Abstract

We introduce a new type of optical-fiber Mach–Zehnder interferometer whose output depends on phase differentials or the time rate of change of the unknown phase-modulating signal. Whereas the actual phase excursion introduced by the signal could cause interference over several fringes in a conventional Mach–Zehnder interferometer, the differential phase shifts may be restricted to the linear range of the phase detector. Being of simple construction, the interferometer can be operated without active biasing, additional phase modulation, or complex signal-processing techniques. We analyze a prototype architecture to explain the principle of operation of the system and to derive design formulas. This is followed by experimental evaluation of a more practical configuration.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Jackson, R. Priest, A. Dandridge, A. B. Tveten, “Elimination of drift in a single-mode optical fiber interferometer using a piezoelectrically stretched coiled fiber,” Appl. Opt. 19, 2926–2929 (1980).
    [CrossRef] [PubMed]
  2. I. J. Bush, R. L. Phillips, “Synchronous phase detection for optical fiber interferometric sensors,” Appl. Opt. 22, 2329–2336 (1983).
    [CrossRef] [PubMed]
  3. S. J. Spammer, P. L. Swart, “A quadrature phase tracker for open-loop gyroscopes,” IEEE Trans. Circuits Syst. 140, 86–91 (1993).
  4. A. Dandridge, A. B. Tveten, “Phase compensation in interferometric fiber-optic sensors,” Opt. Lett. 7, 279–281 (1982).
    [CrossRef] [PubMed]
  5. S. Haykin, Communication Systems (Wiley, New York, 1983).
  6. C. D. Butter, G. B. Hocker, “Fiber optics strain gauge,” Appl. Opt. 17, 2867–2870 (1978).
    [CrossRef] [PubMed]

1993 (1)

S. J. Spammer, P. L. Swart, “A quadrature phase tracker for open-loop gyroscopes,” IEEE Trans. Circuits Syst. 140, 86–91 (1993).

1983 (1)

1982 (1)

1980 (1)

1978 (1)

Bush, I. J.

Butter, C. D.

Dandridge, A.

Haykin, S.

S. Haykin, Communication Systems (Wiley, New York, 1983).

Hocker, G. B.

Jackson, D. A.

Phillips, R. L.

Priest, R.

Spammer, S. J.

S. J. Spammer, P. L. Swart, “A quadrature phase tracker for open-loop gyroscopes,” IEEE Trans. Circuits Syst. 140, 86–91 (1993).

Swart, P. L.

S. J. Spammer, P. L. Swart, “A quadrature phase tracker for open-loop gyroscopes,” IEEE Trans. Circuits Syst. 140, 86–91 (1993).

Tveten, A. B.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Prototype of the differentiating Mach–Zehnder interferometer.

Fig. 2
Fig. 2

Linear operating region of the differentiating Mach–Zehnder interferometer located under the hyperbolic curve and to the left of the vertical boundary.

Fig. 3
Fig. 3

Schematic representation of a practical embodiment of the differentiating Mach–Zehnder interferometer.

Fig. 4
Fig. 4

Input signal s(t) and detector output d0(t) for a conventional Mach–Zehnder interferometer.

Fig. 5
Fig. 5

Input signal s(t), output signal yout(t), and integrated output signal y0(t).

Equations (16)

Equations on this page are rendered with MathJax. Learn more.

z ( t ) = z 1 ( t ) + z 2 ( t - T ) exp ( - j π 2 ) ,
d 0 ( t ) sin [ ϕ ( t ) - ϕ ( t - T ) ] .
y out ( t ) ϕ ( t ) - ϕ ( t - T ) for - π 2 ϕ ( t ) - ϕ ( t - T ) π 2 .
f max 1 2 π T .
T d ϕ ( t ) d t π 2 .
ϕ ( t ) = ϕ m sin ( 2 π f m t ) ,
ϕ m f m T ¼ .
ϕ m = 2 π ξ n Δ l λ ,
Δ l f m T λ 8 π n ξ ,
T = n L c ,
Δ l f m L λ c 8 π n 2 ξ .
ϕ ( t ) - ϕ ( t - T ) = 4 π 2 n 2 ξ L f m Δ l c λ .
PCF = ϕ m ϕ ( t ) - ϕ ( t - T ) = c 2 π n L f m .
d 0 ( t ) sin [ T d ϕ ( t ) d t ] .
T = 2 T d = 2 n L d c = n L c ,
Δ l f m L c λ 8 π n 2 ξ ,

Metrics