Abstract

Absolute concentrations of water vapor are measured in microgravity (μ-g), nonpremixed methane, and propane jet flames with diode-laser wavelength modulation spectroscopy. These experiments are performed in the 2.2-s μ-g drop facility at the NASA Lewis Research Center. Abel inversion methods are used to determine time-dependent radial profiles from eight line-of-sight projections across the flames. At all measured heights above the nozzle, water vapor spatial distributions in μ-g flames are much wider than their 1-g counterparts. Radial growth of the water signal continues throughout the drop, verifying earlier suggestions that a steady state is not reached during the duration of the test, despite a quasi-steady flame shape. Large amounts of water vapor are observed at larger radii, at odds with visual (video) observations and numerical predictions.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. S. Greenberg, “Capabilities and constraints of combustion diagnostics in microgravity,” in Second International Microgravity Combustion Diagnostics Workshop, NASA Conf. Publ. 10113 (NASA Lewis Research Center, Cleveland, Oh., 1992), pp. 61–66.
  2. J. Lekan, E. S. Neumann, R. G. Sotos, “Capabilities and constraints of NASA’s ground-based reduced gravity facilities,” in Second International Microgravity Combustion Diagnostics Workshop, NASA Conf. Publ. 10113 (NASA Lewis Research Center, Cleveland, Oh., 1992), pp. 45–60.
  3. J. A. Silver, “Frequency-modulation spectroscopy for trace species detection: theory and comparison among experimental methods,” Appl. Opt. 31, 707–717 (1992).
    [CrossRef] [PubMed]
  4. D. S. Bomse, J. A. Silver, A. C. Stanton, “Frequency-modulation spectroscopy for trace species detection: experimental comparison of methods using a lead-salt diode laser,” Appl. Opt. 31, 718–731 (1992).
    [CrossRef] [PubMed]
  5. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).
  6. L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
    [CrossRef]
  7. L.-G. Wang, D. A. Tate, H. Riris, T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B 6, 871–876 (1989).
  8. R. A. Rooth, N. V. Kema, “Spectroscopic measurements of the ν2 + 2ν3 band of CH4 with a 1.3 μm InGaAsP diode laser,” in Proceedings of the Third International Symposium on Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, ed. (Kluwer, Dordrecht, The Netherlands, 1992), pp. 265–273.
  9. N. H. Abel, “Auflosung Einer Mechanischen Aufgabe,” J. Reine Angew. Math. 1, 153–157 (1826).
    [CrossRef]
  10. C. J. Dasch, “One-dimensional tomography: a comparison of Abel, onion-peeling, and filtered backprojection methods,” Appl. Opt. 31, 1146–1152 (1992).
    [CrossRef] [PubMed]
  11. J. Ku, Department of Mechanical Engineering, Wayne State University, 5050 Anthony Wayne Dr., Detroit, Mich. (personal communication, 1993).
  12. M. P. Arroyo, R. K. Hanson, “Absorption measurements of water-vapor concentration, temperature, and line-shape parameters using a tunable InGaAsP diode laser,” Appl. Opt. 32, 6104–6116 (1993).
    [CrossRef] [PubMed]
  13. J. C. Ku, L. Tong, J. Sun, P. S. Greenberg, D. W. Griffin, “Soot formation and radiation in turbulent jet diffusion flames under normal and reduced gravity condition,” in Second International Microgravity Combustion Diagnostics Workshop, NASA Conf. Publ. 10113 (NASA Lewis Research Center, Cleveland, Oh., 1992), pp. 121–133.
  14. J.-Y. Chen, W. Kollmann, R. W. Dibble, “Numerical computation of turbulent free-shear flows using a block-tridiagonal solver for a staggered grid system,” presented at the 18th Annual Pittsburgh Conference for Modeling and Simulation, Pittsburgh, Pa., 1987.
  15. M. Y. Bahadori, R. B. Edelman, D. P. Stocker, S. L. Olson, “Ignition and behavior of laminar gas-jet diffusion flames in microgravity,” AIAA J. 28, 236–244 (1990).
    [CrossRef]
  16. R. B. Edelman, M. Y. Bahadori, “Effects of buoyancy on gas jet diffusion flames,” Acta Astronautica 13, 681–686 (1986).
    [CrossRef]
  17. M. Y. Bahadori, R. B. Edelman, “Effects of buoyancy on gas jet diffusion flames,” Final Report for NASA contract NAS3-22822 (Science Applications International Corporation, Torrance, Calif., 1992).
  18. N. Goldstein, S. Adler-Golden, J. Lee, F. Bien, “Measurement of molecular concentrations and line parameters using line-locked second harmonic spectroscopy with a GaAlAs diode laser,” Appl. Phys. Lett. 47, 1327–1332 (1990).
  19. C. Delaye, J.-M. Hartmann, J. Taine, “Calculated tabulations of H2O line broadening by H2O, N2, O2, and CO2 at high temperature,” Appl. Opt. 28, 5080–5087 (1989).
    [CrossRef] [PubMed]
  20. H. Riris, C. B. Carlisle, R. E. Warren, D. E. Cooper, “Signal-to-noise ratio enhancement in frequency-modulation spectrometers using digital signal processing,” Opt. Lett. 19, 144–146 (1994).
    [CrossRef] [PubMed]
  21. P. Werle, “Signal processing strategies for tunable diode laser spectroscopy,” in Tunable Diode Laser Spectroscopy, LIDAR and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. J. Killinger, H. I. Schiff, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2112, 19–30 (1994).

1994 (1)

1993 (1)

1992 (4)

1990 (2)

M. Y. Bahadori, R. B. Edelman, D. P. Stocker, S. L. Olson, “Ignition and behavior of laminar gas-jet diffusion flames in microgravity,” AIAA J. 28, 236–244 (1990).
[CrossRef]

N. Goldstein, S. Adler-Golden, J. Lee, F. Bien, “Measurement of molecular concentrations and line parameters using line-locked second harmonic spectroscopy with a GaAlAs diode laser,” Appl. Phys. Lett. 47, 1327–1332 (1990).

1989 (2)

C. Delaye, J.-M. Hartmann, J. Taine, “Calculated tabulations of H2O line broadening by H2O, N2, O2, and CO2 at high temperature,” Appl. Opt. 28, 5080–5087 (1989).
[CrossRef] [PubMed]

L.-G. Wang, D. A. Tate, H. Riris, T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B 6, 871–876 (1989).

1986 (1)

R. B. Edelman, M. Y. Bahadori, “Effects of buoyancy on gas jet diffusion flames,” Acta Astronautica 13, 681–686 (1986).
[CrossRef]

1981 (1)

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).

1826 (1)

N. H. Abel, “Auflosung Einer Mechanischen Aufgabe,” J. Reine Angew. Math. 1, 153–157 (1826).
[CrossRef]

Abel, N. H.

N. H. Abel, “Auflosung Einer Mechanischen Aufgabe,” J. Reine Angew. Math. 1, 153–157 (1826).
[CrossRef]

Adler-Golden, S.

N. Goldstein, S. Adler-Golden, J. Lee, F. Bien, “Measurement of molecular concentrations and line parameters using line-locked second harmonic spectroscopy with a GaAlAs diode laser,” Appl. Phys. Lett. 47, 1327–1332 (1990).

Arroyo, M. P.

Bahadori, M. Y.

M. Y. Bahadori, R. B. Edelman, D. P. Stocker, S. L. Olson, “Ignition and behavior of laminar gas-jet diffusion flames in microgravity,” AIAA J. 28, 236–244 (1990).
[CrossRef]

R. B. Edelman, M. Y. Bahadori, “Effects of buoyancy on gas jet diffusion flames,” Acta Astronautica 13, 681–686 (1986).
[CrossRef]

M. Y. Bahadori, R. B. Edelman, “Effects of buoyancy on gas jet diffusion flames,” Final Report for NASA contract NAS3-22822 (Science Applications International Corporation, Torrance, Calif., 1992).

Benner, D. C.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Bien, F.

N. Goldstein, S. Adler-Golden, J. Lee, F. Bien, “Measurement of molecular concentrations and line parameters using line-locked second harmonic spectroscopy with a GaAlAs diode laser,” Appl. Phys. Lett. 47, 1327–1332 (1990).

Bomse, D. S.

Brown, L. R.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Camy-Peyret, C.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Carlisle, C. B.

Chen, J.-Y.

J.-Y. Chen, W. Kollmann, R. W. Dibble, “Numerical computation of turbulent free-shear flows using a block-tridiagonal solver for a staggered grid system,” presented at the 18th Annual Pittsburgh Conference for Modeling and Simulation, Pittsburgh, Pa., 1987.

Cooper, D. E.

Dasch, C. J.

Delaye, C.

Dibble, R. W.

J.-Y. Chen, W. Kollmann, R. W. Dibble, “Numerical computation of turbulent free-shear flows using a block-tridiagonal solver for a staggered grid system,” presented at the 18th Annual Pittsburgh Conference for Modeling and Simulation, Pittsburgh, Pa., 1987.

Edelman, R. B.

M. Y. Bahadori, R. B. Edelman, D. P. Stocker, S. L. Olson, “Ignition and behavior of laminar gas-jet diffusion flames in microgravity,” AIAA J. 28, 236–244 (1990).
[CrossRef]

R. B. Edelman, M. Y. Bahadori, “Effects of buoyancy on gas jet diffusion flames,” Acta Astronautica 13, 681–686 (1986).
[CrossRef]

M. Y. Bahadori, R. B. Edelman, “Effects of buoyancy on gas jet diffusion flames,” Final Report for NASA contract NAS3-22822 (Science Applications International Corporation, Torrance, Calif., 1992).

Flaud, J.-M.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Gallagher, T. F.

L.-G. Wang, D. A. Tate, H. Riris, T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B 6, 871–876 (1989).

Gamache, R. R.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Goldman, A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Goldstein, N.

N. Goldstein, S. Adler-Golden, J. Lee, F. Bien, “Measurement of molecular concentrations and line parameters using line-locked second harmonic spectroscopy with a GaAlAs diode laser,” Appl. Phys. Lett. 47, 1327–1332 (1990).

Greenberg, P. S.

J. C. Ku, L. Tong, J. Sun, P. S. Greenberg, D. W. Griffin, “Soot formation and radiation in turbulent jet diffusion flames under normal and reduced gravity condition,” in Second International Microgravity Combustion Diagnostics Workshop, NASA Conf. Publ. 10113 (NASA Lewis Research Center, Cleveland, Oh., 1992), pp. 121–133.

P. S. Greenberg, “Capabilities and constraints of combustion diagnostics in microgravity,” in Second International Microgravity Combustion Diagnostics Workshop, NASA Conf. Publ. 10113 (NASA Lewis Research Center, Cleveland, Oh., 1992), pp. 61–66.

Griffin, D. W.

J. C. Ku, L. Tong, J. Sun, P. S. Greenberg, D. W. Griffin, “Soot formation and radiation in turbulent jet diffusion flames under normal and reduced gravity condition,” in Second International Microgravity Combustion Diagnostics Workshop, NASA Conf. Publ. 10113 (NASA Lewis Research Center, Cleveland, Oh., 1992), pp. 121–133.

Hanson, R. K.

Hartmann, J.-M.

Kema, N. V.

R. A. Rooth, N. V. Kema, “Spectroscopic measurements of the ν2 + 2ν3 band of CH4 with a 1.3 μm InGaAsP diode laser,” in Proceedings of the Third International Symposium on Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, ed. (Kluwer, Dordrecht, The Netherlands, 1992), pp. 265–273.

Kollmann, W.

J.-Y. Chen, W. Kollmann, R. W. Dibble, “Numerical computation of turbulent free-shear flows using a block-tridiagonal solver for a staggered grid system,” presented at the 18th Annual Pittsburgh Conference for Modeling and Simulation, Pittsburgh, Pa., 1987.

Ku, J.

J. Ku, Department of Mechanical Engineering, Wayne State University, 5050 Anthony Wayne Dr., Detroit, Mich. (personal communication, 1993).

Ku, J. C.

J. C. Ku, L. Tong, J. Sun, P. S. Greenberg, D. W. Griffin, “Soot formation and radiation in turbulent jet diffusion flames under normal and reduced gravity condition,” in Second International Microgravity Combustion Diagnostics Workshop, NASA Conf. Publ. 10113 (NASA Lewis Research Center, Cleveland, Oh., 1992), pp. 121–133.

Labrie, D.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).

Lee, J.

N. Goldstein, S. Adler-Golden, J. Lee, F. Bien, “Measurement of molecular concentrations and line parameters using line-locked second harmonic spectroscopy with a GaAlAs diode laser,” Appl. Phys. Lett. 47, 1327–1332 (1990).

Lekan, J.

J. Lekan, E. S. Neumann, R. G. Sotos, “Capabilities and constraints of NASA’s ground-based reduced gravity facilities,” in Second International Microgravity Combustion Diagnostics Workshop, NASA Conf. Publ. 10113 (NASA Lewis Research Center, Cleveland, Oh., 1992), pp. 45–60.

Malathy Devi, V.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Massie, S. T.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Neumann, E. S.

J. Lekan, E. S. Neumann, R. G. Sotos, “Capabilities and constraints of NASA’s ground-based reduced gravity facilities,” in Second International Microgravity Combustion Diagnostics Workshop, NASA Conf. Publ. 10113 (NASA Lewis Research Center, Cleveland, Oh., 1992), pp. 45–60.

Olson, S. L.

M. Y. Bahadori, R. B. Edelman, D. P. Stocker, S. L. Olson, “Ignition and behavior of laminar gas-jet diffusion flames in microgravity,” AIAA J. 28, 236–244 (1990).
[CrossRef]

Perrin, A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Reid, J.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).

Rinsland, C. P.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Riris, H.

H. Riris, C. B. Carlisle, R. E. Warren, D. E. Cooper, “Signal-to-noise ratio enhancement in frequency-modulation spectrometers using digital signal processing,” Opt. Lett. 19, 144–146 (1994).
[CrossRef] [PubMed]

L.-G. Wang, D. A. Tate, H. Riris, T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B 6, 871–876 (1989).

Rooth, R. A.

R. A. Rooth, N. V. Kema, “Spectroscopic measurements of the ν2 + 2ν3 band of CH4 with a 1.3 μm InGaAsP diode laser,” in Proceedings of the Third International Symposium on Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, ed. (Kluwer, Dordrecht, The Netherlands, 1992), pp. 265–273.

Rothman, L. S.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Silver, J. A.

Smith, M. A. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Sotos, R. G.

J. Lekan, E. S. Neumann, R. G. Sotos, “Capabilities and constraints of NASA’s ground-based reduced gravity facilities,” in Second International Microgravity Combustion Diagnostics Workshop, NASA Conf. Publ. 10113 (NASA Lewis Research Center, Cleveland, Oh., 1992), pp. 45–60.

Stanton, A. C.

Stocker, D. P.

M. Y. Bahadori, R. B. Edelman, D. P. Stocker, S. L. Olson, “Ignition and behavior of laminar gas-jet diffusion flames in microgravity,” AIAA J. 28, 236–244 (1990).
[CrossRef]

Sun, J.

J. C. Ku, L. Tong, J. Sun, P. S. Greenberg, D. W. Griffin, “Soot formation and radiation in turbulent jet diffusion flames under normal and reduced gravity condition,” in Second International Microgravity Combustion Diagnostics Workshop, NASA Conf. Publ. 10113 (NASA Lewis Research Center, Cleveland, Oh., 1992), pp. 121–133.

Taine, J.

Tate, D. A.

L.-G. Wang, D. A. Tate, H. Riris, T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B 6, 871–876 (1989).

Tipping, R. H.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Tong, L.

J. C. Ku, L. Tong, J. Sun, P. S. Greenberg, D. W. Griffin, “Soot formation and radiation in turbulent jet diffusion flames under normal and reduced gravity condition,” in Second International Microgravity Combustion Diagnostics Workshop, NASA Conf. Publ. 10113 (NASA Lewis Research Center, Cleveland, Oh., 1992), pp. 121–133.

Toth, R. A.

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

Wang, L.-G.

L.-G. Wang, D. A. Tate, H. Riris, T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B 6, 871–876 (1989).

Warren, R. E.

Werle, P.

P. Werle, “Signal processing strategies for tunable diode laser spectroscopy,” in Tunable Diode Laser Spectroscopy, LIDAR and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. J. Killinger, H. I. Schiff, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2112, 19–30 (1994).

Acta Astronautica (1)

R. B. Edelman, M. Y. Bahadori, “Effects of buoyancy on gas jet diffusion flames,” Acta Astronautica 13, 681–686 (1986).
[CrossRef]

AIAA J. (1)

M. Y. Bahadori, R. B. Edelman, D. P. Stocker, S. L. Olson, “Ignition and behavior of laminar gas-jet diffusion flames in microgravity,” AIAA J. 28, 236–244 (1990).
[CrossRef]

Appl. Opt. (5)

Appl. Phys. (1)

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203–210 (1981).

Appl. Phys. Lett. (1)

N. Goldstein, S. Adler-Golden, J. Lee, F. Bien, “Measurement of molecular concentrations and line parameters using line-locked second harmonic spectroscopy with a GaAlAs diode laser,” Appl. Phys. Lett. 47, 1327–1332 (1990).

J. Opt. Soc. Am. (1)

L.-G. Wang, D. A. Tate, H. Riris, T. F. Gallagher, “High-sensitivity frequency-modulation spectroscopy with a GaAlAs diode laser,” J. Opt. Soc. Am. B 6, 871–876 (1989).

J. Quant. Spectrosc. Radiat. Transfer (1)

L. S. Rothman, R. R. Gamache, R. H. Tipping, C. P. Rinsland, M. A. H. Smith, D. C. Benner, V. Malathy Devi, J.-M. Flaud, C. Camy-Peyret, A. Perrin, A. Goldman, S. T. Massie, L. R. Brown, R. A. Toth, “The hitran molecular database: editions of 1991 and 1992,” J. Quant. Spectrosc. Radiat. Transfer 48, 469–507 (1992).
[CrossRef]

J. Reine Angew. Math. (1)

N. H. Abel, “Auflosung Einer Mechanischen Aufgabe,” J. Reine Angew. Math. 1, 153–157 (1826).
[CrossRef]

Opt. Lett. (1)

Other (8)

P. Werle, “Signal processing strategies for tunable diode laser spectroscopy,” in Tunable Diode Laser Spectroscopy, LIDAR and DIAL Techniques for Environmental and Industrial Measurements, A. Fried, D. J. Killinger, H. I. Schiff, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 2112, 19–30 (1994).

M. Y. Bahadori, R. B. Edelman, “Effects of buoyancy on gas jet diffusion flames,” Final Report for NASA contract NAS3-22822 (Science Applications International Corporation, Torrance, Calif., 1992).

J. C. Ku, L. Tong, J. Sun, P. S. Greenberg, D. W. Griffin, “Soot formation and radiation in turbulent jet diffusion flames under normal and reduced gravity condition,” in Second International Microgravity Combustion Diagnostics Workshop, NASA Conf. Publ. 10113 (NASA Lewis Research Center, Cleveland, Oh., 1992), pp. 121–133.

J.-Y. Chen, W. Kollmann, R. W. Dibble, “Numerical computation of turbulent free-shear flows using a block-tridiagonal solver for a staggered grid system,” presented at the 18th Annual Pittsburgh Conference for Modeling and Simulation, Pittsburgh, Pa., 1987.

J. Ku, Department of Mechanical Engineering, Wayne State University, 5050 Anthony Wayne Dr., Detroit, Mich. (personal communication, 1993).

R. A. Rooth, N. V. Kema, “Spectroscopic measurements of the ν2 + 2ν3 band of CH4 with a 1.3 μm InGaAsP diode laser,” in Proceedings of the Third International Symposium on Monitoring of Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, ed. (Kluwer, Dordrecht, The Netherlands, 1992), pp. 265–273.

P. S. Greenberg, “Capabilities and constraints of combustion diagnostics in microgravity,” in Second International Microgravity Combustion Diagnostics Workshop, NASA Conf. Publ. 10113 (NASA Lewis Research Center, Cleveland, Oh., 1992), pp. 61–66.

J. Lekan, E. S. Neumann, R. G. Sotos, “Capabilities and constraints of NASA’s ground-based reduced gravity facilities,” in Second International Microgravity Combustion Diagnostics Workshop, NASA Conf. Publ. 10113 (NASA Lewis Research Center, Cleveland, Oh., 1992), pp. 45–60.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Schematic of microgravity (μ-g) drop experiment.

Fig. 2
Fig. 2

Block diagram of electronics: BP’s, bandpass filters; LP’s, low-pass filters; I and Q, in-phase and quadrature signals, respectively.

Fig. 3
Fig. 3

Example of raw WMS data versus drop time (propane–air flame, 16.2-mm height) for in-phase and quadrature channels at y = 0 mm (across the flame center).

Fig. 4
Fig. 4

Optimized WMS projection spectra versus drop time for channels 1, 3, and 7 (y = 0, 6, and 18 mm, respectively).

Fig. 5
Fig. 5

Schematic representation of the projection and the radial functions.

Fig. 6
Fig. 6

Correction of Abel transforms for outlying signals: (a) added radial function; (b) projection of this function; (c) added projection (dashed curve) scaled to the measured projection (solid curve); the portion beyond r′ is catenated onto the measured values to form the full extended projection; (d) complete radial transformation of the experimental data.

Fig. 7
Fig. 7

Computed Abel-inverted radial spectra as a function of drop time for channels 1, 3, and 7.

Fig. 8
Fig. 8

Contour plot of temperature- and mole-fraction-dependent correction terms for water vapor (1345 nm, 10.0-mA modulation; in units of 10−23 cm2 K−1).

Fig. 9
Fig. 9

Radial spectrum of water vapor in methane–air flame obtained with the 1393-nm laser.

Fig. 10
Fig. 10

Videotaped flame profiles before and during (at t = 2.0 s) microgravity drop.

Fig. 11
Fig. 11

Comparison of water vapor mole fractions in normal- and zero-gravity methane–air flames at the 3.9-mm height.

Fig. 12
Fig. 12

Contour plot of microgravity water vapor mole fractions in the propane–air flame versus drop time and radial position at the 16.2-mm height.

Fig. 13
Fig. 13

Contour map of water vapor mole fractions at 2.0-s drop time as a function of height above and radial distance from the center of the propane flame. The intersections of the grid lines denote the positions of the measured points. The thick dashed contours encompass the region of maximum water vapor predicted by the model.11

Tables (4)

Tables Icon

Table 1 Spectral Parameters of Water Vapor and Methane Lines Studied

Tables Icon

Table 2 Water Broadening Coefficients (300 K) for the 7435.6-cm−1 Line

Tables Icon

Table 3 Summary of Experimental Conditions for Microgravity Drops

Tables Icon

Table 4 Sources of Experimental Uncertainties

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

S ( θ ) = S ( 0 ° ) cos ( θ ) + S ( 90 ° ) sin ( θ ) .
P ( r ) = 2 0 F [ ( r 2 + y 2 ) 1 / 2 ] d y ,
F ( r ) = - 1 π r d P ( r ) / d r ( r 2 - r 2 ) 1 / 2 d r ,
F ( r i ) = 1 Δ r j = 0 D i j P ( r j ) ,
W = C α f ( m , ϕ ) ,
χ i = W K P C σ 0 f ( m , ϕ ) T d r ,
σ 0 = S ( T ) ϕ ( ν 0 ) ,
S 1 S 2 = S 1 ( T 0 ) S 2 ( T 0 ) exp [ - h c Δ E rot k ( 1 T - 1 T 0 ) ] ,
b ( T ) = { [ b 1 ( 300 T ) r 1 ] s + [ b 2 ( 300 T ) r 2 ] s 2 } 1 / s .

Metrics