Abstract

We present a method to fabricate high-quality and environmentally rugged monolithic diffractive optical elements (DOE’s). Analog direct-write e-beam lithography was used to produce analog resist profiles that were transferred into their substrates by the use of chemically assisted ion-beam etching (CAIBE) in one single etching step. An iterative method was used to compensate for the proximity effect caused by electron scattering in the resist and from the substrate during the e-beam exposure. Slope-dependent differential etch rates that occur during the transfer process were characterized and compensated for. Finally, the DOE was divided into regions with different period ranges, and the exposure dosages were set to achieve even and accurate etch depths in the final element. The presented fabrication method will increase manufacturability and reduce processing time, which will result in a general cost reduction per element.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. J. Swanson, “Binary optics technology: the theory and design of multi-level phase diffractive optical elements,” MIT Tech. Rep. 854, (MIT, Cambridge, Mass., 1989).
  2. J. Jahns, S. J. Walker, “Two-dimensional array of diffractive microlenses fabricated by thin film deposition,” Appl. Opt. 29, 931–936 (1990).
    [CrossRef] [PubMed]
  3. L. D’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photo-lithographic fabrication of thin film lenses,” Opt. Commum. 5, 232–235 (1972).
    [CrossRef]
  4. M. B. Stern, S. S. Medeiros, “Deep three-dimensional microstructure fabrication for infrared binary optics,” J. Vac. Sci. Technol. B 10, 2520–2525 (1992).
    [CrossRef]
  5. M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991).
    [CrossRef]
  6. D. W. Ricks, “Scattering from diffractive optics,” in Miniature Diffractive Optics, S. H. Lee, ed., Proc. Soc. Photo-Opt. Instrum. Eng.CR49, 187–211 (1993).
  7. T. Fujita, H. Nishihara, J. Koyama, “Fabrication of micro lenses using electron-beam lithography,” Opt. Lett. 6, 613–615 (1981).
    [CrossRef] [PubMed]
  8. T. Shiono, K. Setsune, “Blazed reflection micro-Fresnel lenses fabricated by electron-beam writing and dry development,” Opt. Lett. 15, 84–86 (1990).
    [CrossRef] [PubMed]
  9. P. D. Maker, R. E. Muller, “Phase holograms in polymethyl methacrylate,” J. Vac. Sci. Technol. B 10, 2516–2519 (1992).
    [CrossRef]
  10. K. S. Urquhart, R. Stein, S. H. Lee, “Computer-generated holograms fabricated by direct write of positive electron-beam resist,” Opt. Lett. 18, 308–310 (1993).
    [CrossRef] [PubMed]
  11. M. Ekberg, M. Larsson, S. Hård, J. Turunen, M. R. Taghizadeh, J. Westerholm, A. Vasara, “Multilevel grating array illuminators manufactured by electron-beam lithography,” Opt. Comm. 88, 37–41 (1992).
    [CrossRef]
  12. E. B. Kley, W. Dorl, “Einsatz der Elektronenstrahllithograpie zur Herstellung mikrooptischer Bauelemente,” VDI Ber. (Ver. Dtsch. Ing.) 966, 531–541 (1992).
  13. M. T. Gale, G. K. Lang, J. M. Raynor, H. Schutz, “Fabrication of microoptical components by laser beam writing in photoresist,” in Micro-Optics II, A. V. Scheggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1506, 65–70 (1991).
  14. M. Tanigami, S. Ogata, S. Aoyama, T. Yamashita, K. Imanaka, “Low-wavefront aberration and high-temperature stability molded micro Fresnel lens,” IEEE Photon. Technol. Lett. 1, 384–385 (1989).
    [CrossRef]
  15. J. Jahns, K.-H. Brenner, W. Daschner, C. Doubrava, T. Merklein, “Replication of diffractive microoptical elements using a PMMA molding technique,” Optik 89, 98–100 (1992).
  16. M. T. Gale, M. Rossi, H. Schutz, P. Ehbets, H. P. Herzig, D. Prongue, “Continuous-relief diffractive optical elements for two-dimensional array generation,” Appl. Opt. 32, 2526–2533 (1993).
    [CrossRef] [PubMed]
  17. F. P. Shvartsman, “SURPHEX: new dry photopolymers for replication of surface relief diffractive optics,” in Holographics International ’92, Y. N. Denisyuk, F. Wyrowski, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1732, 121–130 (1993).
  18. T. H. P. Chang, “Proximity effect in electron-beam lithography,” J. Vac. Sci. Technol. 12, 1271–1275 (1976).
    [CrossRef]
  19. M. Ekberg, M. Larsson, F. Nikolajeff, S. Hård, “Proximity-compensated blazed transmission grating manufacture with direct-writing electron-beam lithography,” Appl. Opt. 33, 103–107 (1994).
    [CrossRef] [PubMed]
  20. S. Somekh, “Introduction to ion and plasma etching,” J. Vac. Sci. Technol. 13, 1003–1007 (1976).
    [CrossRef]
  21. G. M. Gallatin, C. B. Zarowin, “Unified approach to the temporal evolution of surface profiles in solid etch and deposition processes,” J. Appl. Phys. 65, 5078–5088 (1989).
    [CrossRef]
  22. W. Chen, L. M. Walpita, C. C. Sun, W. S. C. Chang, “Ion beam etching of InGaAs, InP, GaAs, Si and Ge,” J. Vac. Sci. Technol. B 4, 701–705 (1986).
    [CrossRef]
  23. T. Nishibe, S. Nunoue, “Dry etching of InGaAsP/InP structures by reactive ion beam etching using chlorine and argon,” Jpn. J. Appl. Phys. Part 2 29, 2449–2452 (1990).
    [CrossRef]
  24. X. Zhaohua, B. Nilsson, P. Svedberg, “Selective chemically assisted ion beam etching of Si, polysilicon, and SiO2 using Ni–Cr masks and Cl2,” J. Electrochem. Soc. 137, 1579–1581 (1990).
    [CrossRef]
  25. T. Saitoh, T. Yokogawa, T. Narusawa, “Reactive ion beam etching of ZnSe and ZnS epitaxial films using Cl2 electron cyclotron resonance plasma,” Appl. Phys. Lett. 56, 839–841 (1990).
    [CrossRef]
  26. H. Andersson, M. Ekberg, S. Hård, S. Jacobsson, M. Larsson, T. Nielsson, “Single photomask multilevel kinoforms in quartz and photoresist: manufacture and evaluation,” Appl. Opt. 29, 4259–4267 (1990).
    [CrossRef] [PubMed]
  27. Y. Opplinger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault, G. Voirin, “One-step 3-D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
    [CrossRef]

1994

M. Ekberg, M. Larsson, F. Nikolajeff, S. Hård, “Proximity-compensated blazed transmission grating manufacture with direct-writing electron-beam lithography,” Appl. Opt. 33, 103–107 (1994).
[CrossRef] [PubMed]

Y. Opplinger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault, G. Voirin, “One-step 3-D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

1993

1992

M. Ekberg, M. Larsson, S. Hård, J. Turunen, M. R. Taghizadeh, J. Westerholm, A. Vasara, “Multilevel grating array illuminators manufactured by electron-beam lithography,” Opt. Comm. 88, 37–41 (1992).
[CrossRef]

E. B. Kley, W. Dorl, “Einsatz der Elektronenstrahllithograpie zur Herstellung mikrooptischer Bauelemente,” VDI Ber. (Ver. Dtsch. Ing.) 966, 531–541 (1992).

M. B. Stern, S. S. Medeiros, “Deep three-dimensional microstructure fabrication for infrared binary optics,” J. Vac. Sci. Technol. B 10, 2520–2525 (1992).
[CrossRef]

P. D. Maker, R. E. Muller, “Phase holograms in polymethyl methacrylate,” J. Vac. Sci. Technol. B 10, 2516–2519 (1992).
[CrossRef]

J. Jahns, K.-H. Brenner, W. Daschner, C. Doubrava, T. Merklein, “Replication of diffractive microoptical elements using a PMMA molding technique,” Optik 89, 98–100 (1992).

1991

M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991).
[CrossRef]

1990

J. Jahns, S. J. Walker, “Two-dimensional array of diffractive microlenses fabricated by thin film deposition,” Appl. Opt. 29, 931–936 (1990).
[CrossRef] [PubMed]

T. Shiono, K. Setsune, “Blazed reflection micro-Fresnel lenses fabricated by electron-beam writing and dry development,” Opt. Lett. 15, 84–86 (1990).
[CrossRef] [PubMed]

T. Nishibe, S. Nunoue, “Dry etching of InGaAsP/InP structures by reactive ion beam etching using chlorine and argon,” Jpn. J. Appl. Phys. Part 2 29, 2449–2452 (1990).
[CrossRef]

X. Zhaohua, B. Nilsson, P. Svedberg, “Selective chemically assisted ion beam etching of Si, polysilicon, and SiO2 using Ni–Cr masks and Cl2,” J. Electrochem. Soc. 137, 1579–1581 (1990).
[CrossRef]

T. Saitoh, T. Yokogawa, T. Narusawa, “Reactive ion beam etching of ZnSe and ZnS epitaxial films using Cl2 electron cyclotron resonance plasma,” Appl. Phys. Lett. 56, 839–841 (1990).
[CrossRef]

H. Andersson, M. Ekberg, S. Hård, S. Jacobsson, M. Larsson, T. Nielsson, “Single photomask multilevel kinoforms in quartz and photoresist: manufacture and evaluation,” Appl. Opt. 29, 4259–4267 (1990).
[CrossRef] [PubMed]

1989

G. M. Gallatin, C. B. Zarowin, “Unified approach to the temporal evolution of surface profiles in solid etch and deposition processes,” J. Appl. Phys. 65, 5078–5088 (1989).
[CrossRef]

M. Tanigami, S. Ogata, S. Aoyama, T. Yamashita, K. Imanaka, “Low-wavefront aberration and high-temperature stability molded micro Fresnel lens,” IEEE Photon. Technol. Lett. 1, 384–385 (1989).
[CrossRef]

1986

W. Chen, L. M. Walpita, C. C. Sun, W. S. C. Chang, “Ion beam etching of InGaAs, InP, GaAs, Si and Ge,” J. Vac. Sci. Technol. B 4, 701–705 (1986).
[CrossRef]

1981

1976

S. Somekh, “Introduction to ion and plasma etching,” J. Vac. Sci. Technol. 13, 1003–1007 (1976).
[CrossRef]

T. H. P. Chang, “Proximity effect in electron-beam lithography,” J. Vac. Sci. Technol. 12, 1271–1275 (1976).
[CrossRef]

1972

L. D’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photo-lithographic fabrication of thin film lenses,” Opt. Commum. 5, 232–235 (1972).
[CrossRef]

Andersson, H.

Aoyama, S.

M. Tanigami, S. Ogata, S. Aoyama, T. Yamashita, K. Imanaka, “Low-wavefront aberration and high-temperature stability molded micro Fresnel lens,” IEEE Photon. Technol. Lett. 1, 384–385 (1989).
[CrossRef]

Brenner, K.-H.

J. Jahns, K.-H. Brenner, W. Daschner, C. Doubrava, T. Merklein, “Replication of diffractive microoptical elements using a PMMA molding technique,” Optik 89, 98–100 (1992).

Chang, T. H. P.

T. H. P. Chang, “Proximity effect in electron-beam lithography,” J. Vac. Sci. Technol. 12, 1271–1275 (1976).
[CrossRef]

Chang, W. S. C.

W. Chen, L. M. Walpita, C. C. Sun, W. S. C. Chang, “Ion beam etching of InGaAs, InP, GaAs, Si and Ge,” J. Vac. Sci. Technol. B 4, 701–705 (1986).
[CrossRef]

Chen, W.

W. Chen, L. M. Walpita, C. C. Sun, W. S. C. Chang, “Ion beam etching of InGaAs, InP, GaAs, Si and Ge,” J. Vac. Sci. Technol. B 4, 701–705 (1986).
[CrossRef]

D’Auria, L.

L. D’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photo-lithographic fabrication of thin film lenses,” Opt. Commum. 5, 232–235 (1972).
[CrossRef]

Daschner, W.

J. Jahns, K.-H. Brenner, W. Daschner, C. Doubrava, T. Merklein, “Replication of diffractive microoptical elements using a PMMA molding technique,” Optik 89, 98–100 (1992).

Dorl, W.

E. B. Kley, W. Dorl, “Einsatz der Elektronenstrahllithograpie zur Herstellung mikrooptischer Bauelemente,” VDI Ber. (Ver. Dtsch. Ing.) 966, 531–541 (1992).

Doubrava, C.

J. Jahns, K.-H. Brenner, W. Daschner, C. Doubrava, T. Merklein, “Replication of diffractive microoptical elements using a PMMA molding technique,” Optik 89, 98–100 (1992).

Ehbets, P.

Ekberg, M.

Fujita, T.

Gale, M. T.

M. T. Gale, M. Rossi, H. Schutz, P. Ehbets, H. P. Herzig, D. Prongue, “Continuous-relief diffractive optical elements for two-dimensional array generation,” Appl. Opt. 32, 2526–2533 (1993).
[CrossRef] [PubMed]

M. T. Gale, G. K. Lang, J. M. Raynor, H. Schutz, “Fabrication of microoptical components by laser beam writing in photoresist,” in Micro-Optics II, A. V. Scheggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1506, 65–70 (1991).

Gallatin, G. M.

G. M. Gallatin, C. B. Zarowin, “Unified approach to the temporal evolution of surface profiles in solid etch and deposition processes,” J. Appl. Phys. 65, 5078–5088 (1989).
[CrossRef]

Hård, S.

Herzig, H. P.

Holz, M.

M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991).
[CrossRef]

Huignard, J. P.

L. D’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photo-lithographic fabrication of thin film lenses,” Opt. Commum. 5, 232–235 (1972).
[CrossRef]

Imanaka, K.

M. Tanigami, S. Ogata, S. Aoyama, T. Yamashita, K. Imanaka, “Low-wavefront aberration and high-temperature stability molded micro Fresnel lens,” IEEE Photon. Technol. Lett. 1, 384–385 (1989).
[CrossRef]

Jacobsson, S.

Jahns, J.

J. Jahns, K.-H. Brenner, W. Daschner, C. Doubrava, T. Merklein, “Replication of diffractive microoptical elements using a PMMA molding technique,” Optik 89, 98–100 (1992).

J. Jahns, S. J. Walker, “Two-dimensional array of diffractive microlenses fabricated by thin film deposition,” Appl. Opt. 29, 931–936 (1990).
[CrossRef] [PubMed]

Kley, E. B.

E. B. Kley, W. Dorl, “Einsatz der Elektronenstrahllithograpie zur Herstellung mikrooptischer Bauelemente,” VDI Ber. (Ver. Dtsch. Ing.) 966, 531–541 (1992).

Knowlden, R. E.

M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991).
[CrossRef]

Koyama, J.

Lang, G. K.

M. T. Gale, G. K. Lang, J. M. Raynor, H. Schutz, “Fabrication of microoptical components by laser beam writing in photoresist,” in Micro-Optics II, A. V. Scheggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1506, 65–70 (1991).

Larsson, M.

Lee, S. H.

Maker, P. D.

P. D. Maker, R. E. Muller, “Phase holograms in polymethyl methacrylate,” J. Vac. Sci. Technol. B 10, 2516–2519 (1992).
[CrossRef]

Mayor, J. M.

Y. Opplinger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault, G. Voirin, “One-step 3-D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Medeiros, S. S.

M. B. Stern, S. S. Medeiros, “Deep three-dimensional microstructure fabrication for infrared binary optics,” J. Vac. Sci. Technol. B 10, 2520–2525 (1992).
[CrossRef]

M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991).
[CrossRef]

Merklein, T.

J. Jahns, K.-H. Brenner, W. Daschner, C. Doubrava, T. Merklein, “Replication of diffractive microoptical elements using a PMMA molding technique,” Optik 89, 98–100 (1992).

Muller, R. E.

P. D. Maker, R. E. Muller, “Phase holograms in polymethyl methacrylate,” J. Vac. Sci. Technol. B 10, 2516–2519 (1992).
[CrossRef]

Narusawa, T.

T. Saitoh, T. Yokogawa, T. Narusawa, “Reactive ion beam etching of ZnSe and ZnS epitaxial films using Cl2 electron cyclotron resonance plasma,” Appl. Phys. Lett. 56, 839–841 (1990).
[CrossRef]

Nielsson, T.

Nikolajeff, F.

Nilsson, B.

X. Zhaohua, B. Nilsson, P. Svedberg, “Selective chemically assisted ion beam etching of Si, polysilicon, and SiO2 using Ni–Cr masks and Cl2,” J. Electrochem. Soc. 137, 1579–1581 (1990).
[CrossRef]

Nishibe, T.

T. Nishibe, S. Nunoue, “Dry etching of InGaAsP/InP structures by reactive ion beam etching using chlorine and argon,” Jpn. J. Appl. Phys. Part 2 29, 2449–2452 (1990).
[CrossRef]

Nishihara, H.

Nunoue, S.

T. Nishibe, S. Nunoue, “Dry etching of InGaAsP/InP structures by reactive ion beam etching using chlorine and argon,” Jpn. J. Appl. Phys. Part 2 29, 2449–2452 (1990).
[CrossRef]

Ogata, S.

M. Tanigami, S. Ogata, S. Aoyama, T. Yamashita, K. Imanaka, “Low-wavefront aberration and high-temperature stability molded micro Fresnel lens,” IEEE Photon. Technol. Lett. 1, 384–385 (1989).
[CrossRef]

Opplinger, Y.

Y. Opplinger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault, G. Voirin, “One-step 3-D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Prongue, D.

Raynor, J. M.

M. T. Gale, G. K. Lang, J. M. Raynor, H. Schutz, “Fabrication of microoptical components by laser beam writing in photoresist,” in Micro-Optics II, A. V. Scheggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1506, 65–70 (1991).

Regnault, P.

Y. Opplinger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault, G. Voirin, “One-step 3-D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Ricks, D. W.

D. W. Ricks, “Scattering from diffractive optics,” in Miniature Diffractive Optics, S. H. Lee, ed., Proc. Soc. Photo-Opt. Instrum. Eng.CR49, 187–211 (1993).

Rossi, M.

Roy, A. M.

L. D’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photo-lithographic fabrication of thin film lenses,” Opt. Commum. 5, 232–235 (1972).
[CrossRef]

Saitoh, T.

T. Saitoh, T. Yokogawa, T. Narusawa, “Reactive ion beam etching of ZnSe and ZnS epitaxial films using Cl2 electron cyclotron resonance plasma,” Appl. Phys. Lett. 56, 839–841 (1990).
[CrossRef]

Schutz, H.

M. T. Gale, M. Rossi, H. Schutz, P. Ehbets, H. P. Herzig, D. Prongue, “Continuous-relief diffractive optical elements for two-dimensional array generation,” Appl. Opt. 32, 2526–2533 (1993).
[CrossRef] [PubMed]

M. T. Gale, G. K. Lang, J. M. Raynor, H. Schutz, “Fabrication of microoptical components by laser beam writing in photoresist,” in Micro-Optics II, A. V. Scheggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1506, 65–70 (1991).

Setsune, K.

Shiono, T.

Shvartsman, F. P.

F. P. Shvartsman, “SURPHEX: new dry photopolymers for replication of surface relief diffractive optics,” in Holographics International ’92, Y. N. Denisyuk, F. Wyrowski, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1732, 121–130 (1993).

Sixt, P.

Y. Opplinger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault, G. Voirin, “One-step 3-D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Somekh, S.

S. Somekh, “Introduction to ion and plasma etching,” J. Vac. Sci. Technol. 13, 1003–1007 (1976).
[CrossRef]

Spitz, E.

L. D’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photo-lithographic fabrication of thin film lenses,” Opt. Commum. 5, 232–235 (1972).
[CrossRef]

Stauffer, J. M.

Y. Opplinger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault, G. Voirin, “One-step 3-D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Stein, R.

Stern, M. B.

M. B. Stern, S. S. Medeiros, “Deep three-dimensional microstructure fabrication for infrared binary optics,” J. Vac. Sci. Technol. B 10, 2520–2525 (1992).
[CrossRef]

M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991).
[CrossRef]

Sun, C. C.

W. Chen, L. M. Walpita, C. C. Sun, W. S. C. Chang, “Ion beam etching of InGaAs, InP, GaAs, Si and Ge,” J. Vac. Sci. Technol. B 4, 701–705 (1986).
[CrossRef]

Svedberg, P.

X. Zhaohua, B. Nilsson, P. Svedberg, “Selective chemically assisted ion beam etching of Si, polysilicon, and SiO2 using Ni–Cr masks and Cl2,” J. Electrochem. Soc. 137, 1579–1581 (1990).
[CrossRef]

Swanson, G. J.

G. J. Swanson, “Binary optics technology: the theory and design of multi-level phase diffractive optical elements,” MIT Tech. Rep. 854, (MIT, Cambridge, Mass., 1989).

Taghizadeh, M. R.

M. Ekberg, M. Larsson, S. Hård, J. Turunen, M. R. Taghizadeh, J. Westerholm, A. Vasara, “Multilevel grating array illuminators manufactured by electron-beam lithography,” Opt. Comm. 88, 37–41 (1992).
[CrossRef]

Tanigami, M.

M. Tanigami, S. Ogata, S. Aoyama, T. Yamashita, K. Imanaka, “Low-wavefront aberration and high-temperature stability molded micro Fresnel lens,” IEEE Photon. Technol. Lett. 1, 384–385 (1989).
[CrossRef]

Turunen, J.

M. Ekberg, M. Larsson, S. Hård, J. Turunen, M. R. Taghizadeh, J. Westerholm, A. Vasara, “Multilevel grating array illuminators manufactured by electron-beam lithography,” Opt. Comm. 88, 37–41 (1992).
[CrossRef]

Urquhart, K. S.

Vasara, A.

M. Ekberg, M. Larsson, S. Hård, J. Turunen, M. R. Taghizadeh, J. Westerholm, A. Vasara, “Multilevel grating array illuminators manufactured by electron-beam lithography,” Opt. Comm. 88, 37–41 (1992).
[CrossRef]

Voirin, G.

Y. Opplinger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault, G. Voirin, “One-step 3-D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Walker, S. J.

Walpita, L. M.

W. Chen, L. M. Walpita, C. C. Sun, W. S. C. Chang, “Ion beam etching of InGaAs, InP, GaAs, Si and Ge,” J. Vac. Sci. Technol. B 4, 701–705 (1986).
[CrossRef]

Westerholm, J.

M. Ekberg, M. Larsson, S. Hård, J. Turunen, M. R. Taghizadeh, J. Westerholm, A. Vasara, “Multilevel grating array illuminators manufactured by electron-beam lithography,” Opt. Comm. 88, 37–41 (1992).
[CrossRef]

Yamashita, T.

M. Tanigami, S. Ogata, S. Aoyama, T. Yamashita, K. Imanaka, “Low-wavefront aberration and high-temperature stability molded micro Fresnel lens,” IEEE Photon. Technol. Lett. 1, 384–385 (1989).
[CrossRef]

Yokogawa, T.

T. Saitoh, T. Yokogawa, T. Narusawa, “Reactive ion beam etching of ZnSe and ZnS epitaxial films using Cl2 electron cyclotron resonance plasma,” Appl. Phys. Lett. 56, 839–841 (1990).
[CrossRef]

Zarowin, C. B.

G. M. Gallatin, C. B. Zarowin, “Unified approach to the temporal evolution of surface profiles in solid etch and deposition processes,” J. Appl. Phys. 65, 5078–5088 (1989).
[CrossRef]

Zhaohua, X.

X. Zhaohua, B. Nilsson, P. Svedberg, “Selective chemically assisted ion beam etching of Si, polysilicon, and SiO2 using Ni–Cr masks and Cl2,” J. Electrochem. Soc. 137, 1579–1581 (1990).
[CrossRef]

Appl. Opt.

Appl. Phys. Lett.

T. Saitoh, T. Yokogawa, T. Narusawa, “Reactive ion beam etching of ZnSe and ZnS epitaxial films using Cl2 electron cyclotron resonance plasma,” Appl. Phys. Lett. 56, 839–841 (1990).
[CrossRef]

IEEE Photon. Technol. Lett.

M. Tanigami, S. Ogata, S. Aoyama, T. Yamashita, K. Imanaka, “Low-wavefront aberration and high-temperature stability molded micro Fresnel lens,” IEEE Photon. Technol. Lett. 1, 384–385 (1989).
[CrossRef]

J. Appl. Phys.

G. M. Gallatin, C. B. Zarowin, “Unified approach to the temporal evolution of surface profiles in solid etch and deposition processes,” J. Appl. Phys. 65, 5078–5088 (1989).
[CrossRef]

J. Electrochem. Soc.

X. Zhaohua, B. Nilsson, P. Svedberg, “Selective chemically assisted ion beam etching of Si, polysilicon, and SiO2 using Ni–Cr masks and Cl2,” J. Electrochem. Soc. 137, 1579–1581 (1990).
[CrossRef]

J. Vac. Sci. Technol.

S. Somekh, “Introduction to ion and plasma etching,” J. Vac. Sci. Technol. 13, 1003–1007 (1976).
[CrossRef]

T. H. P. Chang, “Proximity effect in electron-beam lithography,” J. Vac. Sci. Technol. 12, 1271–1275 (1976).
[CrossRef]

J. Vac. Sci. Technol. B

M. B. Stern, S. S. Medeiros, “Deep three-dimensional microstructure fabrication for infrared binary optics,” J. Vac. Sci. Technol. B 10, 2520–2525 (1992).
[CrossRef]

M. B. Stern, M. Holz, S. S. Medeiros, R. E. Knowlden, “Fabricating binary optics: process variables critical to optical efficiency,” J. Vac. Sci. Technol. B 9, 3117–3121 (1991).
[CrossRef]

P. D. Maker, R. E. Muller, “Phase holograms in polymethyl methacrylate,” J. Vac. Sci. Technol. B 10, 2516–2519 (1992).
[CrossRef]

W. Chen, L. M. Walpita, C. C. Sun, W. S. C. Chang, “Ion beam etching of InGaAs, InP, GaAs, Si and Ge,” J. Vac. Sci. Technol. B 4, 701–705 (1986).
[CrossRef]

Jpn. J. Appl. Phys. Part 2

T. Nishibe, S. Nunoue, “Dry etching of InGaAsP/InP structures by reactive ion beam etching using chlorine and argon,” Jpn. J. Appl. Phys. Part 2 29, 2449–2452 (1990).
[CrossRef]

Microelectron. Eng.

Y. Opplinger, P. Sixt, J. M. Stauffer, J. M. Mayor, P. Regnault, G. Voirin, “One-step 3-D shaping using a gray-tone mask for optical and microelectronic applications,” Microelectron. Eng. 23, 449–454 (1994).
[CrossRef]

Opt. Comm.

M. Ekberg, M. Larsson, S. Hård, J. Turunen, M. R. Taghizadeh, J. Westerholm, A. Vasara, “Multilevel grating array illuminators manufactured by electron-beam lithography,” Opt. Comm. 88, 37–41 (1992).
[CrossRef]

Opt. Commum.

L. D’Auria, J. P. Huignard, A. M. Roy, E. Spitz, “Photo-lithographic fabrication of thin film lenses,” Opt. Commum. 5, 232–235 (1972).
[CrossRef]

Opt. Lett.

Optik

J. Jahns, K.-H. Brenner, W. Daschner, C. Doubrava, T. Merklein, “Replication of diffractive microoptical elements using a PMMA molding technique,” Optik 89, 98–100 (1992).

VDI Ber. (Ver. Dtsch. Ing.)

E. B. Kley, W. Dorl, “Einsatz der Elektronenstrahllithograpie zur Herstellung mikrooptischer Bauelemente,” VDI Ber. (Ver. Dtsch. Ing.) 966, 531–541 (1992).

Other

M. T. Gale, G. K. Lang, J. M. Raynor, H. Schutz, “Fabrication of microoptical components by laser beam writing in photoresist,” in Micro-Optics II, A. V. Scheggi, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1506, 65–70 (1991).

G. J. Swanson, “Binary optics technology: the theory and design of multi-level phase diffractive optical elements,” MIT Tech. Rep. 854, (MIT, Cambridge, Mass., 1989).

F. P. Shvartsman, “SURPHEX: new dry photopolymers for replication of surface relief diffractive optics,” in Holographics International ’92, Y. N. Denisyuk, F. Wyrowski, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1732, 121–130 (1993).

D. W. Ricks, “Scattering from diffractive optics,” in Miniature Diffractive Optics, S. H. Lee, ed., Proc. Soc. Photo-Opt. Instrum. Eng.CR49, 187–211 (1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Slope-dependent etch rates. Etch factor q is given as a function of the local slope.

Fig. 2
Fig. 2

Resist characteristics for OeBR-514. Depth as a function of electron dosage.

Fig. 3
Fig. 3

Change of q factor with amount of introduced CHF3.

Fig. 4
Fig. 4

Lens with eight phase levels after fabrication, (b) section of the lens without applied correction, (c) section of the lens with applied corrections.

Fig. 5
Fig. 5

Atomic force microscope surface scan of element with applied compensation.

Tables (1)

Tables Icon

Table 1 Feature Depth in Fabricated Elements a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

EPSF ( r ) = 1 π ( 1 + η ) [ exp ( r 2 α 2 ) α + η exp ( r 2 β 2 ) β ] .
P i ( r ) n + 1 = P i ( r ) n + [ P d ( r ) P c ( r ) n ] , P i ( r ) 1 = P d ( r ) , P c ( r ) n = P i ( r ) n * EPSF ( r ) , n = 1 , 2 , , N .

Metrics