Abstract

Prior approaches (e.g., off-axis holography) to overcoming the limitations of in-line holography for particle fields, namely, intrinsic speckle noise and depth resolution, involved an increased complexity of the optical system. The in-line recording and off-axis viewing (IROV) technique employs a single laser beam to record an in-line hologram, which is then viewed off axis during reconstruction. The signal-to-noise ratio and depth resolution of IROV are higher than conventional in-line holography by an order of magnitude and are comparable with off-axis holography. IROV is a much simpler approach than off-axis holography and is highly promising for holographic particle velocimetry. Measurements of the three-dimensional flow velocity field of a vortex ring obtained by an IROV-based holographic particle velocimetry system are presented.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. D. Trolinger, R. A. Belz, W. M. Farmer, “Holographic techniques for the study of dynamic particle fields,” Appl. Opt. 8, 957–961 (1969).
    [CrossRef] [PubMed]
  2. S. L. Cartwright, P. Dunn, B. J. Thompson, “Particle sizing using far-field holography: new developments,” Opt. Eng. 19, 727–733 (1980).
  3. C. S. Vikram, ed., Selected Papers on Holographic Particle Diagnostics, Vol. MS21 of SPIE Milestone Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1990).
  4. L. W. Weinstein, G. B. Beeler, A. M. Linderman, “High-speed holocinematographic velocimeter for studying turbulent flow control physics,” AIAA Preprint 85-0526 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1985).
  5. H. Meng, F. Hussain, “Holographic particle velocimetry : a 3D measurement technique for vortex interactions, coherent structures and turbulence,” Fluid Dyn. Res. 8, 33–52 (1991).
    [CrossRef]
  6. L. P. Bernal, J. Scherer, “HPIV measurements in vortical flows,” in Holographic Particle Image Velocimetry, E. P. Rood, ed., Vol. 148 of Fluids Engineering Division (American Society of Mechanical Engineers, New York, 1993), pp. 43–50.
  7. S. Simmons, H. Meng, F. Hussain, D. Liu, “Advances in holographic particle velocimetry,” in Optical Diagnostics in Fluid and Thermal Flow, S. S. Cha, J. D. Trolinger, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2005, 306–317 (1993).
  8. H. Meng, W. L. Anderson, F. Hussain, D. D. Liu, “Intrinsic speckle noise in in-line particle holography,” J. Opt. Soc. Am. A 10, 2046–2058 (1993).
    [CrossRef]
  9. V. Zimin, H. Meng, F. Hussain, “Innovative holographic particle velocimer: a multibeam technique,” Opt. Lett. 18, 1101–1103 (1993).
    [CrossRef] [PubMed]
  10. D. H. Barnhart, R. J. Adrian, G. C. Papen, “Phase conjugate holographic system for high resolution particle image velocimetry,” Appl. Opt. 33, 7159–7170 (1994).
    [CrossRef] [PubMed]
  11. K. D. Hinsch, H. Hinrichs, A. Roshop, F. Dreesen, “Holographic and stereoscopic advances in 3-D PIV,” in Holographic Particle Image Velocimetry, E. P. Rood, ed., Vol. 148 of Fluids Engineering Division (American Society of Mechanical Engineers, New York, 1993), pp. 33–36.
  12. H. I. Bjelkhagen, Silver-Halide Recording Materials for Holography and Their Processing (Springer-Verlag, Berlin, 1993), pp. 76–77.
  13. A. Kozma, “Effects of film-grain noise in holography,” J. Opt. Soc. Am. 58, 436–438 (1968).
    [CrossRef]
  14. P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).
  15. T. W. Chen, “Simple formula for light scattering by a large spherical dielectric,” Appl. Opt. 32, 7568–7571 (1993).
    [CrossRef] [PubMed]
  16. G. A. Boutry, Instrumental Optics, R. Auerbach, transl. (Interscience, New York, 1962), p. 354.
  17. H. M. Smith, Principles of Holography (Wiley, New York, 1969), p. 112.
  18. T. F. Johnston, “M2 concept characterizes beam quality,” Laser Focus World 26, 173–177 (1990).
  19. C. S. Vikram, Particle Field Holography (Cambridge U. Press, Cambridge, UK, 1992), p. 95.
  20. F. Hussain, D. D. Liu, S. Simmons, H. Meng, “Holographic and particle velocimetry: prospects and limitations,” in Holographic Particle Image Velocimetry, E. P. Rood, ed., Vol. 148 of Fluids Engineering Division (American Society of Mechanical Engineers, New York, 1993), pp. 1–11.
  21. H. Meng, F. Hussain, “Instantaneous flow field in an unstable vortex ring measured by holographic particle velocimetry,” Phys. Fluids 7, 9–11 (1995).
    [CrossRef]

1995 (1)

H. Meng, F. Hussain, “Instantaneous flow field in an unstable vortex ring measured by holographic particle velocimetry,” Phys. Fluids 7, 9–11 (1995).
[CrossRef]

1994 (1)

1993 (3)

1991 (1)

H. Meng, F. Hussain, “Holographic particle velocimetry : a 3D measurement technique for vortex interactions, coherent structures and turbulence,” Fluid Dyn. Res. 8, 33–52 (1991).
[CrossRef]

1990 (1)

T. F. Johnston, “M2 concept characterizes beam quality,” Laser Focus World 26, 173–177 (1990).

1980 (1)

S. L. Cartwright, P. Dunn, B. J. Thompson, “Particle sizing using far-field holography: new developments,” Opt. Eng. 19, 727–733 (1980).

1969 (1)

1968 (1)

Adrian, R. J.

Anderson, W. L.

Barber, P. W.

P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).

Barnhart, D. H.

Beeler, G. B.

L. W. Weinstein, G. B. Beeler, A. M. Linderman, “High-speed holocinematographic velocimeter for studying turbulent flow control physics,” AIAA Preprint 85-0526 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1985).

Belz, R. A.

Bernal, L. P.

L. P. Bernal, J. Scherer, “HPIV measurements in vortical flows,” in Holographic Particle Image Velocimetry, E. P. Rood, ed., Vol. 148 of Fluids Engineering Division (American Society of Mechanical Engineers, New York, 1993), pp. 43–50.

Bjelkhagen, H. I.

H. I. Bjelkhagen, Silver-Halide Recording Materials for Holography and Their Processing (Springer-Verlag, Berlin, 1993), pp. 76–77.

Boutry, G. A.

G. A. Boutry, Instrumental Optics, R. Auerbach, transl. (Interscience, New York, 1962), p. 354.

Cartwright, S. L.

S. L. Cartwright, P. Dunn, B. J. Thompson, “Particle sizing using far-field holography: new developments,” Opt. Eng. 19, 727–733 (1980).

Chen, T. W.

Dreesen, F.

K. D. Hinsch, H. Hinrichs, A. Roshop, F. Dreesen, “Holographic and stereoscopic advances in 3-D PIV,” in Holographic Particle Image Velocimetry, E. P. Rood, ed., Vol. 148 of Fluids Engineering Division (American Society of Mechanical Engineers, New York, 1993), pp. 33–36.

Dunn, P.

S. L. Cartwright, P. Dunn, B. J. Thompson, “Particle sizing using far-field holography: new developments,” Opt. Eng. 19, 727–733 (1980).

Farmer, W. M.

Hill, S. C.

P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).

Hinrichs, H.

K. D. Hinsch, H. Hinrichs, A. Roshop, F. Dreesen, “Holographic and stereoscopic advances in 3-D PIV,” in Holographic Particle Image Velocimetry, E. P. Rood, ed., Vol. 148 of Fluids Engineering Division (American Society of Mechanical Engineers, New York, 1993), pp. 33–36.

Hinsch, K. D.

K. D. Hinsch, H. Hinrichs, A. Roshop, F. Dreesen, “Holographic and stereoscopic advances in 3-D PIV,” in Holographic Particle Image Velocimetry, E. P. Rood, ed., Vol. 148 of Fluids Engineering Division (American Society of Mechanical Engineers, New York, 1993), pp. 33–36.

Hussain, F.

H. Meng, F. Hussain, “Instantaneous flow field in an unstable vortex ring measured by holographic particle velocimetry,” Phys. Fluids 7, 9–11 (1995).
[CrossRef]

V. Zimin, H. Meng, F. Hussain, “Innovative holographic particle velocimer: a multibeam technique,” Opt. Lett. 18, 1101–1103 (1993).
[CrossRef] [PubMed]

H. Meng, W. L. Anderson, F. Hussain, D. D. Liu, “Intrinsic speckle noise in in-line particle holography,” J. Opt. Soc. Am. A 10, 2046–2058 (1993).
[CrossRef]

H. Meng, F. Hussain, “Holographic particle velocimetry : a 3D measurement technique for vortex interactions, coherent structures and turbulence,” Fluid Dyn. Res. 8, 33–52 (1991).
[CrossRef]

S. Simmons, H. Meng, F. Hussain, D. Liu, “Advances in holographic particle velocimetry,” in Optical Diagnostics in Fluid and Thermal Flow, S. S. Cha, J. D. Trolinger, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2005, 306–317 (1993).

F. Hussain, D. D. Liu, S. Simmons, H. Meng, “Holographic and particle velocimetry: prospects and limitations,” in Holographic Particle Image Velocimetry, E. P. Rood, ed., Vol. 148 of Fluids Engineering Division (American Society of Mechanical Engineers, New York, 1993), pp. 1–11.

Johnston, T. F.

T. F. Johnston, “M2 concept characterizes beam quality,” Laser Focus World 26, 173–177 (1990).

Kozma, A.

Linderman, A. M.

L. W. Weinstein, G. B. Beeler, A. M. Linderman, “High-speed holocinematographic velocimeter for studying turbulent flow control physics,” AIAA Preprint 85-0526 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1985).

Liu, D.

S. Simmons, H. Meng, F. Hussain, D. Liu, “Advances in holographic particle velocimetry,” in Optical Diagnostics in Fluid and Thermal Flow, S. S. Cha, J. D. Trolinger, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2005, 306–317 (1993).

Liu, D. D.

H. Meng, W. L. Anderson, F. Hussain, D. D. Liu, “Intrinsic speckle noise in in-line particle holography,” J. Opt. Soc. Am. A 10, 2046–2058 (1993).
[CrossRef]

F. Hussain, D. D. Liu, S. Simmons, H. Meng, “Holographic and particle velocimetry: prospects and limitations,” in Holographic Particle Image Velocimetry, E. P. Rood, ed., Vol. 148 of Fluids Engineering Division (American Society of Mechanical Engineers, New York, 1993), pp. 1–11.

Meng, H.

H. Meng, F. Hussain, “Instantaneous flow field in an unstable vortex ring measured by holographic particle velocimetry,” Phys. Fluids 7, 9–11 (1995).
[CrossRef]

H. Meng, W. L. Anderson, F. Hussain, D. D. Liu, “Intrinsic speckle noise in in-line particle holography,” J. Opt. Soc. Am. A 10, 2046–2058 (1993).
[CrossRef]

V. Zimin, H. Meng, F. Hussain, “Innovative holographic particle velocimer: a multibeam technique,” Opt. Lett. 18, 1101–1103 (1993).
[CrossRef] [PubMed]

H. Meng, F. Hussain, “Holographic particle velocimetry : a 3D measurement technique for vortex interactions, coherent structures and turbulence,” Fluid Dyn. Res. 8, 33–52 (1991).
[CrossRef]

S. Simmons, H. Meng, F. Hussain, D. Liu, “Advances in holographic particle velocimetry,” in Optical Diagnostics in Fluid and Thermal Flow, S. S. Cha, J. D. Trolinger, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2005, 306–317 (1993).

F. Hussain, D. D. Liu, S. Simmons, H. Meng, “Holographic and particle velocimetry: prospects and limitations,” in Holographic Particle Image Velocimetry, E. P. Rood, ed., Vol. 148 of Fluids Engineering Division (American Society of Mechanical Engineers, New York, 1993), pp. 1–11.

Papen, G. C.

Roshop, A.

K. D. Hinsch, H. Hinrichs, A. Roshop, F. Dreesen, “Holographic and stereoscopic advances in 3-D PIV,” in Holographic Particle Image Velocimetry, E. P. Rood, ed., Vol. 148 of Fluids Engineering Division (American Society of Mechanical Engineers, New York, 1993), pp. 33–36.

Scherer, J.

L. P. Bernal, J. Scherer, “HPIV measurements in vortical flows,” in Holographic Particle Image Velocimetry, E. P. Rood, ed., Vol. 148 of Fluids Engineering Division (American Society of Mechanical Engineers, New York, 1993), pp. 43–50.

Simmons, S.

S. Simmons, H. Meng, F. Hussain, D. Liu, “Advances in holographic particle velocimetry,” in Optical Diagnostics in Fluid and Thermal Flow, S. S. Cha, J. D. Trolinger, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2005, 306–317 (1993).

F. Hussain, D. D. Liu, S. Simmons, H. Meng, “Holographic and particle velocimetry: prospects and limitations,” in Holographic Particle Image Velocimetry, E. P. Rood, ed., Vol. 148 of Fluids Engineering Division (American Society of Mechanical Engineers, New York, 1993), pp. 1–11.

Smith, H. M.

H. M. Smith, Principles of Holography (Wiley, New York, 1969), p. 112.

Thompson, B. J.

S. L. Cartwright, P. Dunn, B. J. Thompson, “Particle sizing using far-field holography: new developments,” Opt. Eng. 19, 727–733 (1980).

Trolinger, J. D.

Vikram, C. S.

C. S. Vikram, Particle Field Holography (Cambridge U. Press, Cambridge, UK, 1992), p. 95.

Weinstein, L. W.

L. W. Weinstein, G. B. Beeler, A. M. Linderman, “High-speed holocinematographic velocimeter for studying turbulent flow control physics,” AIAA Preprint 85-0526 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1985).

Zimin, V.

Appl. Opt. (3)

Fluid Dyn. Res. (1)

H. Meng, F. Hussain, “Holographic particle velocimetry : a 3D measurement technique for vortex interactions, coherent structures and turbulence,” Fluid Dyn. Res. 8, 33–52 (1991).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. A (1)

Laser Focus World (1)

T. F. Johnston, “M2 concept characterizes beam quality,” Laser Focus World 26, 173–177 (1990).

Opt. Eng. (1)

S. L. Cartwright, P. Dunn, B. J. Thompson, “Particle sizing using far-field holography: new developments,” Opt. Eng. 19, 727–733 (1980).

Opt. Lett. (1)

Phys. Fluids (1)

H. Meng, F. Hussain, “Instantaneous flow field in an unstable vortex ring measured by holographic particle velocimetry,” Phys. Fluids 7, 9–11 (1995).
[CrossRef]

Other (11)

L. P. Bernal, J. Scherer, “HPIV measurements in vortical flows,” in Holographic Particle Image Velocimetry, E. P. Rood, ed., Vol. 148 of Fluids Engineering Division (American Society of Mechanical Engineers, New York, 1993), pp. 43–50.

S. Simmons, H. Meng, F. Hussain, D. Liu, “Advances in holographic particle velocimetry,” in Optical Diagnostics in Fluid and Thermal Flow, S. S. Cha, J. D. Trolinger, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2005, 306–317 (1993).

C. S. Vikram, ed., Selected Papers on Holographic Particle Diagnostics, Vol. MS21 of SPIE Milestone Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1990).

L. W. Weinstein, G. B. Beeler, A. M. Linderman, “High-speed holocinematographic velocimeter for studying turbulent flow control physics,” AIAA Preprint 85-0526 (American Institute of Aeronautics and Astronautics, Washington, D.C., 1985).

C. S. Vikram, Particle Field Holography (Cambridge U. Press, Cambridge, UK, 1992), p. 95.

F. Hussain, D. D. Liu, S. Simmons, H. Meng, “Holographic and particle velocimetry: prospects and limitations,” in Holographic Particle Image Velocimetry, E. P. Rood, ed., Vol. 148 of Fluids Engineering Division (American Society of Mechanical Engineers, New York, 1993), pp. 1–11.

G. A. Boutry, Instrumental Optics, R. Auerbach, transl. (Interscience, New York, 1962), p. 354.

H. M. Smith, Principles of Holography (Wiley, New York, 1969), p. 112.

P. W. Barber, S. C. Hill, Light Scattering by Particles: Computational Methods (World Scientific, Singapore, 1990).

K. D. Hinsch, H. Hinrichs, A. Roshop, F. Dreesen, “Holographic and stereoscopic advances in 3-D PIV,” in Holographic Particle Image Velocimetry, E. P. Rood, ed., Vol. 148 of Fluids Engineering Division (American Society of Mechanical Engineers, New York, 1993), pp. 33–36.

H. I. Bjelkhagen, Silver-Halide Recording Materials for Holography and Their Processing (Springer-Verlag, Berlin, 1993), pp. 76–77.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (13)

Fig. 1
Fig. 1

Recording and reconstruction of an in-line hologram of a particle. In-line viewing (conventional) utilizes forward scattering, O L *, off-axis viewing (IROV) uses side scattering, O H *.

Fig. 2
Fig. 2

Components of the reconstruction field of an in-line hologram for an ensemble of particles. ∑ k o k forms the virtual image and ∑ k o k * forms the real image. Type-I speckle is formed by interference between B and the scattered waves; type-II speckle is formed by self-interference of the scattered waves.

Fig. 3
Fig. 3

Proof-of-principle IROV experimental setup: (a) in-line recording of a particle field in a water tank, (b) reconstruction with off-axis viewing where θva = 20°.

Fig. 4
Fig. 4

Comparison of particles images reconstructed from the same hologram but observed with (a) the conventional in-line method and (b) IROV (20°).

Fig. 5
Fig. 5

Computer plots of the intensity distributions for a small section of each image in Fig. 4: (a) in-line method, (b) IROV.

Fig. 6
Fig. 6

SNR versus particle seeding density (n s ) for IROV (20°) and conventional in-line viewing. Particle diameter d = 20 μm, and sample volume thickness L = 84 mm. The solid line was computed for the in-line case according to Ref. 8.

Fig. 7
Fig. 7

Effect of defocusing on the image of a 20-μm particle: (a) with conventional in-line viewing, (b) with IROV (20°). The middle figures are in focus. The upper and lower figures are for images defocused in the axial direction by ±100 μm.

Fig. 8
Fig. 8

Measured maximum off-axis viewing angle (θva) as a function of image distance (z v ) from the hologram for sustaining a SNR of >5 dB.

Fig. 9
Fig. 9

Linear fit of SNR versus image distance (z v ) for two holograms: A, coherence length > 100 cm; B, coherence length = 1 cm.

Fig. 10
Fig. 10

IROV applied to 3D velocity measurement of a vortex ring in a water tank. The hologram plate is placed outside the tank with the exposure area shown as a highlighted circle (diameter 76 mm) centered at H. The donut shape illustrates an isovorticity surface of the vortex ring; its shaded region lies inside the digitized domain. The 3D velocity vector field is measured for this domain by use of stereoscopic views during hologram reconstruction.

Fig. 11
Fig. 11

Velocity vector field in a 3D space containing half of the vortex ring, obtained from an IROV hologram. The grid interval (spatial resolution) is 1 mm in all directions. The total number of vectors is 10,824.

Fig. 12
Fig. 12

Velocity vector distribution of the meridional plane of the vortex ring.

Fig. 13
Fig. 13

Image shift by refraction on interfaces of multiple media for a scattered ray.

Tables (1)

Tables Icon

Table 1 Comparison of Depth of Focus (δ) for In-Line Holography and IROVa

Equations (34)

Equations on this page are rendered with MathJax. Learn more.

I h = R + O H + O L 2 = I ax + I LH + I sig ,
I ax = R 2 + O L O L * + O H O H * + R ( O L + O L * ) , I LH = ( O L O H * + O L * O H ) , I sig = R ( O H + O H * ) .
I img I gn = M 2 ( ν ) ξ 2 r 2 α h ϕ ( ν ) ,
r 2 O H 2 / R 2 ,
ϕ ( ν ) = exp ( - 0.00248 ν ) 10 - 8 ( mm 2 ) ,
r 2 1 × 10 - 8 .
I ( θ , z ) = S ( θ ) 2 cos 2 θ / k 2 z 2 ,
I = R 2 + 2 R k = 1 N o k cos Φ k + j ; k = 1 N o j o k cos ( Φ j - Φ k ) .
M i = 2 R o k R 2 + I N = 2 o k / R 1 + I N / R 2 = 2 r 1 + K ,
K = I N ( π 3 / 16 ) d 2 n s L ,
M i 2 r ,
I img I gn = M 2 ( ν ) ξ 2 r 2 α h ( 1 + K ) 2 ϕ ( ν ) .
δ = 2 λ / Ω 2 .
δ = β d / Ω ,
δ = β ( 1 / 2 ) d 2 / λ .
ρ z max tan θ max .
D h > max ( M 2 ρ , D p + 2 ρ ) .
ν h 4 sin θ max / λ .
D h ν h > D p ν p .
Δ max = z max ( 1 / cos θ max - 1 ) .
u = ( H 1 + H 2 ) / ( 2 cos θ va ) , v = ( V 1 + V 2 ) / 2 , w = ( H 1 - H 2 ) / ( 2 sin θ va ) ,
k = 1 N o k = k = 1 N o k exp ( i Φ k ) ;
I = B 2 + B k = 1 N ( o k + o k * ) + | k = 1 N o k | 2 = B 2 + I 1 + I 2 ,
I 1 = B k = 1 N ( o k + o k * ) = 2 B k = 1 N o k cos Φ k
I 2 = | k = 1 N o k | 2
σ 1 2 = 4 B 2 k = 1 N o k 2 cos 2 Φ k = 2 B 2 G ,
G = ( π 3 / 48 ) d 2 n s L .
σ 2 = σ 1 2 + σ 2 2 = 2 B 2 G + G 2 .
SNR = [ G ( 1 + 2 B 2 G ) 1 / 2 ] - 1 ,
ɛ n i sin θ i = sin θ v ( i = 1 , 2 , , m ) ,
z i = t i cos 3 θ v ɛ n i cos 3 θ i ,
y i = t i tan θ i - z i tan θ v .
z v = i = 1 m z i ,             y v = i = 1 m y i .
ɛ n 1 = 1.

Metrics