CrossRef] [PubMed]

1994

1993

1984

1970

1969

H. Yokota, H. Sakata, M. Nishibori, K. Kinosita, “Ellipso-metric study of polished glass surfaces,” Surf. Sci. 16, 265–2731969.
[CrossRef]

R. J. King, M. J. Downs, “Ellipsometry applied to films on dielectric substrates,” Surf. Sci. 16, 288–302 (1969).
[CrossRef]

P. B. Clapham, M. J. Downs, R. J. King, “Some applications of thin films to polarization devices,” Appl. Opt. 8, 1965–1974 (1969).
[CrossRef] [PubMed]

1967

Apfel, J. H.

Bennett, H. E.

J. M. Bennett, H. E. Bennett, “Polarization,” in Handbook of Optics, W. G. Driscoll, ed. (McGraw-Hill, New York, 1978), Chap. 10, pp. 119–124.

Bennett, J. M.

J. M. Bennett, “A critical evaluation of rhomb-type quarter-wave retarders,” Appl. Opt. 9, 2123–2129 (1970).
[CrossRef] [PubMed]

J. M. Bennett, H. E. Bennett, “Polarization,” in Handbook of Optics, W. G. Driscoll, ed. (McGraw-Hill, New York, 1978), Chap. 10, pp. 119–124.

Chindaudom, P.

Clapham, P. B.

Clarke, D.

D. Clarke, J. F. Grainger, Polarized Light and Optical Measurements (Pergamon, Oxford, 1971), Chap. 2, p. 70.

Downs, M. J.

P. B. Clapham, M. J. Downs, R. J. King, “Some applications of thin films to polarization devices,” Appl. Opt. 8, 1965–1974 (1969).
[CrossRef] [PubMed]

R. J. King, M. J. Downs, “Ellipsometry applied to films on dielectric substrates,” Surf. Sci. 16, 288–302 (1969).
[CrossRef]

El-Bahrawy, M. S.

Grainger, J. F.

D. Clarke, J. F. Grainger, Polarized Light and Optical Measurements (Pergamon, Oxford, 1971), Chap. 2, p. 70.

King, R. J.

P. B. Clapham, M. J. Downs, R. J. King, “Some applications of thin films to polarization devices,” Appl. Opt. 8, 1965–1974 (1969).
[CrossRef] [PubMed]

R. J. King, M. J. Downs, “Ellipsometry applied to films on dielectric substrates,” Surf. Sci. 16, 288–302 (1969).
[CrossRef]

Kinosita, K.

H. Yokota, H. Sakata, M. Nishibori, K. Kinosita, “Ellipso-metric study of polished glass surfaces,” Surf. Sci. 16, 265–2731969.
[CrossRef]

Kizel, V. A.

V. A. Kizel, Yu. I. Krasilov, V. N. Shamraev, “Achromatic l/4 device,” Opt. Spectrosc. 17, 248–249119642.

Krasilov, Yu. I.

V. A. Kizel, Yu. I. Krasilov, V. N. Shamraev, “Achromatic l/4 device,” Opt. Spectrosc. 17, 248–249119642.

Nagib, N. N.

Nishibori, M.

H. Yokota, H. Sakata, M. Nishibori, K. Kinosita, “Ellipso-metric study of polished glass surfaces,” Surf. Sci. 16, 265–2731969.
[CrossRef]

Oldham, W. G.

Sakata, H.

H. Yokota, H. Sakata, M. Nishibori, K. Kinosita, “Ellipso-metric study of polished glass surfaces,” Surf. Sci. 16, 265–2731969.
[CrossRef]

Shamraev, V. N.

V. A. Kizel, Yu. I. Krasilov, V. N. Shamraev, “Achromatic l/4 device,” Opt. Spectrosc. 17, 248–249119642.

Vedam, K.

Yokota, H.

H. Yokota, H. Sakata, M. Nishibori, K. Kinosita, “Ellipso-metric study of polished glass surfaces,” Surf. Sci. 16, 265–2731969.
[CrossRef]

Appl. Opt.

J. Opt. Soc. Am.

Opt. Spectrosc.

V. A. Kizel, Yu. I. Krasilov, V. N. Shamraev, “Achromatic l/4 device,” Opt. Spectrosc. 17, 248–249119642.

Surf. Sci.

H. Yokota, H. Sakata, M. Nishibori, K. Kinosita, “Ellipso-metric study of polished glass surfaces,” Surf. Sci. 16, 265–2731969.
[CrossRef]

R. J. King, M. J. Downs, “Ellipsometry applied to films on dielectric substrates,” Surf. Sci. 16, 288–302 (1969).
[CrossRef]

Other

D. Clarke, J. F. Grainger, Polarized Light and Optical Measurements (Pergamon, Oxford, 1971), Chap. 2, p. 70.

J. M. Bennett, H. E. Bennett, “Polarization,” in Handbook of Optics, W. G. Driscoll, ed. (McGraw-Hill, New York, 1978), Chap. 10, pp. 119–124.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Different forms of the rhomb for refractive-index values of (a) 1.53, (b) 1.59, (c) 1.65, (d) 1.70, and (e) 1.90, drawn to scale. Dimensions are for a 10-mm aperture (see Table 1 for other specifications).

Fig. 2
Fig. 2

Rhomb with n = 1.59, drawn in large scale.

Fig. 3
Fig. 3

The optical paths in (a) an optimized rhomb and (b) the AD-2 device.

Fig. 4
Fig. 4

Variation of the retardance 2δ with refractive index n (solid curve) for the device shown in Fig. 3(a). The dashed curves represent angles of incidence i ± 2°.

Tables (1)

Tables Icon

Table 1 Specifications and Characteristics of the Rhomb for an Aperture of 10 mm and Different Refractive-Index Valuesa

Equations (13)

Equations on this page are rendered with MathJax. Learn more.

d δ / d n = ( δ / n ) + ( δ / θ ) ( d θ / d n ) ɛ ,
δ = 2 tan 1 [ cos θ ( n 2 sin 2 θ 1 ) 1 / 2 / n sin 2 θ ] , δ = f 1 ( n , θ ) , θ = f 2 ( n ) , n = f 3 ( λ ) ,
i = 90 ° α ,
θ = α + t = α + sin 1 [ ( sin i ) / n ] ,
s = h / sin α ,
l = 2 h tan θ ,
l / s = 2 sin α tan θ ,
L = 2 h / sin ( 90 θ ) ,
p = ± s sin ( 90 θ α ) / sin ( 90 + θ ) ,
q = p s / ( l + p ) , α < 90 θ ,
q = 0 , α 90 θ ,
a = ( s 2 q ) sin α .
2 δ = 92.96089 n 67.82746 .

Metrics