Abstract

The representativity problem of laser Doppler anemometer wind measurements in the boundary layer under different atmospheric conditions has been investigated theoretically and experimentally. The calculations of the mean wind-velocity measurement errors for the surface layer under different types of thermal stratification and for the boundary layer under neutral conditions have been carried out. The theoretical conclusions are confirmed by the experimental results.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. Ch. Werner, P. Flamant, F. Köpp, C. Loth, H. Herrmann, J. Wildenauer, A. Dolfi-Bouteyre, G. Ancellet, “WIND: an advanced wind infrared Doppler lidar for mesoscale meteorological studies. Phase 0/A-Study” (German Aerospace Research Establishment, Oberpfaffenhofen, Germany, 1989), p. 35.
  2. V. E. Zuev, V. A. Banakh, V. V. Pokasov, Optics of the Turbulent Atmosphere (Gidrometeoizdat, Leningrad, 1988), p. 87.
  3. G. G. Matvienko, G. O. Zadde, E. S. Ferdinandov, I. N. Kolev, R. P. Avramova, Correlation Methods of Lidar Wind Velocity Measurements (Nauka, Moscow, 1985), p. 224.
  4. R. M. Hardesty, R. I. Keeler, M. J. Post, R. H. Richter, “Characteristics of coherent lidar returns from calibration targets and aerosols,” Appl. Opt. 20, 3763–3769 (1981).
    [CrossRef] [PubMed]
  5. D. S. Zrnič, “Estimation of spectral moments for weather echos,” IEEE Trans. Geosci. Electron. GE-17, 113–128 (1979).
    [CrossRef]
  6. R. J. Keeler, R. J. Serafin, R. L. Schwiesow, D. H. Lenschow, J. M. Vaughan, A. Woodfield, “An airborne laser air motion sensing system. Part I: Concept and preliminary experiment,” J. Atmos. Oceanic Technol. 4, 113–127 (1987).
    [CrossRef]
  7. J. H. Churnside, H. T. Yura, “Speckle statistics of atmospherically backscattered laser light,” Appl. Opt. 22, 2559–2565 (1983).
    [CrossRef] [PubMed]
  8. R. B. Chadwick, E. E. Gossard, “Radar probing and measurement of the planetary boundary layer,” in Probing the Atmospheric Boundary Layer, D. H. Lenschow, ed. (American Meteorological Society, Boston, Mass., 1986), p. 168.
  9. B. Crosignani, P. Di Porto, M. Bertolotti, Statistical Properties of Scattered Light (Academic, New York, 1975), Chap. 6, p. 186.
  10. A. Ishmaru, Wave Propagation and Scattering in Random Media (Academy, New York, 1978), Vol. 2, p. 278.
  11. V. A. Banakh, F. Köpp, I. N. Smalikho, and Ch. Werner, “Representativity of the wind measurements by a laser Doppler anemometer (LDA) in the boundary layer of the atmosphere,” in Atmospheric Propagation and Remote Sensing II, A. Kohnle, W. B. Miller, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1968, 483–493 (1993).
  12. C. M. Sonnenschein, F. A. Horrigan, “Signal-to-noise relationships for coaxial systems that heterodyne backscatter from the atmosphere,” Appl. Opt. 10, 1600–1604 (1971).
    [CrossRef] [PubMed]
  13. F. Köpp, R. L. Schwiesow, Ch. Werner, “Remote measurements of boundary layer wind profiles using a cw Doppler lidar,” J. Climate Appl. Meteorol. 23, 148–158 (1984).
    [CrossRef]
  14. Ch. Werner, “Fast sector scan and pattern recognition for a cw laser Doppler anemometer,” Appl. Opt. 24, 3557–3564 (1985).
    [CrossRef] [PubMed]
  15. L. Kristensen, D. H. Lenschow, “An airborne laser air motion sensing system. Part II: Design criteria and measurement possibilities,” J. Atmos. Oceanic Technol. 4, 128–138 (1987).
    [CrossRef]
  16. I. L. Lumley, H. A. Panofsky, The Structure of Atmospheric Turbulence (Interscience, New York, 1964), Chap. 1, p. 31.
  17. A. S. Monin, A. M. Yaglom, Statistical Hydromechanics (Nauka, Moscow, 1965, 1967), parts I and II.
  18. L. Kristensen, D. H. Lenschow, P. Kirkegaard, M. Courtney, “The spectral velocity tensor for homogeneous boundary-layer turbulence,” Boundary-Layer Meteorol. 47, 149–193 (1989).
    [CrossRef]
  19. J. Højstrup, “Velocity spectra in the unstable planetary boundary layer,” J. Atmos. Sci. 39, 2239–2248 (1982).
    [CrossRef]
  20. O. L. L. Morales, E. Epstein, “The velocity spectra in the stable surface layer,” Boundary-Layer Meteorol. 40, 407–414 (1987).
    [CrossRef]
  21. D. L. Laikhtman, Physics of the Atmospheric Boundary Layer (Gidrometeoizdat, Leningrad, 1961), p. 48.
  22. S. S. Zilitinkevich, Dynamics of the Boundary Layer of the Atmosphere (Gidrometeoizdat, Leningrad, 1970), p. 145.
  23. U. Högström, “Non-dimensional wind and temperature profiles in the atmospheric surface layer: a reevaluation,” Boundary-Layer Meteorol. 42, 55–78 (1988).
    [CrossRef]
  24. A. S. Monin, “On turbulence symmetry properties in air surface layer,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 1, 490–496 (1965).
  25. F. T. M. Nieuwstadt, H. Van Dop, eds. Atmospheric Turbulence and Air Pollution Modelling: A Course Held in the Hague, 21–25 September 1981 (Reidel, Dordrecht, The Netherlands, 1982).
  26. B. G. Vager, E. D. Nadezhina, Atmospheric Boundary Layer under Conditions of a Horizontal Inhomogeneity (Gidrometeoizdat, Leningrad, 1979), p. 16.
  27. A. K. Blackadar, “The vertical distribution of wind and turbulent exchange in a neutral atmosphere,” J. Geophys. Res. 67, 3095–3100 (1962).
    [CrossRef]
  28. N. L. Byzova, B. N. Ivanov, E. K. Garger, Turbulence in the Boundary Layer of the Atmosphere (Gidrometeoizdat, Leningrad, 1989), p. 109.
  29. V. I. Tatarskii, Wave Propagation in a Turbulent Atmosphere (Nauka, Moscow, 1967), p. 147.
  30. J. S. Bendat, A. G. Piersol, Random Data: Analysis and Measurement Procedures (Wiley, New York, 1986), p. 282.

1989 (1)

L. Kristensen, D. H. Lenschow, P. Kirkegaard, M. Courtney, “The spectral velocity tensor for homogeneous boundary-layer turbulence,” Boundary-Layer Meteorol. 47, 149–193 (1989).
[CrossRef]

1988 (1)

U. Högström, “Non-dimensional wind and temperature profiles in the atmospheric surface layer: a reevaluation,” Boundary-Layer Meteorol. 42, 55–78 (1988).
[CrossRef]

1987 (3)

L. Kristensen, D. H. Lenschow, “An airborne laser air motion sensing system. Part II: Design criteria and measurement possibilities,” J. Atmos. Oceanic Technol. 4, 128–138 (1987).
[CrossRef]

O. L. L. Morales, E. Epstein, “The velocity spectra in the stable surface layer,” Boundary-Layer Meteorol. 40, 407–414 (1987).
[CrossRef]

R. J. Keeler, R. J. Serafin, R. L. Schwiesow, D. H. Lenschow, J. M. Vaughan, A. Woodfield, “An airborne laser air motion sensing system. Part I: Concept and preliminary experiment,” J. Atmos. Oceanic Technol. 4, 113–127 (1987).
[CrossRef]

1985 (1)

1984 (1)

F. Köpp, R. L. Schwiesow, Ch. Werner, “Remote measurements of boundary layer wind profiles using a cw Doppler lidar,” J. Climate Appl. Meteorol. 23, 148–158 (1984).
[CrossRef]

1983 (1)

J. H. Churnside, H. T. Yura, “Speckle statistics of atmospherically backscattered laser light,” Appl. Opt. 22, 2559–2565 (1983).
[CrossRef] [PubMed]

1982 (1)

J. Højstrup, “Velocity spectra in the unstable planetary boundary layer,” J. Atmos. Sci. 39, 2239–2248 (1982).
[CrossRef]

1981 (1)

1979 (1)

D. S. Zrnič, “Estimation of spectral moments for weather echos,” IEEE Trans. Geosci. Electron. GE-17, 113–128 (1979).
[CrossRef]

1971 (1)

1965 (1)

A. S. Monin, “On turbulence symmetry properties in air surface layer,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 1, 490–496 (1965).

1962 (1)

A. K. Blackadar, “The vertical distribution of wind and turbulent exchange in a neutral atmosphere,” J. Geophys. Res. 67, 3095–3100 (1962).
[CrossRef]

Ancellet, G.

Ch. Werner, P. Flamant, F. Köpp, C. Loth, H. Herrmann, J. Wildenauer, A. Dolfi-Bouteyre, G. Ancellet, “WIND: an advanced wind infrared Doppler lidar for mesoscale meteorological studies. Phase 0/A-Study” (German Aerospace Research Establishment, Oberpfaffenhofen, Germany, 1989), p. 35.

Avramova, R. P.

G. G. Matvienko, G. O. Zadde, E. S. Ferdinandov, I. N. Kolev, R. P. Avramova, Correlation Methods of Lidar Wind Velocity Measurements (Nauka, Moscow, 1985), p. 224.

Banakh, V. A.

V. E. Zuev, V. A. Banakh, V. V. Pokasov, Optics of the Turbulent Atmosphere (Gidrometeoizdat, Leningrad, 1988), p. 87.

V. A. Banakh, F. Köpp, I. N. Smalikho, and Ch. Werner, “Representativity of the wind measurements by a laser Doppler anemometer (LDA) in the boundary layer of the atmosphere,” in Atmospheric Propagation and Remote Sensing II, A. Kohnle, W. B. Miller, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1968, 483–493 (1993).

Bendat, J. S.

J. S. Bendat, A. G. Piersol, Random Data: Analysis and Measurement Procedures (Wiley, New York, 1986), p. 282.

Bertolotti, M.

B. Crosignani, P. Di Porto, M. Bertolotti, Statistical Properties of Scattered Light (Academic, New York, 1975), Chap. 6, p. 186.

Blackadar, A. K.

A. K. Blackadar, “The vertical distribution of wind and turbulent exchange in a neutral atmosphere,” J. Geophys. Res. 67, 3095–3100 (1962).
[CrossRef]

Byzova, N. L.

N. L. Byzova, B. N. Ivanov, E. K. Garger, Turbulence in the Boundary Layer of the Atmosphere (Gidrometeoizdat, Leningrad, 1989), p. 109.

Chadwick, R. B.

R. B. Chadwick, E. E. Gossard, “Radar probing and measurement of the planetary boundary layer,” in Probing the Atmospheric Boundary Layer, D. H. Lenschow, ed. (American Meteorological Society, Boston, Mass., 1986), p. 168.

Churnside, J. H.

J. H. Churnside, H. T. Yura, “Speckle statistics of atmospherically backscattered laser light,” Appl. Opt. 22, 2559–2565 (1983).
[CrossRef] [PubMed]

Courtney, M.

L. Kristensen, D. H. Lenschow, P. Kirkegaard, M. Courtney, “The spectral velocity tensor for homogeneous boundary-layer turbulence,” Boundary-Layer Meteorol. 47, 149–193 (1989).
[CrossRef]

Crosignani, B.

B. Crosignani, P. Di Porto, M. Bertolotti, Statistical Properties of Scattered Light (Academic, New York, 1975), Chap. 6, p. 186.

Di Porto, P.

B. Crosignani, P. Di Porto, M. Bertolotti, Statistical Properties of Scattered Light (Academic, New York, 1975), Chap. 6, p. 186.

Dolfi-Bouteyre, A.

Ch. Werner, P. Flamant, F. Köpp, C. Loth, H. Herrmann, J. Wildenauer, A. Dolfi-Bouteyre, G. Ancellet, “WIND: an advanced wind infrared Doppler lidar for mesoscale meteorological studies. Phase 0/A-Study” (German Aerospace Research Establishment, Oberpfaffenhofen, Germany, 1989), p. 35.

Epstein, E.

O. L. L. Morales, E. Epstein, “The velocity spectra in the stable surface layer,” Boundary-Layer Meteorol. 40, 407–414 (1987).
[CrossRef]

Ferdinandov, E. S.

G. G. Matvienko, G. O. Zadde, E. S. Ferdinandov, I. N. Kolev, R. P. Avramova, Correlation Methods of Lidar Wind Velocity Measurements (Nauka, Moscow, 1985), p. 224.

Flamant, P.

Ch. Werner, P. Flamant, F. Köpp, C. Loth, H. Herrmann, J. Wildenauer, A. Dolfi-Bouteyre, G. Ancellet, “WIND: an advanced wind infrared Doppler lidar for mesoscale meteorological studies. Phase 0/A-Study” (German Aerospace Research Establishment, Oberpfaffenhofen, Germany, 1989), p. 35.

Garger, E. K.

N. L. Byzova, B. N. Ivanov, E. K. Garger, Turbulence in the Boundary Layer of the Atmosphere (Gidrometeoizdat, Leningrad, 1989), p. 109.

Gossard, E. E.

R. B. Chadwick, E. E. Gossard, “Radar probing and measurement of the planetary boundary layer,” in Probing the Atmospheric Boundary Layer, D. H. Lenschow, ed. (American Meteorological Society, Boston, Mass., 1986), p. 168.

Hardesty, R. M.

Herrmann, H.

Ch. Werner, P. Flamant, F. Köpp, C. Loth, H. Herrmann, J. Wildenauer, A. Dolfi-Bouteyre, G. Ancellet, “WIND: an advanced wind infrared Doppler lidar for mesoscale meteorological studies. Phase 0/A-Study” (German Aerospace Research Establishment, Oberpfaffenhofen, Germany, 1989), p. 35.

Högström, U.

U. Högström, “Non-dimensional wind and temperature profiles in the atmospheric surface layer: a reevaluation,” Boundary-Layer Meteorol. 42, 55–78 (1988).
[CrossRef]

Højstrup, J.

J. Højstrup, “Velocity spectra in the unstable planetary boundary layer,” J. Atmos. Sci. 39, 2239–2248 (1982).
[CrossRef]

Horrigan, F. A.

Ishmaru, A.

A. Ishmaru, Wave Propagation and Scattering in Random Media (Academy, New York, 1978), Vol. 2, p. 278.

Ivanov, B. N.

N. L. Byzova, B. N. Ivanov, E. K. Garger, Turbulence in the Boundary Layer of the Atmosphere (Gidrometeoizdat, Leningrad, 1989), p. 109.

Keeler, R. I.

Keeler, R. J.

R. J. Keeler, R. J. Serafin, R. L. Schwiesow, D. H. Lenschow, J. M. Vaughan, A. Woodfield, “An airborne laser air motion sensing system. Part I: Concept and preliminary experiment,” J. Atmos. Oceanic Technol. 4, 113–127 (1987).
[CrossRef]

Kirkegaard, P.

L. Kristensen, D. H. Lenschow, P. Kirkegaard, M. Courtney, “The spectral velocity tensor for homogeneous boundary-layer turbulence,” Boundary-Layer Meteorol. 47, 149–193 (1989).
[CrossRef]

Kolev, I. N.

G. G. Matvienko, G. O. Zadde, E. S. Ferdinandov, I. N. Kolev, R. P. Avramova, Correlation Methods of Lidar Wind Velocity Measurements (Nauka, Moscow, 1985), p. 224.

Köpp, F.

F. Köpp, R. L. Schwiesow, Ch. Werner, “Remote measurements of boundary layer wind profiles using a cw Doppler lidar,” J. Climate Appl. Meteorol. 23, 148–158 (1984).
[CrossRef]

V. A. Banakh, F. Köpp, I. N. Smalikho, and Ch. Werner, “Representativity of the wind measurements by a laser Doppler anemometer (LDA) in the boundary layer of the atmosphere,” in Atmospheric Propagation and Remote Sensing II, A. Kohnle, W. B. Miller, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1968, 483–493 (1993).

Ch. Werner, P. Flamant, F. Köpp, C. Loth, H. Herrmann, J. Wildenauer, A. Dolfi-Bouteyre, G. Ancellet, “WIND: an advanced wind infrared Doppler lidar for mesoscale meteorological studies. Phase 0/A-Study” (German Aerospace Research Establishment, Oberpfaffenhofen, Germany, 1989), p. 35.

Kristensen, L.

L. Kristensen, D. H. Lenschow, P. Kirkegaard, M. Courtney, “The spectral velocity tensor for homogeneous boundary-layer turbulence,” Boundary-Layer Meteorol. 47, 149–193 (1989).
[CrossRef]

L. Kristensen, D. H. Lenschow, “An airborne laser air motion sensing system. Part II: Design criteria and measurement possibilities,” J. Atmos. Oceanic Technol. 4, 128–138 (1987).
[CrossRef]

Laikhtman, D. L.

D. L. Laikhtman, Physics of the Atmospheric Boundary Layer (Gidrometeoizdat, Leningrad, 1961), p. 48.

Lenschow, D. H.

L. Kristensen, D. H. Lenschow, P. Kirkegaard, M. Courtney, “The spectral velocity tensor for homogeneous boundary-layer turbulence,” Boundary-Layer Meteorol. 47, 149–193 (1989).
[CrossRef]

L. Kristensen, D. H. Lenschow, “An airborne laser air motion sensing system. Part II: Design criteria and measurement possibilities,” J. Atmos. Oceanic Technol. 4, 128–138 (1987).
[CrossRef]

R. J. Keeler, R. J. Serafin, R. L. Schwiesow, D. H. Lenschow, J. M. Vaughan, A. Woodfield, “An airborne laser air motion sensing system. Part I: Concept and preliminary experiment,” J. Atmos. Oceanic Technol. 4, 113–127 (1987).
[CrossRef]

Loth, C.

Ch. Werner, P. Flamant, F. Köpp, C. Loth, H. Herrmann, J. Wildenauer, A. Dolfi-Bouteyre, G. Ancellet, “WIND: an advanced wind infrared Doppler lidar for mesoscale meteorological studies. Phase 0/A-Study” (German Aerospace Research Establishment, Oberpfaffenhofen, Germany, 1989), p. 35.

Lumley, I. L.

I. L. Lumley, H. A. Panofsky, The Structure of Atmospheric Turbulence (Interscience, New York, 1964), Chap. 1, p. 31.

Matvienko, G. G.

G. G. Matvienko, G. O. Zadde, E. S. Ferdinandov, I. N. Kolev, R. P. Avramova, Correlation Methods of Lidar Wind Velocity Measurements (Nauka, Moscow, 1985), p. 224.

Monin, A. S.

A. S. Monin, “On turbulence symmetry properties in air surface layer,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 1, 490–496 (1965).

A. S. Monin, A. M. Yaglom, Statistical Hydromechanics (Nauka, Moscow, 1965, 1967), parts I and II.

Morales, O. L. L.

O. L. L. Morales, E. Epstein, “The velocity spectra in the stable surface layer,” Boundary-Layer Meteorol. 40, 407–414 (1987).
[CrossRef]

Nadezhina, E. D.

B. G. Vager, E. D. Nadezhina, Atmospheric Boundary Layer under Conditions of a Horizontal Inhomogeneity (Gidrometeoizdat, Leningrad, 1979), p. 16.

Panofsky, H. A.

I. L. Lumley, H. A. Panofsky, The Structure of Atmospheric Turbulence (Interscience, New York, 1964), Chap. 1, p. 31.

Piersol, A. G.

J. S. Bendat, A. G. Piersol, Random Data: Analysis and Measurement Procedures (Wiley, New York, 1986), p. 282.

Pokasov, V. V.

V. E. Zuev, V. A. Banakh, V. V. Pokasov, Optics of the Turbulent Atmosphere (Gidrometeoizdat, Leningrad, 1988), p. 87.

Post, M. J.

Richter, R. H.

Schwiesow, R. L.

R. J. Keeler, R. J. Serafin, R. L. Schwiesow, D. H. Lenschow, J. M. Vaughan, A. Woodfield, “An airborne laser air motion sensing system. Part I: Concept and preliminary experiment,” J. Atmos. Oceanic Technol. 4, 113–127 (1987).
[CrossRef]

F. Köpp, R. L. Schwiesow, Ch. Werner, “Remote measurements of boundary layer wind profiles using a cw Doppler lidar,” J. Climate Appl. Meteorol. 23, 148–158 (1984).
[CrossRef]

Serafin, R. J.

R. J. Keeler, R. J. Serafin, R. L. Schwiesow, D. H. Lenschow, J. M. Vaughan, A. Woodfield, “An airborne laser air motion sensing system. Part I: Concept and preliminary experiment,” J. Atmos. Oceanic Technol. 4, 113–127 (1987).
[CrossRef]

Smalikho, I. N.

V. A. Banakh, F. Köpp, I. N. Smalikho, and Ch. Werner, “Representativity of the wind measurements by a laser Doppler anemometer (LDA) in the boundary layer of the atmosphere,” in Atmospheric Propagation and Remote Sensing II, A. Kohnle, W. B. Miller, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1968, 483–493 (1993).

Sonnenschein, C. M.

Tatarskii, V. I.

V. I. Tatarskii, Wave Propagation in a Turbulent Atmosphere (Nauka, Moscow, 1967), p. 147.

Vager, B. G.

B. G. Vager, E. D. Nadezhina, Atmospheric Boundary Layer under Conditions of a Horizontal Inhomogeneity (Gidrometeoizdat, Leningrad, 1979), p. 16.

Vaughan, J. M.

R. J. Keeler, R. J. Serafin, R. L. Schwiesow, D. H. Lenschow, J. M. Vaughan, A. Woodfield, “An airborne laser air motion sensing system. Part I: Concept and preliminary experiment,” J. Atmos. Oceanic Technol. 4, 113–127 (1987).
[CrossRef]

Werner, Ch.

Ch. Werner, “Fast sector scan and pattern recognition for a cw laser Doppler anemometer,” Appl. Opt. 24, 3557–3564 (1985).
[CrossRef] [PubMed]

F. Köpp, R. L. Schwiesow, Ch. Werner, “Remote measurements of boundary layer wind profiles using a cw Doppler lidar,” J. Climate Appl. Meteorol. 23, 148–158 (1984).
[CrossRef]

Ch. Werner, P. Flamant, F. Köpp, C. Loth, H. Herrmann, J. Wildenauer, A. Dolfi-Bouteyre, G. Ancellet, “WIND: an advanced wind infrared Doppler lidar for mesoscale meteorological studies. Phase 0/A-Study” (German Aerospace Research Establishment, Oberpfaffenhofen, Germany, 1989), p. 35.

Wildenauer, J.

Ch. Werner, P. Flamant, F. Köpp, C. Loth, H. Herrmann, J. Wildenauer, A. Dolfi-Bouteyre, G. Ancellet, “WIND: an advanced wind infrared Doppler lidar for mesoscale meteorological studies. Phase 0/A-Study” (German Aerospace Research Establishment, Oberpfaffenhofen, Germany, 1989), p. 35.

Woodfield, A.

R. J. Keeler, R. J. Serafin, R. L. Schwiesow, D. H. Lenschow, J. M. Vaughan, A. Woodfield, “An airborne laser air motion sensing system. Part I: Concept and preliminary experiment,” J. Atmos. Oceanic Technol. 4, 113–127 (1987).
[CrossRef]

Yaglom, A. M.

A. S. Monin, A. M. Yaglom, Statistical Hydromechanics (Nauka, Moscow, 1965, 1967), parts I and II.

Yura, H. T.

J. H. Churnside, H. T. Yura, “Speckle statistics of atmospherically backscattered laser light,” Appl. Opt. 22, 2559–2565 (1983).
[CrossRef] [PubMed]

Zadde, G. O.

G. G. Matvienko, G. O. Zadde, E. S. Ferdinandov, I. N. Kolev, R. P. Avramova, Correlation Methods of Lidar Wind Velocity Measurements (Nauka, Moscow, 1985), p. 224.

Zilitinkevich, S. S.

S. S. Zilitinkevich, Dynamics of the Boundary Layer of the Atmosphere (Gidrometeoizdat, Leningrad, 1970), p. 145.

Zrnic, D. S.

D. S. Zrnič, “Estimation of spectral moments for weather echos,” IEEE Trans. Geosci. Electron. GE-17, 113–128 (1979).
[CrossRef]

Zuev, V. E.

V. E. Zuev, V. A. Banakh, V. V. Pokasov, Optics of the Turbulent Atmosphere (Gidrometeoizdat, Leningrad, 1988), p. 87.

Appl. Opt. (1)

J. H. Churnside, H. T. Yura, “Speckle statistics of atmospherically backscattered laser light,” Appl. Opt. 22, 2559–2565 (1983).
[CrossRef] [PubMed]

Appl. Opt. (3)

Boundary-Layer Meteorol. (1)

O. L. L. Morales, E. Epstein, “The velocity spectra in the stable surface layer,” Boundary-Layer Meteorol. 40, 407–414 (1987).
[CrossRef]

Boundary-Layer Meteorol. (2)

U. Högström, “Non-dimensional wind and temperature profiles in the atmospheric surface layer: a reevaluation,” Boundary-Layer Meteorol. 42, 55–78 (1988).
[CrossRef]

L. Kristensen, D. H. Lenschow, P. Kirkegaard, M. Courtney, “The spectral velocity tensor for homogeneous boundary-layer turbulence,” Boundary-Layer Meteorol. 47, 149–193 (1989).
[CrossRef]

IEEE Trans. Geosci. Electron. (1)

D. S. Zrnič, “Estimation of spectral moments for weather echos,” IEEE Trans. Geosci. Electron. GE-17, 113–128 (1979).
[CrossRef]

Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana (1)

A. S. Monin, “On turbulence symmetry properties in air surface layer,” Izv. Akad. Nauk SSSR, Fiz. Atmos. Okeana 1, 490–496 (1965).

J. Climate Appl. Meteorol. (1)

F. Köpp, R. L. Schwiesow, Ch. Werner, “Remote measurements of boundary layer wind profiles using a cw Doppler lidar,” J. Climate Appl. Meteorol. 23, 148–158 (1984).
[CrossRef]

J. Atmos. Sci. (1)

J. Højstrup, “Velocity spectra in the unstable planetary boundary layer,” J. Atmos. Sci. 39, 2239–2248 (1982).
[CrossRef]

J. Atmos. Oceanic Technol. (1)

L. Kristensen, D. H. Lenschow, “An airborne laser air motion sensing system. Part II: Design criteria and measurement possibilities,” J. Atmos. Oceanic Technol. 4, 128–138 (1987).
[CrossRef]

J. Atmos. Oceanic Technol. (1)

R. J. Keeler, R. J. Serafin, R. L. Schwiesow, D. H. Lenschow, J. M. Vaughan, A. Woodfield, “An airborne laser air motion sensing system. Part I: Concept and preliminary experiment,” J. Atmos. Oceanic Technol. 4, 113–127 (1987).
[CrossRef]

J. Geophys. Res. (1)

A. K. Blackadar, “The vertical distribution of wind and turbulent exchange in a neutral atmosphere,” J. Geophys. Res. 67, 3095–3100 (1962).
[CrossRef]

Other (16)

N. L. Byzova, B. N. Ivanov, E. K. Garger, Turbulence in the Boundary Layer of the Atmosphere (Gidrometeoizdat, Leningrad, 1989), p. 109.

V. I. Tatarskii, Wave Propagation in a Turbulent Atmosphere (Nauka, Moscow, 1967), p. 147.

J. S. Bendat, A. G. Piersol, Random Data: Analysis and Measurement Procedures (Wiley, New York, 1986), p. 282.

F. T. M. Nieuwstadt, H. Van Dop, eds. Atmospheric Turbulence and Air Pollution Modelling: A Course Held in the Hague, 21–25 September 1981 (Reidel, Dordrecht, The Netherlands, 1982).

B. G. Vager, E. D. Nadezhina, Atmospheric Boundary Layer under Conditions of a Horizontal Inhomogeneity (Gidrometeoizdat, Leningrad, 1979), p. 16.

D. L. Laikhtman, Physics of the Atmospheric Boundary Layer (Gidrometeoizdat, Leningrad, 1961), p. 48.

S. S. Zilitinkevich, Dynamics of the Boundary Layer of the Atmosphere (Gidrometeoizdat, Leningrad, 1970), p. 145.

Ch. Werner, P. Flamant, F. Köpp, C. Loth, H. Herrmann, J. Wildenauer, A. Dolfi-Bouteyre, G. Ancellet, “WIND: an advanced wind infrared Doppler lidar for mesoscale meteorological studies. Phase 0/A-Study” (German Aerospace Research Establishment, Oberpfaffenhofen, Germany, 1989), p. 35.

V. E. Zuev, V. A. Banakh, V. V. Pokasov, Optics of the Turbulent Atmosphere (Gidrometeoizdat, Leningrad, 1988), p. 87.

G. G. Matvienko, G. O. Zadde, E. S. Ferdinandov, I. N. Kolev, R. P. Avramova, Correlation Methods of Lidar Wind Velocity Measurements (Nauka, Moscow, 1985), p. 224.

R. B. Chadwick, E. E. Gossard, “Radar probing and measurement of the planetary boundary layer,” in Probing the Atmospheric Boundary Layer, D. H. Lenschow, ed. (American Meteorological Society, Boston, Mass., 1986), p. 168.

B. Crosignani, P. Di Porto, M. Bertolotti, Statistical Properties of Scattered Light (Academic, New York, 1975), Chap. 6, p. 186.

A. Ishmaru, Wave Propagation and Scattering in Random Media (Academy, New York, 1978), Vol. 2, p. 278.

V. A. Banakh, F. Köpp, I. N. Smalikho, and Ch. Werner, “Representativity of the wind measurements by a laser Doppler anemometer (LDA) in the boundary layer of the atmosphere,” in Atmospheric Propagation and Remote Sensing II, A. Kohnle, W. B. Miller, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1968, 483–493 (1993).

I. L. Lumley, H. A. Panofsky, The Structure of Atmospheric Turbulence (Interscience, New York, 1964), Chap. 1, p. 31.

A. S. Monin, A. M. Yaglom, Statistical Hydromechanics (Nauka, Moscow, 1965, 1967), parts I and II.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Schematic illustration of the geometry of the conically scanning lidar.

Fig. 2
Fig. 2

Measurement error ɛxy versus number of rotations N.

Fig. 3
Fig. 3

Measurement error ɛxy versus elevation angle φ at N = 1 (curves 1, 1′) and at N = 10 (curve 2).

Fig. 4
Fig. 4

Height profile of measurement error ɛxy.

Fig. 5
Fig. 5

Experimental setup and procedure.

Fig. 6
Fig. 6

LDA and cup-anemometer wind-velocity data measured under neutral [a) φ = 30°, b) φ = 60°, d) φ = 30°], stable [c) φ = 30°], weak unstable [e) φ = 30°], and unstable [f) φ = 30°] conditions.

Fig. 7
Fig. 7

Errors of LDA wind velocity measurements: + and —·—·—, data of Fig. 6a); × and ----, data of Fig. 6b); ● and ——, data of Fig. 6c); □ and ·······, data of Fig. 6d); ⋄ and —··—–··, data of Fig. 6e); ○ and — —, data of Fig. 6f).

Fig. 8
Fig. 8

Wind-velocity profile.

Fig. 9
Fig. 9

LDA measurements error profile: ●, experimental; ———, theoretical.

Equations (72)

Equations on this page are rendered with MathJax. Learn more.

j = j 0 + j 1 ,
V D = λ 2 f D .
τ p t 0 τ V .
f D ( t ) = 1 P ( t ) d ff W ( t , f ) ,
E [ f D ( t ) ] = d ff W ( t , f ) P ( t ) ¯ ,
B f ( t 1 , t 2 ) = E [ f D ( t 1 ) f D ( t 2 ) ] E [ f D ( t 1 ) ] E [ f D ( t 2 ) ] = d f d f f f W ( t 1 , f ) W ( t 2 , f ) P ( t 1 ) P ( t 2 ) ¯ d ff W ( t 1 , f ) P ( t 1 ) ¯ d ff W ( t 2 , f ) P ( t 2 ) ¯ ,
E [ f D ( t ) ] = f ˆ D ( t ) ,
B f ( t 1 , t 2 ) = f ˆ D ( t 1 ) f ˆ D ( t 2 ) f ˆ D ( t 1 ) f ˆ D ( t 2 ) ,
f ˆ D ( t ) = d ff W ( t , f ) ¯ / P ( t ) ¯ ,
W ( t , f ) ¯ = | B | 2 d τ E s ( t ) E s * ( t + τ ) ¯ exp ( 2 π i f τ ) .
E s ( t ) E s * ( t + τ ) ¯ = ( k 2 π F t ) 2 d 2 R d 2 ρ T t ( R + 1 2 ρ ) T t ( R 1 2 ρ ) × 2 π d Ω J s ( 0 , R ; S ; t , τ ) exp [ i k ( S R R ) ρ ] ,
2 π d Ω 0 2 π d β π / 2 π d α sin α .
J s ( 0 , R ; S ; t , τ ) = I 0 4 π 0 d z σ t B ( S , S 0 ) ρ c ( z cos α , t ) g 2 ( z cos α ) × exp { i k ( 1 cos α ) V r [ z cos α , R ˜ ( z ) , t ] τ z 0 d z σ t ρ c ( z cos α , t ) 0 z d z σ t ρ c ( z , t ) R ˜ 2 ( z ) a 0 2 g 2 ( z cos α ) } ,
a 0 g ( z ) = a 0 [ ( 1 z R ) 2 + z 2 ( k a 0 2 ) 2 ] 1 / 2
E s ( t ) E s * ( t + τ ) ¯ = A J s ( 0 , 0 ; S π ; t , τ ) = A I 0 4 π 0 d z σ t B π ρ c ( z , t ) g 2 ( z ) × exp [ 2 0 z d z σ t ρ c ( z , t ) + i 2 k V r ( z , 0 , t ) τ ] ,
f ˆ D ( t ) = 2 λ 0 d z V r ( z , 0 , t ) Q s ( z , t ) ,
Q s ( z , t ) = σ t B π ρ c ( z , t ) g 2 ( z ) exp [ 2 0 z d z σ t ρ c ( z , t ) ] 0 d z σ t B π ρ c ( z , t ) g 2 ( z ) exp [ 2 0 z d z σ t ρ c ( z , t ) ]
Δ z = 0 d z Q s ( z ) Q s ( z m ) .
Δ z λ 2 R 2 a 0 2 ,
V D = V r σ D 2 = 0 d z d z Q s ( z ) Q s ( z ) K r ( z z ) ,
Q s ( z ) g 2 ( z ) 0 d z g 2 ( z ) [ π k a 0 g 2 ( z ) ] 1 .
V r = V z sin φ + V x cos φ cos θ + V y cos φ sin θ,
V L z = 1 sin φ 1 T 0 T d t V D ( t ) , V L x = 1 cos φ 2 T 0 T d t V D ( t ) cos ω 0 t , V L y = 1 cos φ 2 T 0 T d t V D ( t ) sin ω 0 t ,
V = { 0 , U ( h ) , 0 } ,
V L z V L y 0 , V L x U ( h ) .
ε x y = ( V x y U ) 2 1 / 2 U ,
ε x y = 2 cos φ U T [ 0 T d t d t F ( t , t ) cos ω 0 t cos ω 0 t ] 1 / 2 ,
F ( t , t ) = 0 d z d z Q s ( z ) Q s ( z ) K r ( z , z , t , t ) , K r ( z , z , t , t ) = { V r [ r ( z , t ) , t ] V r [ r ( z , t ) , t ] } × { V r [ r ( z , t ) , t ] V r [ r ( z , t ) , t ] }
K r ( z , z , t , t ) = cos 2 φ [ K x x ( p ) cos ω 0 t cos ω 0 t + K y y ( p ) sin ω 0 t sin ω 0 t + K x y ( p ) ( cos ω 0 t sin ω 0 t + sin ω 0 t cos ω 0 t ) ] + sin φ cos φ [ K x z ( p ) ( cos ω 0 t + cos ω 0 t ) + K y z ( p ) ( sin ω 0 t + sin ω 0 t ) ] + sin 2 φ K z z ( p ) ,
K l k ( p ) = [ V l ( r + p , 0 ) V l ] [ V k ( r , 0 ) V k ]
K l k ( p ) = K u ( p ) δ l k + 1 2 p d K u ( p ) d p ( δ l k p l p k p 2 ) ,
K u ( p ) = σ u 2 exp ( p / l u ) ,
K u ( p ) = 0 d η S u ( η ) cos ( η p ) ,
S u ( η ) = 0 . 637 σ u 2 l u ( 1 + 1 . 8 l u 2 η 2 ) 5 / 6 ,
S u ( η ) = 0 . 394 σ u 2 l u 2 / 3 η 5 / 3 .
S u ( η ) = C k ε T 2 / 3 η 5 / 3 ,
l u = ( 0 . 394 C k ) 3 / 2 σ u 3 ε T ,
L = u * 3 κ g 0 T 0 H ρ 0 C p ,
d U ( z ) d z = u * κ z φ u ( ζ ) ,
φ u ( ζ ) = { 1 + 5 ζ, ζ 0 , ( 1 15 ζ ) 1 / 3 , ζ 0 ,
U ( z ) = u * κ { ln ( z z 0 ) + 5 ζ, ζ 1 15 , ln ( z z 0 1 15 | ζ | ) 1 3 + 3 [ 1 ( 15 | ζ | 1 / 3 ) ] , ζ 1 15 .
ε T = u * 3 κ Z [ φ u ( ζ ) ζ ] ,
σ u 2 = u * 2 { C ν 2 [ 1 ζ / φ u ( ζ ) ] 1 / 2 + C u 2 C ν 2 [ 1 ζ / φ u ( ζ ) ] 1 / 2 } ,
σ u 2 ( z ) = σ u S 2 exp ( C 1 z / h b ) ,
l u ( z ) = l u S ( z ) 1 + C 2 l u S ( z ) h b ,
ε x y = σ u U ( l u ω 0 π U ) 1 / 2 N 1 / 2 ,
V x y j ( N ) = 1 N { [ j = 1 N V L x j ( k ) ] 2 + [ k = 1 N V L y j ( k ) ] 2 } 1 / 2 ,
ε x y ( N ) = { 1 n 1 j = 1 n [ V x y j ( N ) V j 1 ] 2 } 1 / 2 ,
V j = V = 1 n j = 1 n V x y j ( 9 ) .
E s ( t + t ) = j = 1 n q j exp { 2 i k [ z j + V r ( z j , t ) t ] } ,
E ( E s ) E s ¯ E s ¯ = 0 .
Γ ( t 1 , t 2 ) = E [ E s ( t 1 ) E s * ( t 2 ) ] = E s ( t 1 ) E s * ( t 2 ) ¯ = P s ¯ exp [ 2 i k V r ( t 1 t 2 ) 2 k 2 σ r 2 ( t 1 t 2 ) 2 ] ,
τ c = 0 d τ | Γ ( τ ) | 2 / P ¯ s 2 ,
τ c = 1 2 π λ 2 σ r ~ 10 6 c ,
K p ( t 1 , t 2 ) = | E s ( t 1 ) | 2 | E s * ( t 2 ) | 2 ¯ | E s ( t 1 ) | 2 ¯ | E s * ( t 2 ) | 2 ¯ ,
K p ( τ ) = K p ( 0 ) 0 d z d z Q s ( z ) Q s ( z ) × exp { 4 σ r 2 k 2 [ 1 k r ( z z ) ] τ 2 } ,
τ p = 0 d τ K p ( τ ) / K p ( 0 ) ,
τ p = 1 2 π λ 2 σ r 0 d z d z Q s ( z ) Q s ( z ) [ 1 k r ( z z ) ] 1 / 2 .
τ p = τ c 0 . 94 σ r / ( ε T Δ z ) 1 / 3 .
P ( t ) = | B | 2 t 0 t 0 / 2 t 0 / 2 d t | E s ( t + t ) | 2 .
σ p 2 = 2 τ P / t 0 .
P E ( P ) P ¯ P ¯ .
W ( t , f ) = | B | 2 m t s j = 1 m | t s / 2 t s / 2 d t E s ( t j + t ) exp ( 2 π i f t ) | 2 ,
E [ W ( f ) ] = P ¯ λ 2 1 ( 2 π ) 1 / 2 σ r exp [ ( λ 2 f V r ) 2 2 σ r 2 ] .
ε w 2 = ( A 1 ) + 1 m A ,
E [ f D ] = 2 λ V r ,
σ f 2 = E [ ( f D E [ f D ] ) 2 ] ,
σ f 2 = 1 P 2 ¯ + d f d f f f E [ W ( f + 2 λ V r ) × W ( f + 2 λ V r ) ] .
σ f 2 = ( 2 / λ ) 2 σ r 2 0 d z d z Q s ( z ) Q s ( z ) k r ( z z ) + 1 4 π ( 2 / λ ) σ r t 0 0 d z d z Q s ( z ) Q s ( z ) × 1 + k r ( z z ) [ 1 k r ( z z ) ] 1 / 2 .
σ f 2 = 1 4 π 1 t 0 2 λ σ r .
σ a = λ 2 [ [ f D f ¯ D ] 2 ¯ ] 1 / 2 .
σ a = [ 0 . 26 σ r 2 λ t 0 ( Δ z ε T ) 1 / 3 ] 1 / 2 .

Metrics