Abstract

A detailed plan for the construction and use of a nonconfocal cavity used as a high-finesse interferometer is presented. The interferometer has a free spectral range of 15 GHz, with a finesse of over 30,000.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. C. MacPherson, R. C. Swanson, J. L. Carlsten, “Stimulated Raman scattering in the visible with a multipass cell,” IEEE J. Quantum Electron. QE-25, 1741–1746 (1989).
    [CrossRef]
  2. J. W. Hahn, S. N. Park, C. Rhee, “Fabry–Perot wavemeter for shot-by-shot analysis of pulsed lasers,” Appl. Opt. 32, 1095–1099 (1993).
    [CrossRef] [PubMed]
  3. S. Hendow, Optical Resonators: Principles, Progress, and Applications (Newport Corp., Fountain Valley, Calif., 1990).
  4. A supercavity optical spectrum analyzer that is similar to the HFI is commercially available from Newport Corp., 1791 Deere Ave., Irvine, Calif. 92714.
  5. The piezo tube used in this HFI was purchased from EDO Corp., 2645 South 300 West, Salt Lake City, Ut. 84115.
  6. The sorbathane used in this HFI was purchased from Edmund Scientific Co., 101 E. Gloucester Pike, Barrington, N.J. 080077-1380.
  7. E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1987), pp. 363–372.
  8. The mirrors used in this HFI was purchased from Research Electro-Optics, Inc., 1855 South 57th Court, Boulder, Colo., 80301.
  9. P. R. Battle, J. G. Wessel, J. L. Carlsten, “Gain guiding effects in an amplifier with focused gain,” Phys. Rev. A 48, 707–716 (1983).
    [CrossRef]
  10. H. Kogelnik, T. Li, “Beams, modes, and resonators,” in Handbook of Lasers, R.J. Pressley, ed. (CRC, Cleveland, Oh.1971), p. 426.
  11. H. Kogelnik, T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966).
    [CrossRef] [PubMed]

1993 (1)

1989 (1)

D. C. MacPherson, R. C. Swanson, J. L. Carlsten, “Stimulated Raman scattering in the visible with a multipass cell,” IEEE J. Quantum Electron. QE-25, 1741–1746 (1989).
[CrossRef]

1983 (1)

P. R. Battle, J. G. Wessel, J. L. Carlsten, “Gain guiding effects in an amplifier with focused gain,” Phys. Rev. A 48, 707–716 (1983).
[CrossRef]

1966 (1)

Battle, P. R.

P. R. Battle, J. G. Wessel, J. L. Carlsten, “Gain guiding effects in an amplifier with focused gain,” Phys. Rev. A 48, 707–716 (1983).
[CrossRef]

Carlsten, J. L.

D. C. MacPherson, R. C. Swanson, J. L. Carlsten, “Stimulated Raman scattering in the visible with a multipass cell,” IEEE J. Quantum Electron. QE-25, 1741–1746 (1989).
[CrossRef]

P. R. Battle, J. G. Wessel, J. L. Carlsten, “Gain guiding effects in an amplifier with focused gain,” Phys. Rev. A 48, 707–716 (1983).
[CrossRef]

Hahn, J. W.

Hecht, E.

E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1987), pp. 363–372.

Hendow, S.

S. Hendow, Optical Resonators: Principles, Progress, and Applications (Newport Corp., Fountain Valley, Calif., 1990).

Kogelnik, H.

H. Kogelnik, T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966).
[CrossRef] [PubMed]

H. Kogelnik, T. Li, “Beams, modes, and resonators,” in Handbook of Lasers, R.J. Pressley, ed. (CRC, Cleveland, Oh.1971), p. 426.

Li, T.

H. Kogelnik, T. Li, “Laser beams and resonators,” Appl. Opt. 5, 1550–1567 (1966).
[CrossRef] [PubMed]

H. Kogelnik, T. Li, “Beams, modes, and resonators,” in Handbook of Lasers, R.J. Pressley, ed. (CRC, Cleveland, Oh.1971), p. 426.

MacPherson, D. C.

D. C. MacPherson, R. C. Swanson, J. L. Carlsten, “Stimulated Raman scattering in the visible with a multipass cell,” IEEE J. Quantum Electron. QE-25, 1741–1746 (1989).
[CrossRef]

Park, S. N.

Rhee, C.

Swanson, R. C.

D. C. MacPherson, R. C. Swanson, J. L. Carlsten, “Stimulated Raman scattering in the visible with a multipass cell,” IEEE J. Quantum Electron. QE-25, 1741–1746 (1989).
[CrossRef]

Wessel, J. G.

P. R. Battle, J. G. Wessel, J. L. Carlsten, “Gain guiding effects in an amplifier with focused gain,” Phys. Rev. A 48, 707–716 (1983).
[CrossRef]

Appl. Opt. (2)

IEEE J. Quantum Electron. (1)

D. C. MacPherson, R. C. Swanson, J. L. Carlsten, “Stimulated Raman scattering in the visible with a multipass cell,” IEEE J. Quantum Electron. QE-25, 1741–1746 (1989).
[CrossRef]

Phys. Rev. A (1)

P. R. Battle, J. G. Wessel, J. L. Carlsten, “Gain guiding effects in an amplifier with focused gain,” Phys. Rev. A 48, 707–716 (1983).
[CrossRef]

Other (7)

H. Kogelnik, T. Li, “Beams, modes, and resonators,” in Handbook of Lasers, R.J. Pressley, ed. (CRC, Cleveland, Oh.1971), p. 426.

S. Hendow, Optical Resonators: Principles, Progress, and Applications (Newport Corp., Fountain Valley, Calif., 1990).

A supercavity optical spectrum analyzer that is similar to the HFI is commercially available from Newport Corp., 1791 Deere Ave., Irvine, Calif. 92714.

The piezo tube used in this HFI was purchased from EDO Corp., 2645 South 300 West, Salt Lake City, Ut. 84115.

The sorbathane used in this HFI was purchased from Edmund Scientific Co., 101 E. Gloucester Pike, Barrington, N.J. 080077-1380.

E. Hecht, Optics (Addison-Wesley, Reading, Mass., 1987), pp. 363–372.

The mirrors used in this HFI was purchased from Research Electro-Optics, Inc., 1855 South 57th Court, Boulder, Colo., 80301.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Cross-sectional view of the 5-GHz HFI.

Fig. 2
Fig. 2

Experimental setup for mode matching the input optical beam to the HFL.

Fig. 3
Fig. 3

Experimental apparatus used to align the HFI. The fiber optic and the lens are held in a fiber coupler.

Fig. 4
Fig. 4

Video image and corresponding oscilloscope trace showing the mode structure of the HFI at various stages of mode matching. (a) Cavity is poorly aligned, and the fundamental mode is not present. (b) Cavity position is adjusted to condense the intensity pattern of the video image, bringing the cavity into better alignment. The fundamental mode appears as the left-hand peak. (c) With further alignment the pattern continues to collapse, and the fundamental mode becomes dominant. (d) Cavity is well aligned. Note the circular symmetry of the fundamental mode.

Fig. 5
Fig. 5

Oscilloscope traces used to measure the linewidth for a laser diode: (a) FSR, which corresponds to 5 GHz, (b) laser linewidth measured at 150 kHz.

Fig. 6
Fig. 6

Sectional view of a 13-μm cavity. The FSR is 11,500 GHZ, with a resolution of 90 MHz.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

F R = π R 1 - R ,
z oc = ½ [ L ( 2 R m - L ) ] 1 / 2 ,
z oc = z of f 2 ( f - d 1 ) 2 + z of 2 ,
d 2 = z of 2 f + d 1 2 f - d 1 f 2 ( f - d 1 ) 2 + z of 2 ,

Metrics