Abstract

The design and fabrication of large-area, high-efficiency metallic gratings for use in high-power laser systems is described. The gratings exhibit a diffraction efficiency in excess of 95% in the m = −1 order (Littrow mount) and have a high threshold for laser damage. Computations and experimental measurements are presented that illustrate the effect of grating shape and polarization on efficiency. A simple theory for optical damage to metallic diffraction gratings is developed and compared with experimental measurements of the laser-damage threshold over the pulse range from 400 fs to >1 ns.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. QE-24398–402 (1988).
    [CrossRef]
  2. J. Kmetec, J. J. Macklin, J. F. Young, “0.5–TW, 125–fs Ti-sapphire laser,” Opt. Lett. 16, 1001–1003 (1991).
    [CrossRef] [PubMed]
  3. A. Sullivan, H. Hamster, H. C. Kapteyn, S. Gordon, W. White, H. Nathel, R. J. Blair, R. W. Falcone, “Multiterawatt, 100–fs laser,” Opt. Lett. 16, 1406–1408 (1991).
    [CrossRef] [PubMed]
  4. M. Pessot, J. Squier, P. Bado, G. Mourou, D. Harter, “Chirped pulse amplification of 300-fs pulses in an alexandrite regenerative amplifier,” IEEE J. Quantum Electron. 25, 61–66 (1989).
    [CrossRef]
  5. M. Pessot, J. Squier, G. Mourou, D. Harter, “Chirped-pulse amplification of 100-fsec pulses,” Opt. Lett. 14, 797–799 (1989).
    [CrossRef] [PubMed]
  6. P. Beaud, M. Richardson, E. J. Miesak, B. H. T. Chai, “8-TW 90-fs CrLiSAF laser,” Opt. Lett. 18, 1550–1552 (1993).
    [CrossRef] [PubMed]
  7. T. Ditmire, M. D. Perry, “Terawatt Cr-LiSrAlF6 laser system,” Opt. Lett. 18, 426–428 (1993).
    [CrossRef] [PubMed]
  8. M. D. Perry, F. G. Patterson, J. Weston, “Spectral shaping in chirped-pulse amplification,” Opt. Lett. 15, 381–383 (1990).
    [CrossRef] [PubMed]
  9. C. Rouyer, E. Mazataud, I. Allais, A. Pierre, S. Seznec, C. Sauteret, G. Mourou, A. Migus, “Generation of 50-TW femtosecond pulses in a Ti-sapphire/Nd-glass chain,” Opt. Lett. 18, 214–216 (1993).
    [CrossRef] [PubMed]
  10. J. J. Armstrong, “Holographic generation of ultra-high-efficiency large-aperture transmission diffraction gratings,” M.S. thesis (University of Rochester, Rochester, N.Y., 1993).
  11. E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5, 454–458 (1969).
    [CrossRef]
  12. M. D. Perry, J. Britten, C. Shannon, E. Shults, “Diffraction gratings formed with multilayer-oxide-based structures,” U. S. patent pending.
  13. Gold-coated holographic gratings available from Instruments S. A., Edison, New Jersey, have achieved a 92% diffraction efficiency at 1053 nm in the m = −1 order.
  14. R. Petit, ed., Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980).
    [CrossRef]
  15. M. C. Hutley, Diffraction Gratings (Academic, New York, 1982).
  16. D. Maystre, “Rigorous vector theories of diffraction gratings,” in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1984), Vol. 21, pp. 1–67.
    [CrossRef]
  17. T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).
    [CrossRef]
  18. M. C. Hutley, “Blazed interference diffraction gratings for the ultraviolet,” Opt. Acta 22, 1–13 (1975).
    [CrossRef]
  19. E. V. Jull, J. W. Heath, G. R. Ebbeson, “Gratings that diffract all incident energy,” J. Opt. Soc. Am. 67, 557–560 (1977).
    [CrossRef]
  20. M. Breidne, S. Johansson, L.-E. Nilsson, H. Åhlèn, “Blazed holographic gratings,” Opt. Acta 26, 1427–1444 (1979).
    [CrossRef]
  21. M. Breidne, D. Maystre, “Perfect blaze in non-Littrow mountings. Systematic numerical study,” Opt. Acta 28, 1321–1327 (1981).
    [CrossRef]
  22. L. Mashev, E. Popov, “Anomalies of metallic diffraction gratings,” J. Opt. Soc. Am. A 6, 1561–1567 (1989).
    [CrossRef]
  23. E. Popov, L. Tsonev, D. Maystre, “Gratings—general properties of the Littrow mounting and energy-flow distribution,” J. Mod. Opt. 37, 367–377 (1990).
    [CrossRef]
  24. E. Popov, L. Tsonev, E. Loewen, E. Alipieva, “Spectral behavior of anomalies in deep metallic gratings,” J. Opt. Soc. Am. A 7, 1730–1735 (1990).
    [CrossRef]
  25. E. Popov, L. Tsonev, D. Maystre, “Losses of plasmon surface waves on metallic grating,” J. Mod. Opt. 37, 379–387 (1990).
    [CrossRef]
  26. E. Popov, L. Tsonev, “Total absorption of light by metallic gratings and energy-flow distribution,” Surf. Sci. 230, 290–294 (1990).
    [CrossRef]
  27. E. Popov, L. Tsonev, D. Maystre, “Gratings—general properties in Littrow mount and energy-flow distribution,” J. Mod. Opt. 37, 367–378 (1990).
    [CrossRef]
  28. M. Sabeva, E. Popov, L. Tsonev, “Reflection gratings in the visible region—efficiency in nonpolarized light,” Opt. Commun. 100, 39–42 (1993).
    [CrossRef]
  29. E. G. Loewen, M. Nevière, D. Maystre, “Grating efficiency theory as it applies to blazed and holographic gratings,” Appl. Opt. 16, 2711–2721 (1977).
    [CrossRef] [PubMed]
  30. L. C. Botten, “A new formalism for transmission gratings,” Opt. Acta 25, 481–499 (1978).
    [CrossRef]
  31. R. Magnusson, T. K. Gaylord, “Equivalence of multiwave coupled-wave theory and modal theory of periodic-media diffraction,” J. Opt. Soc. Am. 68, 1777–1779 (1978).
    [CrossRef]
  32. J. R. Fox, “General modal theory of scalar wave scattering by periodic surfaces,” Opt. Acta 27, 289–305 (1980).
    [CrossRef]
  33. P. S. J. Russell, “Optical volume holography,” Phys. Rep. 71, 209–212 (1981).
    [CrossRef]
  34. L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
    [CrossRef]
  35. L. C. Botten, M. S. Craig, R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” Opt. Acta 28, 1103–1106 (1981).
    [CrossRef]
  36. J. Y. Suratteau, M. Cadilhac, R. Petit, “Sur la dètermination numèrique des efficacitès de certains rèseaux dièlectriques profonds,” J. Opt. (Paris) 14, 273–288 (1983).
    [CrossRef]
  37. L. Li, “Multilayer modal method for diffraction gratings of arbitrary profile, depth, and permittivity, J. Opt. Soc. Am. A 10, 2581–2591 (1993).
    [CrossRef]
  38. L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” J. Mod. Opt. 40, 553–573 (1993).
    [CrossRef]
  39. L. Li, C. W. Haggans, “Convergence of the coupled-wave method for metallic lamellar diffraction gratings,” J. Opt. Soc. Am. A 10, 1184–1189 (1993).
    [CrossRef]
  40. E. D. Palik, ed. Handbook of Optical Constants of Solids (Academic, New York, 1985).
  41. S. Austin, F. T. Stone, “Thin periodic structures in photoresist: fabrication and experimental evaluation,” Appl. Opt. 15, 2126–2130 (1976).
    [CrossRef] [PubMed]
  42. S. Austin, F. T. Stone, “Fabrication of thin periodic structures in photoresist: a model,” Appl. Opt. 15, 1071–1074 (1976).
    [CrossRef] [PubMed]
  43. M. Breidne, D. Maystre, “Equivalence of ruled, holographic, and lamellar gratings in constant deviation mountings,” Appl. Opt. 19, 1812–1821 (1980).
    [CrossRef] [PubMed]
  44. D. Maystre, M. Cadilhac, J. Chandezon, “Gratings: a phenomenological approach and its applications, perfect blazing in a nonzero deviation mounting,” Opt. Acta 28, 457–470 (1981).
    [CrossRef]
  45. C. E. Wheeler, E. T. Arakawa, R. H. Ritchie, “Photon excitation of surface plasmons in diffraction gratings: effect of groove depth and spacing,” Phys. Rev. B 13, 2372–2376 (1976).
    [CrossRef]
  46. A. Roberts, R. C. McPhedran, “Power losses in highly conducting lamellar gratings,” J. Mod. Opt. 34, 511–538 (1987).
    [CrossRef]
  47. M. M. Murnane, H. C. Kapteyn, S. P. Gordon, J. Bokor, E. N. Glytsis, R. W. Falcone, “Efficient coupling of high-intensity subpicosecond laser pulses into solids,” Appl. Phys. Lett. 62, 1068–1070 (1993).
    [CrossRef]
  48. C. T. Chang, J. L. Bjorkstam, “Amplitude hologram efficiencies with arbitrary modulation depth, based upon a realistic photographic film model,” J. Opt. Soc. Am. 67, 1160–1164 (1977).
    [CrossRef]
  49. L. Mashev, S. Tonchev, “Formation of holographic diffraction gratings in photoresist,” Appl. Phys. A 26, 143–149 (1981).
    [CrossRef]
  50. K. Yokomori, “Dielectric surface relief gratings with high diffraction efficiency,” Appl. Opt. 23, 2303–2310 (1984).
    [CrossRef] [PubMed]
  51. E. K. Popov, L. V. Tsonev, M. L. Sabeva, “Technological problems in holographic recording of plane gratings,” Opt. Eng. 31, 2168–2173 (1992).
    [CrossRef]
  52. R. R. Hershey, E. N. Leith, “Grating interferometers for producing large holographic gratings,” Appl. Opt. 29, 937–943 (1990).
    [CrossRef] [PubMed]
  53. D. M. Manos, D. L. Flamm, eds., Plasma Etching, an Introduction (Academic, San Diego, Calif., 1989).
  54. M. C. Gupta, S. T. Peng, “Diffraction characteristics of surface-relief gratings,” Appl. Opt. 32, 2911–2917 (1993).
    [CrossRef] [PubMed]
  55. S. Lindau, “The groove profile formation of holographic gratings,” Opt. Acta 29, 1371–1381 (1982).
    [CrossRef]
  56. A. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  57. H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids (Clarendon, Oxford, 1959).

1993

1992

E. K. Popov, L. V. Tsonev, M. L. Sabeva, “Technological problems in holographic recording of plane gratings,” Opt. Eng. 31, 2168–2173 (1992).
[CrossRef]

1991

1990

E. Popov, L. Tsonev, E. Loewen, E. Alipieva, “Spectral behavior of anomalies in deep metallic gratings,” J. Opt. Soc. Am. A 7, 1730–1735 (1990).
[CrossRef]

E. Popov, L. Tsonev, D. Maystre, “Gratings—general properties of the Littrow mounting and energy-flow distribution,” J. Mod. Opt. 37, 367–377 (1990).
[CrossRef]

E. Popov, L. Tsonev, D. Maystre, “Losses of plasmon surface waves on metallic grating,” J. Mod. Opt. 37, 379–387 (1990).
[CrossRef]

E. Popov, L. Tsonev, “Total absorption of light by metallic gratings and energy-flow distribution,” Surf. Sci. 230, 290–294 (1990).
[CrossRef]

E. Popov, L. Tsonev, D. Maystre, “Gratings—general properties in Littrow mount and energy-flow distribution,” J. Mod. Opt. 37, 367–378 (1990).
[CrossRef]

R. R. Hershey, E. N. Leith, “Grating interferometers for producing large holographic gratings,” Appl. Opt. 29, 937–943 (1990).
[CrossRef] [PubMed]

M. D. Perry, F. G. Patterson, J. Weston, “Spectral shaping in chirped-pulse amplification,” Opt. Lett. 15, 381–383 (1990).
[CrossRef] [PubMed]

1989

M. Pessot, J. Squier, P. Bado, G. Mourou, D. Harter, “Chirped pulse amplification of 300-fs pulses in an alexandrite regenerative amplifier,” IEEE J. Quantum Electron. 25, 61–66 (1989).
[CrossRef]

L. Mashev, E. Popov, “Anomalies of metallic diffraction gratings,” J. Opt. Soc. Am. A 6, 1561–1567 (1989).
[CrossRef]

M. Pessot, J. Squier, G. Mourou, D. Harter, “Chirped-pulse amplification of 100-fsec pulses,” Opt. Lett. 14, 797–799 (1989).
[CrossRef] [PubMed]

1988

P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. QE-24398–402 (1988).
[CrossRef]

1987

A. Roberts, R. C. McPhedran, “Power losses in highly conducting lamellar gratings,” J. Mod. Opt. 34, 511–538 (1987).
[CrossRef]

1985

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).
[CrossRef]

1984

1983

J. Y. Suratteau, M. Cadilhac, R. Petit, “Sur la dètermination numèrique des efficacitès de certains rèseaux dièlectriques profonds,” J. Opt. (Paris) 14, 273–288 (1983).
[CrossRef]

1982

S. Lindau, “The groove profile formation of holographic gratings,” Opt. Acta 29, 1371–1381 (1982).
[CrossRef]

1981

L. Mashev, S. Tonchev, “Formation of holographic diffraction gratings in photoresist,” Appl. Phys. A 26, 143–149 (1981).
[CrossRef]

M. Breidne, D. Maystre, “Perfect blaze in non-Littrow mountings. Systematic numerical study,” Opt. Acta 28, 1321–1327 (1981).
[CrossRef]

D. Maystre, M. Cadilhac, J. Chandezon, “Gratings: a phenomenological approach and its applications, perfect blazing in a nonzero deviation mounting,” Opt. Acta 28, 457–470 (1981).
[CrossRef]

P. S. J. Russell, “Optical volume holography,” Phys. Rep. 71, 209–212 (1981).
[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” Opt. Acta 28, 1103–1106 (1981).
[CrossRef]

1980

1979

M. Breidne, S. Johansson, L.-E. Nilsson, H. Åhlèn, “Blazed holographic gratings,” Opt. Acta 26, 1427–1444 (1979).
[CrossRef]

1978

1977

1976

1975

M. C. Hutley, “Blazed interference diffraction gratings for the ultraviolet,” Opt. Acta 22, 1–13 (1975).
[CrossRef]

1969

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5, 454–458 (1969).
[CrossRef]

Adams, J. L.

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
[CrossRef]

Åhlèn, H.

M. Breidne, S. Johansson, L.-E. Nilsson, H. Åhlèn, “Blazed holographic gratings,” Opt. Acta 26, 1427–1444 (1979).
[CrossRef]

Alipieva, E.

Allais, I.

Andrewartha, J. R.

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
[CrossRef]

Arakawa, E. T.

C. E. Wheeler, E. T. Arakawa, R. H. Ritchie, “Photon excitation of surface plasmons in diffraction gratings: effect of groove depth and spacing,” Phys. Rev. B 13, 2372–2376 (1976).
[CrossRef]

Armstrong, J. J.

J. J. Armstrong, “Holographic generation of ultra-high-efficiency large-aperture transmission diffraction gratings,” M.S. thesis (University of Rochester, Rochester, N.Y., 1993).

Austin, S.

Bado, P.

M. Pessot, J. Squier, P. Bado, G. Mourou, D. Harter, “Chirped pulse amplification of 300-fs pulses in an alexandrite regenerative amplifier,” IEEE J. Quantum Electron. 25, 61–66 (1989).
[CrossRef]

P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. QE-24398–402 (1988).
[CrossRef]

Beaud, P.

Bjorkstam, J. L.

Blair, R. J.

Bokor, J.

M. M. Murnane, H. C. Kapteyn, S. P. Gordon, J. Bokor, E. N. Glytsis, R. W. Falcone, “Efficient coupling of high-intensity subpicosecond laser pulses into solids,” Appl. Phys. Lett. 62, 1068–1070 (1993).
[CrossRef]

Botten, L. C.

L. C. Botten, M. S. Craig, R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” Opt. Acta 28, 1103–1106 (1981).
[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
[CrossRef]

L. C. Botten, “A new formalism for transmission gratings,” Opt. Acta 25, 481–499 (1978).
[CrossRef]

Breidne, M.

M. Breidne, D. Maystre, “Perfect blaze in non-Littrow mountings. Systematic numerical study,” Opt. Acta 28, 1321–1327 (1981).
[CrossRef]

M. Breidne, D. Maystre, “Equivalence of ruled, holographic, and lamellar gratings in constant deviation mountings,” Appl. Opt. 19, 1812–1821 (1980).
[CrossRef] [PubMed]

M. Breidne, S. Johansson, L.-E. Nilsson, H. Åhlèn, “Blazed holographic gratings,” Opt. Acta 26, 1427–1444 (1979).
[CrossRef]

Britten, J.

M. D. Perry, J. Britten, C. Shannon, E. Shults, “Diffraction gratings formed with multilayer-oxide-based structures,” U. S. patent pending.

Cadilhac, M.

J. Y. Suratteau, M. Cadilhac, R. Petit, “Sur la dètermination numèrique des efficacitès de certains rèseaux dièlectriques profonds,” J. Opt. (Paris) 14, 273–288 (1983).
[CrossRef]

D. Maystre, M. Cadilhac, J. Chandezon, “Gratings: a phenomenological approach and its applications, perfect blazing in a nonzero deviation mounting,” Opt. Acta 28, 457–470 (1981).
[CrossRef]

Carslaw, H. S.

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids (Clarendon, Oxford, 1959).

Chai, B. H. T.

Chandezon, J.

D. Maystre, M. Cadilhac, J. Chandezon, “Gratings: a phenomenological approach and its applications, perfect blazing in a nonzero deviation mounting,” Opt. Acta 28, 457–470 (1981).
[CrossRef]

Chang, C. T.

Craig, M. S.

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” Opt. Acta 28, 1103–1106 (1981).
[CrossRef]

Ditmire, T.

Ebbeson, G. R.

Falcone, R. W.

M. M. Murnane, H. C. Kapteyn, S. P. Gordon, J. Bokor, E. N. Glytsis, R. W. Falcone, “Efficient coupling of high-intensity subpicosecond laser pulses into solids,” Appl. Phys. Lett. 62, 1068–1070 (1993).
[CrossRef]

A. Sullivan, H. Hamster, H. C. Kapteyn, S. Gordon, W. White, H. Nathel, R. J. Blair, R. W. Falcone, “Multiterawatt, 100–fs laser,” Opt. Lett. 16, 1406–1408 (1991).
[CrossRef] [PubMed]

Fox, J. R.

J. R. Fox, “General modal theory of scalar wave scattering by periodic surfaces,” Opt. Acta 27, 289–305 (1980).
[CrossRef]

Gaylord, T. K.

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).
[CrossRef]

R. Magnusson, T. K. Gaylord, “Equivalence of multiwave coupled-wave theory and modal theory of periodic-media diffraction,” J. Opt. Soc. Am. 68, 1777–1779 (1978).
[CrossRef]

Glytsis, E. N.

M. M. Murnane, H. C. Kapteyn, S. P. Gordon, J. Bokor, E. N. Glytsis, R. W. Falcone, “Efficient coupling of high-intensity subpicosecond laser pulses into solids,” Appl. Phys. Lett. 62, 1068–1070 (1993).
[CrossRef]

Gordon, S.

Gordon, S. P.

M. M. Murnane, H. C. Kapteyn, S. P. Gordon, J. Bokor, E. N. Glytsis, R. W. Falcone, “Efficient coupling of high-intensity subpicosecond laser pulses into solids,” Appl. Phys. Lett. 62, 1068–1070 (1993).
[CrossRef]

Gupta, M. C.

Haggans, C. W.

Hamster, H.

Harter, D.

M. Pessot, J. Squier, G. Mourou, D. Harter, “Chirped-pulse amplification of 100-fsec pulses,” Opt. Lett. 14, 797–799 (1989).
[CrossRef] [PubMed]

M. Pessot, J. Squier, P. Bado, G. Mourou, D. Harter, “Chirped pulse amplification of 300-fs pulses in an alexandrite regenerative amplifier,” IEEE J. Quantum Electron. 25, 61–66 (1989).
[CrossRef]

Heath, J. W.

Hershey, R. R.

Hutley, M. C.

M. C. Hutley, “Blazed interference diffraction gratings for the ultraviolet,” Opt. Acta 22, 1–13 (1975).
[CrossRef]

M. C. Hutley, Diffraction Gratings (Academic, New York, 1982).

Jaeger, J. C.

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids (Clarendon, Oxford, 1959).

Johansson, S.

M. Breidne, S. Johansson, L.-E. Nilsson, H. Åhlèn, “Blazed holographic gratings,” Opt. Acta 26, 1427–1444 (1979).
[CrossRef]

Jull, E. V.

Kapteyn, H. C.

M. M. Murnane, H. C. Kapteyn, S. P. Gordon, J. Bokor, E. N. Glytsis, R. W. Falcone, “Efficient coupling of high-intensity subpicosecond laser pulses into solids,” Appl. Phys. Lett. 62, 1068–1070 (1993).
[CrossRef]

A. Sullivan, H. Hamster, H. C. Kapteyn, S. Gordon, W. White, H. Nathel, R. J. Blair, R. W. Falcone, “Multiterawatt, 100–fs laser,” Opt. Lett. 16, 1406–1408 (1991).
[CrossRef] [PubMed]

Kmetec, J.

Leith, E. N.

Li, L.

Lindau, S.

S. Lindau, “The groove profile formation of holographic gratings,” Opt. Acta 29, 1371–1381 (1982).
[CrossRef]

Loewen, E.

Loewen, E. G.

Macklin, J. J.

Magnusson, R.

Maine, P.

P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. QE-24398–402 (1988).
[CrossRef]

Mashev, L.

L. Mashev, E. Popov, “Anomalies of metallic diffraction gratings,” J. Opt. Soc. Am. A 6, 1561–1567 (1989).
[CrossRef]

L. Mashev, S. Tonchev, “Formation of holographic diffraction gratings in photoresist,” Appl. Phys. A 26, 143–149 (1981).
[CrossRef]

Maystre, D.

E. Popov, L. Tsonev, D. Maystre, “Gratings—general properties in Littrow mount and energy-flow distribution,” J. Mod. Opt. 37, 367–378 (1990).
[CrossRef]

E. Popov, L. Tsonev, D. Maystre, “Gratings—general properties of the Littrow mounting and energy-flow distribution,” J. Mod. Opt. 37, 367–377 (1990).
[CrossRef]

E. Popov, L. Tsonev, D. Maystre, “Losses of plasmon surface waves on metallic grating,” J. Mod. Opt. 37, 379–387 (1990).
[CrossRef]

M. Breidne, D. Maystre, “Perfect blaze in non-Littrow mountings. Systematic numerical study,” Opt. Acta 28, 1321–1327 (1981).
[CrossRef]

D. Maystre, M. Cadilhac, J. Chandezon, “Gratings: a phenomenological approach and its applications, perfect blazing in a nonzero deviation mounting,” Opt. Acta 28, 457–470 (1981).
[CrossRef]

M. Breidne, D. Maystre, “Equivalence of ruled, holographic, and lamellar gratings in constant deviation mountings,” Appl. Opt. 19, 1812–1821 (1980).
[CrossRef] [PubMed]

E. G. Loewen, M. Nevière, D. Maystre, “Grating efficiency theory as it applies to blazed and holographic gratings,” Appl. Opt. 16, 2711–2721 (1977).
[CrossRef] [PubMed]

D. Maystre, “Rigorous vector theories of diffraction gratings,” in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1984), Vol. 21, pp. 1–67.
[CrossRef]

Mazataud, E.

McPhedran, R. C.

A. Roberts, R. C. McPhedran, “Power losses in highly conducting lamellar gratings,” J. Mod. Opt. 34, 511–538 (1987).
[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” Opt. Acta 28, 1103–1106 (1981).
[CrossRef]

Miesak, E. J.

Migus, A.

Moharam, M. G.

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).
[CrossRef]

Mourou, G.

C. Rouyer, E. Mazataud, I. Allais, A. Pierre, S. Seznec, C. Sauteret, G. Mourou, A. Migus, “Generation of 50-TW femtosecond pulses in a Ti-sapphire/Nd-glass chain,” Opt. Lett. 18, 214–216 (1993).
[CrossRef] [PubMed]

M. Pessot, J. Squier, G. Mourou, D. Harter, “Chirped-pulse amplification of 100-fsec pulses,” Opt. Lett. 14, 797–799 (1989).
[CrossRef] [PubMed]

M. Pessot, J. Squier, P. Bado, G. Mourou, D. Harter, “Chirped pulse amplification of 300-fs pulses in an alexandrite regenerative amplifier,” IEEE J. Quantum Electron. 25, 61–66 (1989).
[CrossRef]

P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. QE-24398–402 (1988).
[CrossRef]

Murnane, M. M.

M. M. Murnane, H. C. Kapteyn, S. P. Gordon, J. Bokor, E. N. Glytsis, R. W. Falcone, “Efficient coupling of high-intensity subpicosecond laser pulses into solids,” Appl. Phys. Lett. 62, 1068–1070 (1993).
[CrossRef]

Nathel, H.

Nevière, M.

Nilsson, L.-E.

M. Breidne, S. Johansson, L.-E. Nilsson, H. Åhlèn, “Blazed holographic gratings,” Opt. Acta 26, 1427–1444 (1979).
[CrossRef]

Patterson, F. G.

Peng, S. T.

Perry, M. D.

Pessot, M.

M. Pessot, J. Squier, G. Mourou, D. Harter, “Chirped-pulse amplification of 100-fsec pulses,” Opt. Lett. 14, 797–799 (1989).
[CrossRef] [PubMed]

M. Pessot, J. Squier, P. Bado, G. Mourou, D. Harter, “Chirped pulse amplification of 300-fs pulses in an alexandrite regenerative amplifier,” IEEE J. Quantum Electron. 25, 61–66 (1989).
[CrossRef]

P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. QE-24398–402 (1988).
[CrossRef]

Petit, R.

J. Y. Suratteau, M. Cadilhac, R. Petit, “Sur la dètermination numèrique des efficacitès de certains rèseaux dièlectriques profonds,” J. Opt. (Paris) 14, 273–288 (1983).
[CrossRef]

Pierre, A.

Popov, E.

M. Sabeva, E. Popov, L. Tsonev, “Reflection gratings in the visible region—efficiency in nonpolarized light,” Opt. Commun. 100, 39–42 (1993).
[CrossRef]

E. Popov, L. Tsonev, “Total absorption of light by metallic gratings and energy-flow distribution,” Surf. Sci. 230, 290–294 (1990).
[CrossRef]

E. Popov, L. Tsonev, E. Loewen, E. Alipieva, “Spectral behavior of anomalies in deep metallic gratings,” J. Opt. Soc. Am. A 7, 1730–1735 (1990).
[CrossRef]

E. Popov, L. Tsonev, D. Maystre, “Gratings—general properties of the Littrow mounting and energy-flow distribution,” J. Mod. Opt. 37, 367–377 (1990).
[CrossRef]

E. Popov, L. Tsonev, D. Maystre, “Losses of plasmon surface waves on metallic grating,” J. Mod. Opt. 37, 379–387 (1990).
[CrossRef]

E. Popov, L. Tsonev, D. Maystre, “Gratings—general properties in Littrow mount and energy-flow distribution,” J. Mod. Opt. 37, 367–378 (1990).
[CrossRef]

L. Mashev, E. Popov, “Anomalies of metallic diffraction gratings,” J. Opt. Soc. Am. A 6, 1561–1567 (1989).
[CrossRef]

Popov, E. K.

E. K. Popov, L. V. Tsonev, M. L. Sabeva, “Technological problems in holographic recording of plane gratings,” Opt. Eng. 31, 2168–2173 (1992).
[CrossRef]

Richardson, M.

Ritchie, R. H.

C. E. Wheeler, E. T. Arakawa, R. H. Ritchie, “Photon excitation of surface plasmons in diffraction gratings: effect of groove depth and spacing,” Phys. Rev. B 13, 2372–2376 (1976).
[CrossRef]

Roberts, A.

A. Roberts, R. C. McPhedran, “Power losses in highly conducting lamellar gratings,” J. Mod. Opt. 34, 511–538 (1987).
[CrossRef]

Rouyer, C.

Russell, P. S. J.

P. S. J. Russell, “Optical volume holography,” Phys. Rep. 71, 209–212 (1981).
[CrossRef]

Sabeva, M.

M. Sabeva, E. Popov, L. Tsonev, “Reflection gratings in the visible region—efficiency in nonpolarized light,” Opt. Commun. 100, 39–42 (1993).
[CrossRef]

Sabeva, M. L.

E. K. Popov, L. V. Tsonev, M. L. Sabeva, “Technological problems in holographic recording of plane gratings,” Opt. Eng. 31, 2168–2173 (1992).
[CrossRef]

Sauteret, C.

Seznec, S.

Shannon, C.

M. D. Perry, J. Britten, C. Shannon, E. Shults, “Diffraction gratings formed with multilayer-oxide-based structures,” U. S. patent pending.

Shults, E.

M. D. Perry, J. Britten, C. Shannon, E. Shults, “Diffraction gratings formed with multilayer-oxide-based structures,” U. S. patent pending.

Siegman, A.

A. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Squier, J.

M. Pessot, J. Squier, G. Mourou, D. Harter, “Chirped-pulse amplification of 100-fsec pulses,” Opt. Lett. 14, 797–799 (1989).
[CrossRef] [PubMed]

M. Pessot, J. Squier, P. Bado, G. Mourou, D. Harter, “Chirped pulse amplification of 300-fs pulses in an alexandrite regenerative amplifier,” IEEE J. Quantum Electron. 25, 61–66 (1989).
[CrossRef]

Stone, F. T.

Strickland, D.

P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. QE-24398–402 (1988).
[CrossRef]

Sullivan, A.

Suratteau, J. Y.

J. Y. Suratteau, M. Cadilhac, R. Petit, “Sur la dètermination numèrique des efficacitès de certains rèseaux dièlectriques profonds,” J. Opt. (Paris) 14, 273–288 (1983).
[CrossRef]

Tonchev, S.

L. Mashev, S. Tonchev, “Formation of holographic diffraction gratings in photoresist,” Appl. Phys. A 26, 143–149 (1981).
[CrossRef]

Treacy, E. B.

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5, 454–458 (1969).
[CrossRef]

Tsonev, L.

M. Sabeva, E. Popov, L. Tsonev, “Reflection gratings in the visible region—efficiency in nonpolarized light,” Opt. Commun. 100, 39–42 (1993).
[CrossRef]

E. Popov, L. Tsonev, “Total absorption of light by metallic gratings and energy-flow distribution,” Surf. Sci. 230, 290–294 (1990).
[CrossRef]

E. Popov, L. Tsonev, E. Loewen, E. Alipieva, “Spectral behavior of anomalies in deep metallic gratings,” J. Opt. Soc. Am. A 7, 1730–1735 (1990).
[CrossRef]

E. Popov, L. Tsonev, D. Maystre, “Gratings—general properties in Littrow mount and energy-flow distribution,” J. Mod. Opt. 37, 367–378 (1990).
[CrossRef]

E. Popov, L. Tsonev, D. Maystre, “Losses of plasmon surface waves on metallic grating,” J. Mod. Opt. 37, 379–387 (1990).
[CrossRef]

E. Popov, L. Tsonev, D. Maystre, “Gratings—general properties of the Littrow mounting and energy-flow distribution,” J. Mod. Opt. 37, 367–377 (1990).
[CrossRef]

Tsonev, L. V.

E. K. Popov, L. V. Tsonev, M. L. Sabeva, “Technological problems in holographic recording of plane gratings,” Opt. Eng. 31, 2168–2173 (1992).
[CrossRef]

Weston, J.

Wheeler, C. E.

C. E. Wheeler, E. T. Arakawa, R. H. Ritchie, “Photon excitation of surface plasmons in diffraction gratings: effect of groove depth and spacing,” Phys. Rev. B 13, 2372–2376 (1976).
[CrossRef]

White, W.

Yokomori, K.

Young, J. F.

Appl. Opt.

Appl. Phys. A

L. Mashev, S. Tonchev, “Formation of holographic diffraction gratings in photoresist,” Appl. Phys. A 26, 143–149 (1981).
[CrossRef]

Appl. Phys. Lett.

M. M. Murnane, H. C. Kapteyn, S. P. Gordon, J. Bokor, E. N. Glytsis, R. W. Falcone, “Efficient coupling of high-intensity subpicosecond laser pulses into solids,” Appl. Phys. Lett. 62, 1068–1070 (1993).
[CrossRef]

IEEE J. Quantum Electron.

E. B. Treacy, “Optical pulse compression with diffraction gratings,” IEEE J. Quantum Electron. QE-5, 454–458 (1969).
[CrossRef]

P. Maine, D. Strickland, P. Bado, M. Pessot, G. Mourou, “Generation of ultrahigh peak power pulses by chirped pulse amplification,” IEEE J. Quantum Electron. QE-24398–402 (1988).
[CrossRef]

M. Pessot, J. Squier, P. Bado, G. Mourou, D. Harter, “Chirped pulse amplification of 300-fs pulses in an alexandrite regenerative amplifier,” IEEE J. Quantum Electron. 25, 61–66 (1989).
[CrossRef]

J. Mod. Opt.

E. Popov, L. Tsonev, D. Maystre, “Losses of plasmon surface waves on metallic grating,” J. Mod. Opt. 37, 379–387 (1990).
[CrossRef]

E. Popov, L. Tsonev, D. Maystre, “Gratings—general properties of the Littrow mounting and energy-flow distribution,” J. Mod. Opt. 37, 367–377 (1990).
[CrossRef]

A. Roberts, R. C. McPhedran, “Power losses in highly conducting lamellar gratings,” J. Mod. Opt. 34, 511–538 (1987).
[CrossRef]

E. Popov, L. Tsonev, D. Maystre, “Gratings—general properties in Littrow mount and energy-flow distribution,” J. Mod. Opt. 37, 367–378 (1990).
[CrossRef]

L. Li, “A modal analysis of lamellar diffraction gratings in conical mountings,” J. Mod. Opt. 40, 553–573 (1993).
[CrossRef]

J. Opt. (Paris)

J. Y. Suratteau, M. Cadilhac, R. Petit, “Sur la dètermination numèrique des efficacitès de certains rèseaux dièlectriques profonds,” J. Opt. (Paris) 14, 273–288 (1983).
[CrossRef]

J. Opt. Soc. Am.

J. Opt. Soc. Am. A

Opt. Acta

M. C. Hutley, “Blazed interference diffraction gratings for the ultraviolet,” Opt. Acta 22, 1–13 (1975).
[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, J. L. Adams, J. R. Andrewartha, “The finitely conducting lamellar diffraction grating,” Opt. Acta 28, 1087–1102 (1981).
[CrossRef]

L. C. Botten, M. S. Craig, R. C. McPhedran, “Highly conducting lamellar diffraction gratings,” Opt. Acta 28, 1103–1106 (1981).
[CrossRef]

D. Maystre, M. Cadilhac, J. Chandezon, “Gratings: a phenomenological approach and its applications, perfect blazing in a nonzero deviation mounting,” Opt. Acta 28, 457–470 (1981).
[CrossRef]

S. Lindau, “The groove profile formation of holographic gratings,” Opt. Acta 29, 1371–1381 (1982).
[CrossRef]

L. C. Botten, “A new formalism for transmission gratings,” Opt. Acta 25, 481–499 (1978).
[CrossRef]

J. R. Fox, “General modal theory of scalar wave scattering by periodic surfaces,” Opt. Acta 27, 289–305 (1980).
[CrossRef]

M. Breidne, S. Johansson, L.-E. Nilsson, H. Åhlèn, “Blazed holographic gratings,” Opt. Acta 26, 1427–1444 (1979).
[CrossRef]

M. Breidne, D. Maystre, “Perfect blaze in non-Littrow mountings. Systematic numerical study,” Opt. Acta 28, 1321–1327 (1981).
[CrossRef]

Opt. Commun.

M. Sabeva, E. Popov, L. Tsonev, “Reflection gratings in the visible region—efficiency in nonpolarized light,” Opt. Commun. 100, 39–42 (1993).
[CrossRef]

Opt. Eng.

E. K. Popov, L. V. Tsonev, M. L. Sabeva, “Technological problems in holographic recording of plane gratings,” Opt. Eng. 31, 2168–2173 (1992).
[CrossRef]

Opt. Lett.

Phys. Rep.

P. S. J. Russell, “Optical volume holography,” Phys. Rep. 71, 209–212 (1981).
[CrossRef]

Phys. Rev. B

C. E. Wheeler, E. T. Arakawa, R. H. Ritchie, “Photon excitation of surface plasmons in diffraction gratings: effect of groove depth and spacing,” Phys. Rev. B 13, 2372–2376 (1976).
[CrossRef]

Proc. IEEE

T. K. Gaylord, M. G. Moharam, “Analysis and applications of optical diffraction by gratings,” Proc. IEEE 73, 894–937 (1985).
[CrossRef]

Surf. Sci.

E. Popov, L. Tsonev, “Total absorption of light by metallic gratings and energy-flow distribution,” Surf. Sci. 230, 290–294 (1990).
[CrossRef]

Other

J. J. Armstrong, “Holographic generation of ultra-high-efficiency large-aperture transmission diffraction gratings,” M.S. thesis (University of Rochester, Rochester, N.Y., 1993).

M. D. Perry, J. Britten, C. Shannon, E. Shults, “Diffraction gratings formed with multilayer-oxide-based structures,” U. S. patent pending.

Gold-coated holographic gratings available from Instruments S. A., Edison, New Jersey, have achieved a 92% diffraction efficiency at 1053 nm in the m = −1 order.

R. Petit, ed., Electromagnetic Theory of Gratings (Springer-Verlag, Berlin, 1980).
[CrossRef]

M. C. Hutley, Diffraction Gratings (Academic, New York, 1982).

D. Maystre, “Rigorous vector theories of diffraction gratings,” in Progress in Optics, E. Wolf, ed. (Elsevier, New York, 1984), Vol. 21, pp. 1–67.
[CrossRef]

D. M. Manos, D. L. Flamm, eds., Plasma Etching, an Introduction (Academic, San Diego, Calif., 1989).

A. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

H. S. Carslaw, J. C. Jaeger, Conduction of Heat in Solids (Clarendon, Oxford, 1959).

E. D. Palik, ed. Handbook of Optical Constants of Solids (Academic, New York, 1985).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

Theoretical diffraction efficiency (order m = −1) of a gold grating with 1800 lines/mm used in a Littrow mount at wavelength 830 nm, as a function of the groove depth (in micrometers) and the duty cycle. The grating profile is a supersinusoid, as defined by Eq. (6). (a) TM polarization (electric field orthogonal to the grooves), and (b) TE polarization (electric field parallel to the grooves). Note the different scales for the two cases.

Fig. 2
Fig. 2

Holographic exposure geometry showing the definition of angle of incidence θ and angle ϕ between the grating normal and the bisector of the incident waves (following Hutley15).

Fig. 3
Fig. 3

Layout of the equal-path, fringe-stabilized interferometer used for grating exposure. Light from a Kr-ion laser at a wavelength of 413 nm is divided into two paths by a beam splitter and passes, by means of small turning mirrors (M), spatial filters, larger turning mirrors, and lenses, onto the surface of a grating blank. The fringe detector is used actively to control and stabilize the interference pattern.

Fig. 4
Fig. 4

Scanning electron micrograph of gold-coated gratings with 1710 lines/mm: (a) sinusoidal profile produced in thick photoresist, and (b) thinner photoresist with the groove depth limited by the thickness of the resist layer (nonsinusoidal grooves).

Fig. 5
Fig. 5

Absolute diffraction efficiency (order m = 1 and a Littrow mount) for a gold grating with 1550 lines/mm at a wavelength of 1053 nm. The points are measured values, the curves are theoretical results for a sinusoidal profile. TM polarization: solid curve and filled circles; TE polarization: dashed curves and open squares.

Fig. 6
Fig. 6

Absolute diffraction efficiency (order m = 1 and a Littrow mount) for a gold grating with 1710 lines/mm at a wavelength of 825 nm. The curve represents the theoretical result for a sinusoidal profile and TM polarization. The circles represent averages of the efficiencies measured over the surface of a sample grating, and the triangles represent the peak values on the sample.

Fig. 7
Fig. 7

Scanning electron micrographs of grating-surface damage: (a) damage from a long pulse, which shows the smooth features characteristic of melting and resolidification, and (b) damage from a short pulse, which shows the sharp features characteristic of ablation and vaporization.

Fig. 8
Fig. 8

One-dimensional model of the grating as a thin metal film exposed to a constant heat flux from the laser pulse and negligible heat transfer into the photoresist.

Fig. 9
Fig. 9

Temperature distribution T(x, t) − T 0 for an absorbed fluence of 500 mJ/cm2 delivered to a 100-nm-thick gold film as a function of depth for pulse durations of 1, 10, and 100 ps.

Fig. 10
Fig. 10

Predicted and measured damage thresholds for a short pulse (600 fs) and a long pulse (800 ps) of 1053-nm laser radiation. The curves show the theoretical predictions for a flat surface: the solid curve represents the long pulse, and the dashed curve represents the short pulse. The filled symbols show the measured values for gold films deposited on photoresist, and the open symbols show the measured values for gold-coated gratings. Circles, long pulses; triangles, short pulses.

Equations (10)

Equations on this page are rendered with MathJax. Learn more.

sin ϑ m = sin ϑ i + m λ / d .
F j ( x , y ) = m = 0 ν m j ( y ) u m j ( x ) .
ν m j ( y ) = a m j cos ( Λ m j y ) + b m j sin ( Λ m j y ) .
2 R m = a m , M + 1 + i b m , M + 1 , 2 T m = a m , 0 i b m , 0
n = 0 . 29 + i 5 . 4 , λ = 830 nm , n = 0 . 25 + i 7 . 1 , λ = 1064 nm .
y ( x ) = h | sin ( π x / d ) | 2 p , duty cycle < 0 . 5 ,
h = 0 . 42 λ cos θ .
d = λ e 2 sin θ e cos ϕ ,
T t = α 2 T x 2 ,
T ( x , t ) T 0 = q in k ( α t L ) + q in L κ T [ 1 2 ( x L ) 2 1 6 2 π 2 n = 1 ( 1 ) n n 2 × exp ( n 2 π 2 α t / L 2 ) cos ( n π x / L ) ] .

Metrics