Abstract

For lack of alternatives, echelle-grating diffraction behavior has in the past been modeled on scalar theory, despite observations that indicate significant deviations. To resolve this difficulty a detailed experimental, theoretical, and numerical study is performed for several echelles that work at low (8–13), medium (35–55), high (84–140), and very-high (to 660) diffraction orders. Noticeable deviations from the scalar model were detected both experimentally and numerically, on the basis of electromagnetic theory: (1) the shift of the observed blaze position was shown to decrease with the wavelength-to-period ratio, and it tends to zero more rapidly than the decrease of the maximum width, so that the TE- and TM-plane responses tend to merge into each other; (2) cut-off effects (Rayleigh anomalies) were found to play a significant role for high groove angles, where passing-off orders are close to the blaze order. A possibility for evaluation of the blaze angle from angular, rather than from spectral, measurements is discussed. Several reasons for the differences between real and ideal echelles (material-index deviations, profile deformations, and groove-angle errors) are analyzed, and their effects on the performance of echelles is studied.

© 1995 Optical Society of America

PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription