Abstract

An efficient, all-sky input optical system has been mated to a 100-mm-aperture Fabry–Perot interferometer that employs a cooled (−150 °C) CCD as a photon detector to create an all-sky Doppler interferometer. The instrument is capable of simultaneously measuring Doppler shifts and widths of nightglow emission lines from many different points in the sky, thereby providing determinations of upper-atmosphere neutral wind and temperature fields over a large region (to ≈2000 km in extent). For OI 630-nm (thermosphere) and OH 799.6-nm (mesopause) nightglow emissions, exposure times of 5–15 min provide good-quality interferometric images. The capability of the all-sky Doppler interferometer is illustrated by examples of thermospheric wind and temperature fields measured over Millstone Hill, Massachusetts.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. Rees, A. H. Greenaway, “Doppler imaging system; an optical device for measuring vector winds. 1: General principles,” Appl. Opt. 22, 1078–1083 (1983).
    [CrossRef] [PubMed]
  2. S. Batten, D. Rees, D. Wade, A. Steen, “Observations of thermospheric neutral winds by the UCL Doppler imaging system at Kiruna in northern Scandinavia,” J. Atmos. Terr. Phys. 50, 861–888 (1988).
    [CrossRef]
  3. D. Rees, S. Batten, A. L. Aruliah, T. J. Fuller-Rowell, A. D. Farmer, K. S. C. Freeman, “Long-lived polar thermospheric vortices: a combined radar and optical study,” J. Atmos. Terr. Phys. 53, 493–514 (1991).
    [CrossRef]
  4. M. A. Biondi, W. A. Feibelman, “Twilight and nightglow spectral line shapes of oxygen λ6300 and λ5577 radiation,” Planet. Space Sci. 16, 431–443 (1968).
    [CrossRef]
  5. E. B. Armstrong, “Variations in the width of the OI λ5577 line in the night airglow,” Planet. Space Sci. 16, 211–229 (1968).
    [CrossRef]
  6. E. B. Armstrong, “Doppler shifts in the wavelength of the OI λ6300 line in the night airglow,” Planet. Space Sci. 17, 957–974 (1969).
    [CrossRef]
  7. P. B. Hays, A. F. Nagy, R. G. Roble, “Interferometric measurements of the 6300 Å Doppler temperature during a magnetic storm,” J. Geophys. Res. 74, 4162–4168 (1969).
    [CrossRef]
  8. G. Hernandez, R. G. Roble, “Direct measurements of nighttime winds and temperatures,” J. Geophys. Res. 81, 2065–2074 (1976).
    [CrossRef]
  9. D. P. Sipler, M. A. Biondi, R. G. Roble, “F-region neutral winds and temperatures at equatorial latitudes: measured and predicted behaviour during geomagnetically quiet conditions,” Planet. Space Sci. 31, 53–66 (1983).
    [CrossRef]
  10. M. Mendillo, J. L. Baumgardner, P. J. Sullivan, “The CEDAR imaging system,” World Ionosphere/Thermosphere Study Handb. 2, 258–261 (1989).
  11. R. Niciejewski, T. L. Killeen, M. Turnbull, “Ground-based Fabry-Perot interferometry of the terrestrial nightglow with a bare charge-coupled device: remote field site deployment,” Opt. Eng. 33, 457–465 (1994).
    [CrossRef]

1994 (1)

R. Niciejewski, T. L. Killeen, M. Turnbull, “Ground-based Fabry-Perot interferometry of the terrestrial nightglow with a bare charge-coupled device: remote field site deployment,” Opt. Eng. 33, 457–465 (1994).
[CrossRef]

1991 (1)

D. Rees, S. Batten, A. L. Aruliah, T. J. Fuller-Rowell, A. D. Farmer, K. S. C. Freeman, “Long-lived polar thermospheric vortices: a combined radar and optical study,” J. Atmos. Terr. Phys. 53, 493–514 (1991).
[CrossRef]

1989 (1)

M. Mendillo, J. L. Baumgardner, P. J. Sullivan, “The CEDAR imaging system,” World Ionosphere/Thermosphere Study Handb. 2, 258–261 (1989).

1988 (1)

S. Batten, D. Rees, D. Wade, A. Steen, “Observations of thermospheric neutral winds by the UCL Doppler imaging system at Kiruna in northern Scandinavia,” J. Atmos. Terr. Phys. 50, 861–888 (1988).
[CrossRef]

1983 (2)

D. P. Sipler, M. A. Biondi, R. G. Roble, “F-region neutral winds and temperatures at equatorial latitudes: measured and predicted behaviour during geomagnetically quiet conditions,” Planet. Space Sci. 31, 53–66 (1983).
[CrossRef]

D. Rees, A. H. Greenaway, “Doppler imaging system; an optical device for measuring vector winds. 1: General principles,” Appl. Opt. 22, 1078–1083 (1983).
[CrossRef] [PubMed]

1976 (1)

G. Hernandez, R. G. Roble, “Direct measurements of nighttime winds and temperatures,” J. Geophys. Res. 81, 2065–2074 (1976).
[CrossRef]

1969 (2)

E. B. Armstrong, “Doppler shifts in the wavelength of the OI λ6300 line in the night airglow,” Planet. Space Sci. 17, 957–974 (1969).
[CrossRef]

P. B. Hays, A. F. Nagy, R. G. Roble, “Interferometric measurements of the 6300 Å Doppler temperature during a magnetic storm,” J. Geophys. Res. 74, 4162–4168 (1969).
[CrossRef]

1968 (2)

M. A. Biondi, W. A. Feibelman, “Twilight and nightglow spectral line shapes of oxygen λ6300 and λ5577 radiation,” Planet. Space Sci. 16, 431–443 (1968).
[CrossRef]

E. B. Armstrong, “Variations in the width of the OI λ5577 line in the night airglow,” Planet. Space Sci. 16, 211–229 (1968).
[CrossRef]

Armstrong, E. B.

E. B. Armstrong, “Doppler shifts in the wavelength of the OI λ6300 line in the night airglow,” Planet. Space Sci. 17, 957–974 (1969).
[CrossRef]

E. B. Armstrong, “Variations in the width of the OI λ5577 line in the night airglow,” Planet. Space Sci. 16, 211–229 (1968).
[CrossRef]

Aruliah, A. L.

D. Rees, S. Batten, A. L. Aruliah, T. J. Fuller-Rowell, A. D. Farmer, K. S. C. Freeman, “Long-lived polar thermospheric vortices: a combined radar and optical study,” J. Atmos. Terr. Phys. 53, 493–514 (1991).
[CrossRef]

Batten, S.

D. Rees, S. Batten, A. L. Aruliah, T. J. Fuller-Rowell, A. D. Farmer, K. S. C. Freeman, “Long-lived polar thermospheric vortices: a combined radar and optical study,” J. Atmos. Terr. Phys. 53, 493–514 (1991).
[CrossRef]

S. Batten, D. Rees, D. Wade, A. Steen, “Observations of thermospheric neutral winds by the UCL Doppler imaging system at Kiruna in northern Scandinavia,” J. Atmos. Terr. Phys. 50, 861–888 (1988).
[CrossRef]

Baumgardner, J. L.

M. Mendillo, J. L. Baumgardner, P. J. Sullivan, “The CEDAR imaging system,” World Ionosphere/Thermosphere Study Handb. 2, 258–261 (1989).

Biondi, M. A.

D. P. Sipler, M. A. Biondi, R. G. Roble, “F-region neutral winds and temperatures at equatorial latitudes: measured and predicted behaviour during geomagnetically quiet conditions,” Planet. Space Sci. 31, 53–66 (1983).
[CrossRef]

M. A. Biondi, W. A. Feibelman, “Twilight and nightglow spectral line shapes of oxygen λ6300 and λ5577 radiation,” Planet. Space Sci. 16, 431–443 (1968).
[CrossRef]

Farmer, A. D.

D. Rees, S. Batten, A. L. Aruliah, T. J. Fuller-Rowell, A. D. Farmer, K. S. C. Freeman, “Long-lived polar thermospheric vortices: a combined radar and optical study,” J. Atmos. Terr. Phys. 53, 493–514 (1991).
[CrossRef]

Feibelman, W. A.

M. A. Biondi, W. A. Feibelman, “Twilight and nightglow spectral line shapes of oxygen λ6300 and λ5577 radiation,” Planet. Space Sci. 16, 431–443 (1968).
[CrossRef]

Freeman, K. S. C.

D. Rees, S. Batten, A. L. Aruliah, T. J. Fuller-Rowell, A. D. Farmer, K. S. C. Freeman, “Long-lived polar thermospheric vortices: a combined radar and optical study,” J. Atmos. Terr. Phys. 53, 493–514 (1991).
[CrossRef]

Fuller-Rowell, T. J.

D. Rees, S. Batten, A. L. Aruliah, T. J. Fuller-Rowell, A. D. Farmer, K. S. C. Freeman, “Long-lived polar thermospheric vortices: a combined radar and optical study,” J. Atmos. Terr. Phys. 53, 493–514 (1991).
[CrossRef]

Greenaway, A. H.

Hays, P. B.

P. B. Hays, A. F. Nagy, R. G. Roble, “Interferometric measurements of the 6300 Å Doppler temperature during a magnetic storm,” J. Geophys. Res. 74, 4162–4168 (1969).
[CrossRef]

Hernandez, G.

G. Hernandez, R. G. Roble, “Direct measurements of nighttime winds and temperatures,” J. Geophys. Res. 81, 2065–2074 (1976).
[CrossRef]

Killeen, T. L.

R. Niciejewski, T. L. Killeen, M. Turnbull, “Ground-based Fabry-Perot interferometry of the terrestrial nightglow with a bare charge-coupled device: remote field site deployment,” Opt. Eng. 33, 457–465 (1994).
[CrossRef]

Mendillo, M.

M. Mendillo, J. L. Baumgardner, P. J. Sullivan, “The CEDAR imaging system,” World Ionosphere/Thermosphere Study Handb. 2, 258–261 (1989).

Nagy, A. F.

P. B. Hays, A. F. Nagy, R. G. Roble, “Interferometric measurements of the 6300 Å Doppler temperature during a magnetic storm,” J. Geophys. Res. 74, 4162–4168 (1969).
[CrossRef]

Niciejewski, R.

R. Niciejewski, T. L. Killeen, M. Turnbull, “Ground-based Fabry-Perot interferometry of the terrestrial nightglow with a bare charge-coupled device: remote field site deployment,” Opt. Eng. 33, 457–465 (1994).
[CrossRef]

Rees, D.

D. Rees, S. Batten, A. L. Aruliah, T. J. Fuller-Rowell, A. D. Farmer, K. S. C. Freeman, “Long-lived polar thermospheric vortices: a combined radar and optical study,” J. Atmos. Terr. Phys. 53, 493–514 (1991).
[CrossRef]

S. Batten, D. Rees, D. Wade, A. Steen, “Observations of thermospheric neutral winds by the UCL Doppler imaging system at Kiruna in northern Scandinavia,” J. Atmos. Terr. Phys. 50, 861–888 (1988).
[CrossRef]

D. Rees, A. H. Greenaway, “Doppler imaging system; an optical device for measuring vector winds. 1: General principles,” Appl. Opt. 22, 1078–1083 (1983).
[CrossRef] [PubMed]

Roble, R. G.

D. P. Sipler, M. A. Biondi, R. G. Roble, “F-region neutral winds and temperatures at equatorial latitudes: measured and predicted behaviour during geomagnetically quiet conditions,” Planet. Space Sci. 31, 53–66 (1983).
[CrossRef]

G. Hernandez, R. G. Roble, “Direct measurements of nighttime winds and temperatures,” J. Geophys. Res. 81, 2065–2074 (1976).
[CrossRef]

P. B. Hays, A. F. Nagy, R. G. Roble, “Interferometric measurements of the 6300 Å Doppler temperature during a magnetic storm,” J. Geophys. Res. 74, 4162–4168 (1969).
[CrossRef]

Sipler, D. P.

D. P. Sipler, M. A. Biondi, R. G. Roble, “F-region neutral winds and temperatures at equatorial latitudes: measured and predicted behaviour during geomagnetically quiet conditions,” Planet. Space Sci. 31, 53–66 (1983).
[CrossRef]

Steen, A.

S. Batten, D. Rees, D. Wade, A. Steen, “Observations of thermospheric neutral winds by the UCL Doppler imaging system at Kiruna in northern Scandinavia,” J. Atmos. Terr. Phys. 50, 861–888 (1988).
[CrossRef]

Sullivan, P. J.

M. Mendillo, J. L. Baumgardner, P. J. Sullivan, “The CEDAR imaging system,” World Ionosphere/Thermosphere Study Handb. 2, 258–261 (1989).

Turnbull, M.

R. Niciejewski, T. L. Killeen, M. Turnbull, “Ground-based Fabry-Perot interferometry of the terrestrial nightglow with a bare charge-coupled device: remote field site deployment,” Opt. Eng. 33, 457–465 (1994).
[CrossRef]

Wade, D.

S. Batten, D. Rees, D. Wade, A. Steen, “Observations of thermospheric neutral winds by the UCL Doppler imaging system at Kiruna in northern Scandinavia,” J. Atmos. Terr. Phys. 50, 861–888 (1988).
[CrossRef]

Appl. Opt. (1)

J. Atmos. Terr. Phys. (2)

S. Batten, D. Rees, D. Wade, A. Steen, “Observations of thermospheric neutral winds by the UCL Doppler imaging system at Kiruna in northern Scandinavia,” J. Atmos. Terr. Phys. 50, 861–888 (1988).
[CrossRef]

D. Rees, S. Batten, A. L. Aruliah, T. J. Fuller-Rowell, A. D. Farmer, K. S. C. Freeman, “Long-lived polar thermospheric vortices: a combined radar and optical study,” J. Atmos. Terr. Phys. 53, 493–514 (1991).
[CrossRef]

J. Geophys. Res. (2)

P. B. Hays, A. F. Nagy, R. G. Roble, “Interferometric measurements of the 6300 Å Doppler temperature during a magnetic storm,” J. Geophys. Res. 74, 4162–4168 (1969).
[CrossRef]

G. Hernandez, R. G. Roble, “Direct measurements of nighttime winds and temperatures,” J. Geophys. Res. 81, 2065–2074 (1976).
[CrossRef]

Opt. Eng. (1)

R. Niciejewski, T. L. Killeen, M. Turnbull, “Ground-based Fabry-Perot interferometry of the terrestrial nightglow with a bare charge-coupled device: remote field site deployment,” Opt. Eng. 33, 457–465 (1994).
[CrossRef]

Planet. Space Sci. (4)

D. P. Sipler, M. A. Biondi, R. G. Roble, “F-region neutral winds and temperatures at equatorial latitudes: measured and predicted behaviour during geomagnetically quiet conditions,” Planet. Space Sci. 31, 53–66 (1983).
[CrossRef]

M. A. Biondi, W. A. Feibelman, “Twilight and nightglow spectral line shapes of oxygen λ6300 and λ5577 radiation,” Planet. Space Sci. 16, 431–443 (1968).
[CrossRef]

E. B. Armstrong, “Variations in the width of the OI λ5577 line in the night airglow,” Planet. Space Sci. 16, 211–229 (1968).
[CrossRef]

E. B. Armstrong, “Doppler shifts in the wavelength of the OI λ6300 line in the night airglow,” Planet. Space Sci. 17, 957–974 (1969).
[CrossRef]

World Ionosphere/Thermosphere Study Handb. (1)

M. Mendillo, J. L. Baumgardner, P. J. Sullivan, “The CEDAR imaging system,” World Ionosphere/Thermosphere Study Handb. 2, 258–261 (1989).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Simplified diagram of the ASDI apparatus (symbols are defined in the text).

Fig. 2
Fig. 2

CCD images of the interference patterns produced for (a) the 632.8-nm calibrating laser line (1-s exposure) and (b) the all-sky 630.0-nm nightglow radiation on 11 November 1993 at 19:05–19:20 EST (00:05–00:20 UT) (15-min exposure). North is at the top and east to the right. The 630.0-nm pattern distortions at ≈230° azimuth in the inner two interference rings are the result of reflections in the glass dome of navigation lights on a nearby microwave tower.

Fig. 3
Fig. 3

Laser fringe intensities as a function of ring number (proportional to r 2) for the 256 equiarea rings of the dissected interference pattern on the CCD. The pattern has been further divided into 24 equal (15°) azimuthal sectors, starting from 0° azimuth. Results from four sectors 90° apart are shown.

Fig. 4
Fig. 4

Drift of the interference pattern center on the 512 × 512 pixel CCD chip, as determined from laser fringe measurements (see text), during the course of the night. The vertical bars represent the ±1σ uncertainties in the determination of the center’s position. The coordinates are pixel numbers.

Fig. 5
Fig. 5

Nightglow 630-nm fringe intensities derived from the image in Fig. 2(b). Same format as in Fig. 3, for sectors 24(N), 18(E), 12(S), and 6(W).

Fig. 6
Fig. 6

LOS winds at ≈19:12 EST derived from the 630-nm sector fringes illustrated in Fig. 5.

Fig. 7
Fig. 7

Thermospheric horizontal wind field deduced from the LOS winds given in Fig. 6. The dashed curves are in the direction of the average wind v 0, revealing the curvature in the wind pattern over the field.

Fig. 8
Fig. 8

Thermospheric temperature field derived from the widths of the 630-nm fringes illustrated in Fig. 5. The sectors are the same as those indicated by circles in Figs. 6 and 7.

Metrics