J. S. Bendat, A. G. Piersol, Random Data: Analysis and Measurement Procedures (Wiley-Interscience, New York, 1971), pp. 322–330.

J. M. Elson, J. M. Bennett, J. C. Stover, “Wavelength and angular dependence of light scattering from beryllium: comparison of theory and experiment,” Appl. Opt. 32, 3362–3376 (1993); see also references by Church et al. in this reference.

[CrossRef]
[PubMed]

J. M. Elson, J. M. Bennett, “Relation between the angular dependence of scattering and the statistical properties of optical surfaces,” J. Opt. Soc. Am. 69, 31–47 (1979).

[CrossRef]

J. M. Bennett, L. Mattsson, Introduction to Surface Roughness and Scattering (Optical Society of America, Washington, D.C., 1989), pp. 28–29, 44–50.

E. L. Church, H. A. Jenkinson, J. M. Zavada, “Relationship between surface scattering and microtopographic features,” Opt. Eng. 18, 125–136 (1979).

E. L. Church, P. Z. Takacs, “The optimal estimation of finish parameters,” in Optical Scatter: Applications, Measurement, and Theory, J. C. Stover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1530, 71–78 (1991).

W. H. Press, S. A. Teukolsky, W. T. Vettering, B. P. Flannery, Numerical Recipes in Fortran, The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992), pp. 543–551.

E. L. Church, H. A. Jenkinson, J. M. Zavada, “Relationship between surface scattering and microtopographic features,” Opt. Eng. 18, 125–136 (1979).

S. L. Marple, Digital Spectral Analysis with Applications (Prentice-Hall, Englewood Cliffs, N.J., 1987), pp. 152–158.

J. M. Bennett, L. Mattsson, Introduction to Surface Roughness and Scattering (Optical Society of America, Washington, D.C., 1989), pp. 28–29, 44–50.

J. S. Bendat, A. G. Piersol, Random Data: Analysis and Measurement Procedures (Wiley-Interscience, New York, 1971), pp. 322–330.

W. H. Press, S. A. Teukolsky, W. T. Vettering, B. P. Flannery, Numerical Recipes in Fortran, The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992), pp. 543–551.

E. L. Church, P. Z. Takacs, “The optimal estimation of finish parameters,” in Optical Scatter: Applications, Measurement, and Theory, J. C. Stover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1530, 71–78 (1991).

W. H. Press, S. A. Teukolsky, W. T. Vettering, B. P. Flannery, Numerical Recipes in Fortran, The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992), pp. 543–551.

W. H. Press, S. A. Teukolsky, W. T. Vettering, B. P. Flannery, Numerical Recipes in Fortran, The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992), pp. 543–551.

E. L. Church, H. A. Jenkinson, J. M. Zavada, “Relationship between surface scattering and microtopographic features,” Opt. Eng. 18, 125–136 (1979).

E. L. Church, H. A. Jenkinson, J. M. Zavada, “Relationship between surface scattering and microtopographic features,” Opt. Eng. 18, 125–136 (1979).

S. L. Marple, Digital Spectral Analysis with Applications (Prentice-Hall, Englewood Cliffs, N.J., 1987), pp. 152–158.

W. H. Press, S. A. Teukolsky, W. T. Vettering, B. P. Flannery, Numerical Recipes in Fortran, The Art of Scientific Computing, 2nd ed. (Cambridge U. Press, New York, 1992), pp. 543–551.

J. S. Bendat, A. G. Piersol, Random Data: Analysis and Measurement Procedures (Wiley-Interscience, New York, 1971), pp. 322–330.

For example, a commercial algorithm in Ref. 8 called SPCTRM.FOR yields smoothed PSD estimates that are one sided.

“Optics and optical instruments—indications in optical drawings,” in Draft International Standard ISO 10110 Part 8: Surface Texture (International Organization for Standardization, ISO/TC 172/SC 1/WG 2, Geneva, Switzerland).

J. M. Bennett, L. Mattsson, Introduction to Surface Roughness and Scattering (Optical Society of America, Washington, D.C., 1989), pp. 28–29, 44–50.

E. L. Church, P. Z. Takacs, “The optimal estimation of finish parameters,” in Optical Scatter: Applications, Measurement, and Theory, J. C. Stover, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1530, 71–78 (1991).