Abstract

We report here on the development of an optical transducer for mechanical vibration, making use of an ultrashort Fabry–Perot cavity. The noise level measured by a cavity 150 μm long is ~1.3 × 10−16 m/√Hz at ~1 kHz, which was obtained without a frequency-stabilization system. It was, however, large compared with the shot noise.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko, S. P. Vyatchanin, “On the ultimate sensitivity in coordinate measurements,” Phys. Lett. A 179, 244–248 (1993).
    [CrossRef]
  2. A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Güsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
    [CrossRef] [PubMed]
  3. K. Tsubono, M. Ohashi, H. Hirakawa, “Parametric transducer for gravitational radiation detector,” Jpn. J. Appl. Phys. 25, 622–626 (1986).
    [CrossRef]
  4. F. Bordoni, M. Karim, M. F. Bocko, T. Mengxi, “Proposed room-temperature detector for gravitational radiation from galactic sources,” Phys. Rev. D 42, 2952–2955 (1990).
    [CrossRef]
  5. O. D. Aguair, W. W. Johnson, W. O. Hamilton, “A cryogenic double-resonant parabridge motion transducer for resonant-mass gravitational wave detectors,” Rev. Sci. Instrum. 62, 2523–2534 (1991).
    [CrossRef]
  6. C. Cinquegrana, E. Majorana, P. Rapagnani, F. Ricci, “Back-action-evading transducer scheme for cryogenic gravitational wave antennas,” Phys. Rev. D 48, 448–465 (1993).
    [CrossRef]
  7. G. E. Moss, L. R. Miller, R. L. Forward, “Photon-noise-limited laser transducer for gravitational antenna,” Appl. Opt. 10, 2495–2498 (1971).
    [CrossRef] [PubMed]
  8. A. Abramovich, Z. Vager, M. Weksler, “Experimental test of a prototype gravitational radiation detector employing an active cavity laser sensor,” J. Phys. E 19, 182–188 (1986).
    [CrossRef]
  9. J.-P. Richard, “Laser instrumentation for one-phonon sensitivity and wide bandwidth with multimode gravitational radiation detectors,” J. Appl. Phys. 64, 2202–2205 (1988).
    [CrossRef]
  10. K. Tsubono, N. Mio, A. Mizutani, “Laser interferometer instrumented in a disk antenna for gravitational radiation,” Jpn. J. Appl. Phys. 30, 1326–1330 (1991).
    [CrossRef]
  11. J.-P. Richard, Y. Pang, J. J. Hamilton, “Optical motion sensor for resonant-bar gravitational wave antennas,” Appl. Opt. 31, 1641–1645 (1992).
    [CrossRef] [PubMed]
  12. J.-P. Richard, “Approaching the quantum limit with optically instrumented multimode gravitational-wave bar detector,” Phys. Rev. D 46, 2309–2317 (1992).
    [CrossRef]
  13. G. Rempe, R. J. Thompson, H. J. Kimble, R. Lalezari, “Measurement of ultralow losses in an optical interferometer,” Opt. Lett. 17, 363–365 (1992).
    [CrossRef] [PubMed]
  14. R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
    [CrossRef]
  15. G. A. Kerr, N. A. Robertson, J. Hough, C. N. Man, “The fast frequency stabilisation of an argon laser to an optical resonator using an extra-cavity electro-optic modulator,” Appl. Phys. B 37, 11–16 (1985).
    [CrossRef]
  16. D. Shoemaker, A. Brillet, C. N. Man, O. Crégut, G. Kerr, “Frequency-stabilized laser-diode-pumped Nd:YAG laser,” Opt. Lett. 14, 609–611 (1989).
    [CrossRef] [PubMed]
  17. T. Day, E. K. Gustafson, R. L. Byer, “Sub-hertz relative frequency stabilization of two-diode laser pumped Nd:YAG lasers locked to a Fabry–Perot interferometer,” IEEE J. Quantum Electron. 28, 1106–1117 (1992).
    [CrossRef]
  18. N. Uehara, K. Ueda, “193-mHz beat linewidth of frequency-stabilized laser-diode-pumped Nd:YAG ring lasers,” Opt. Lett. 18, 505–507 (1993).
    [CrossRef] [PubMed]
  19. N. M. Sampus, K. E. Gustafson, R. L. Byer, “Long-term stability of two diode-laser-pumped nonplanar ring lasers independently stabilized to two Fabry–Perot interferometers,” Opt. Lett. 18, 947–949 (1993).
    [CrossRef]
  20. N. Uehara, K. Ueda, “Ultrahigh-frequency stabilization of a diode-pumped Nd:YAG laser with a high-power-acceptance photodetector,” Opt. Lett. 19, 728–730 (1994).
    [CrossRef] [PubMed]
  21. T. J. Kane, R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10, 65–67 (1985).
    [CrossRef] [PubMed]
  22. P. Fritschel, A. Jeffries, T. J. Kane, “Frequency fluctuation of a diode-pumped Nd:YAG ring laser,” Opt. Lett. 14, 993–995 (1989).
    [CrossRef] [PubMed]
  23. K. Nakayama, M. Tanaka, F. Shiota, K. Kuroda, “Precision physical measurements and nanometrology,” Metrologia 28, 483–502 (1991/92).
    [CrossRef]
  24. M. Stephens, “A sensitive interferometric accelerometer,” Rev. Sci. Instrum. 64, 2612–2614 (1993).
    [CrossRef]
  25. P. R. Saulson, “Thermal noise in mechanical experiments,” Phys. Rev. D 42, 2437–2445 (1990).
    [CrossRef]

1994 (1)

1993 (5)

N. Uehara, K. Ueda, “193-mHz beat linewidth of frequency-stabilized laser-diode-pumped Nd:YAG ring lasers,” Opt. Lett. 18, 505–507 (1993).
[CrossRef] [PubMed]

N. M. Sampus, K. E. Gustafson, R. L. Byer, “Long-term stability of two diode-laser-pumped nonplanar ring lasers independently stabilized to two Fabry–Perot interferometers,” Opt. Lett. 18, 947–949 (1993).
[CrossRef]

V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko, S. P. Vyatchanin, “On the ultimate sensitivity in coordinate measurements,” Phys. Lett. A 179, 244–248 (1993).
[CrossRef]

C. Cinquegrana, E. Majorana, P. Rapagnani, F. Ricci, “Back-action-evading transducer scheme for cryogenic gravitational wave antennas,” Phys. Rev. D 48, 448–465 (1993).
[CrossRef]

M. Stephens, “A sensitive interferometric accelerometer,” Rev. Sci. Instrum. 64, 2612–2614 (1993).
[CrossRef]

1992 (5)

G. Rempe, R. J. Thompson, H. J. Kimble, R. Lalezari, “Measurement of ultralow losses in an optical interferometer,” Opt. Lett. 17, 363–365 (1992).
[CrossRef] [PubMed]

J.-P. Richard, “Approaching the quantum limit with optically instrumented multimode gravitational-wave bar detector,” Phys. Rev. D 46, 2309–2317 (1992).
[CrossRef]

T. Day, E. K. Gustafson, R. L. Byer, “Sub-hertz relative frequency stabilization of two-diode laser pumped Nd:YAG lasers locked to a Fabry–Perot interferometer,” IEEE J. Quantum Electron. 28, 1106–1117 (1992).
[CrossRef]

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Güsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

J.-P. Richard, Y. Pang, J. J. Hamilton, “Optical motion sensor for resonant-bar gravitational wave antennas,” Appl. Opt. 31, 1641–1645 (1992).
[CrossRef] [PubMed]

1991 (2)

O. D. Aguair, W. W. Johnson, W. O. Hamilton, “A cryogenic double-resonant parabridge motion transducer for resonant-mass gravitational wave detectors,” Rev. Sci. Instrum. 62, 2523–2534 (1991).
[CrossRef]

K. Tsubono, N. Mio, A. Mizutani, “Laser interferometer instrumented in a disk antenna for gravitational radiation,” Jpn. J. Appl. Phys. 30, 1326–1330 (1991).
[CrossRef]

1990 (2)

F. Bordoni, M. Karim, M. F. Bocko, T. Mengxi, “Proposed room-temperature detector for gravitational radiation from galactic sources,” Phys. Rev. D 42, 2952–2955 (1990).
[CrossRef]

P. R. Saulson, “Thermal noise in mechanical experiments,” Phys. Rev. D 42, 2437–2445 (1990).
[CrossRef]

1989 (2)

1988 (1)

J.-P. Richard, “Laser instrumentation for one-phonon sensitivity and wide bandwidth with multimode gravitational radiation detectors,” J. Appl. Phys. 64, 2202–2205 (1988).
[CrossRef]

1986 (2)

A. Abramovich, Z. Vager, M. Weksler, “Experimental test of a prototype gravitational radiation detector employing an active cavity laser sensor,” J. Phys. E 19, 182–188 (1986).
[CrossRef]

K. Tsubono, M. Ohashi, H. Hirakawa, “Parametric transducer for gravitational radiation detector,” Jpn. J. Appl. Phys. 25, 622–626 (1986).
[CrossRef]

1985 (2)

T. J. Kane, R. L. Byer, “Monolithic, unidirectional single-mode Nd:YAG ring laser,” Opt. Lett. 10, 65–67 (1985).
[CrossRef] [PubMed]

G. A. Kerr, N. A. Robertson, J. Hough, C. N. Man, “The fast frequency stabilisation of an argon laser to an optical resonator using an extra-cavity electro-optic modulator,” Appl. Phys. B 37, 11–16 (1985).
[CrossRef]

1983 (1)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

1971 (1)

Abramovich, A.

A. Abramovich, Z. Vager, M. Weksler, “Experimental test of a prototype gravitational radiation detector employing an active cavity laser sensor,” J. Phys. E 19, 182–188 (1986).
[CrossRef]

Abramovici, A.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Güsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Aguair, O. D.

O. D. Aguair, W. W. Johnson, W. O. Hamilton, “A cryogenic double-resonant parabridge motion transducer for resonant-mass gravitational wave detectors,” Rev. Sci. Instrum. 62, 2523–2534 (1991).
[CrossRef]

Althouse, W. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Güsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Bocko, M. F.

F. Bordoni, M. Karim, M. F. Bocko, T. Mengxi, “Proposed room-temperature detector for gravitational radiation from galactic sources,” Phys. Rev. D 42, 2952–2955 (1990).
[CrossRef]

Bordoni, F.

F. Bordoni, M. Karim, M. F. Bocko, T. Mengxi, “Proposed room-temperature detector for gravitational radiation from galactic sources,” Phys. Rev. D 42, 2952–2955 (1990).
[CrossRef]

Braginsky, V. B.

V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko, S. P. Vyatchanin, “On the ultimate sensitivity in coordinate measurements,” Phys. Lett. A 179, 244–248 (1993).
[CrossRef]

Brillet, A.

Byer, R. L.

Cinquegrana, C.

C. Cinquegrana, E. Majorana, P. Rapagnani, F. Ricci, “Back-action-evading transducer scheme for cryogenic gravitational wave antennas,” Phys. Rev. D 48, 448–465 (1993).
[CrossRef]

Crégut, O.

Day, T.

T. Day, E. K. Gustafson, R. L. Byer, “Sub-hertz relative frequency stabilization of two-diode laser pumped Nd:YAG lasers locked to a Fabry–Perot interferometer,” IEEE J. Quantum Electron. 28, 1106–1117 (1992).
[CrossRef]

Drever, R. W. P.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Güsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Ford, G. M.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Forward, R. L.

Fritschel, P.

Gorodetsky, M. L.

V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko, S. P. Vyatchanin, “On the ultimate sensitivity in coordinate measurements,” Phys. Lett. A 179, 244–248 (1993).
[CrossRef]

Güsel, Y.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Güsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Gustafson, E. K.

T. Day, E. K. Gustafson, R. L. Byer, “Sub-hertz relative frequency stabilization of two-diode laser pumped Nd:YAG lasers locked to a Fabry–Perot interferometer,” IEEE J. Quantum Electron. 28, 1106–1117 (1992).
[CrossRef]

Gustafson, K. E.

Hall, J. L.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Hamilton, J. J.

Hamilton, W. O.

O. D. Aguair, W. W. Johnson, W. O. Hamilton, “A cryogenic double-resonant parabridge motion transducer for resonant-mass gravitational wave detectors,” Rev. Sci. Instrum. 62, 2523–2534 (1991).
[CrossRef]

Hirakawa, H.

K. Tsubono, M. Ohashi, H. Hirakawa, “Parametric transducer for gravitational radiation detector,” Jpn. J. Appl. Phys. 25, 622–626 (1986).
[CrossRef]

Hough, J.

G. A. Kerr, N. A. Robertson, J. Hough, C. N. Man, “The fast frequency stabilisation of an argon laser to an optical resonator using an extra-cavity electro-optic modulator,” Appl. Phys. B 37, 11–16 (1985).
[CrossRef]

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Ilchenko, V. S.

V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko, S. P. Vyatchanin, “On the ultimate sensitivity in coordinate measurements,” Phys. Lett. A 179, 244–248 (1993).
[CrossRef]

Jeffries, A.

Johnson, W. W.

O. D. Aguair, W. W. Johnson, W. O. Hamilton, “A cryogenic double-resonant parabridge motion transducer for resonant-mass gravitational wave detectors,” Rev. Sci. Instrum. 62, 2523–2534 (1991).
[CrossRef]

Kane, T. J.

Karim, M.

F. Bordoni, M. Karim, M. F. Bocko, T. Mengxi, “Proposed room-temperature detector for gravitational radiation from galactic sources,” Phys. Rev. D 42, 2952–2955 (1990).
[CrossRef]

Kawamura, S.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Güsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Kerr, G.

Kerr, G. A.

G. A. Kerr, N. A. Robertson, J. Hough, C. N. Man, “The fast frequency stabilisation of an argon laser to an optical resonator using an extra-cavity electro-optic modulator,” Appl. Phys. B 37, 11–16 (1985).
[CrossRef]

Kimble, H. J.

Kowalski, F. V.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Kuroda, K.

K. Nakayama, M. Tanaka, F. Shiota, K. Kuroda, “Precision physical measurements and nanometrology,” Metrologia 28, 483–502 (1991/92).
[CrossRef]

Lalezari, R.

Majorana, E.

C. Cinquegrana, E. Majorana, P. Rapagnani, F. Ricci, “Back-action-evading transducer scheme for cryogenic gravitational wave antennas,” Phys. Rev. D 48, 448–465 (1993).
[CrossRef]

Man, C. N.

D. Shoemaker, A. Brillet, C. N. Man, O. Crégut, G. Kerr, “Frequency-stabilized laser-diode-pumped Nd:YAG laser,” Opt. Lett. 14, 609–611 (1989).
[CrossRef] [PubMed]

G. A. Kerr, N. A. Robertson, J. Hough, C. N. Man, “The fast frequency stabilisation of an argon laser to an optical resonator using an extra-cavity electro-optic modulator,” Appl. Phys. B 37, 11–16 (1985).
[CrossRef]

Mengxi, T.

F. Bordoni, M. Karim, M. F. Bocko, T. Mengxi, “Proposed room-temperature detector for gravitational radiation from galactic sources,” Phys. Rev. D 42, 2952–2955 (1990).
[CrossRef]

Miller, L. R.

Mio, N.

K. Tsubono, N. Mio, A. Mizutani, “Laser interferometer instrumented in a disk antenna for gravitational radiation,” Jpn. J. Appl. Phys. 30, 1326–1330 (1991).
[CrossRef]

Mizutani, A.

K. Tsubono, N. Mio, A. Mizutani, “Laser interferometer instrumented in a disk antenna for gravitational radiation,” Jpn. J. Appl. Phys. 30, 1326–1330 (1991).
[CrossRef]

Moss, G. E.

Munley, A. J.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Nakayama, K.

K. Nakayama, M. Tanaka, F. Shiota, K. Kuroda, “Precision physical measurements and nanometrology,” Metrologia 28, 483–502 (1991/92).
[CrossRef]

Ohashi, M.

K. Tsubono, M. Ohashi, H. Hirakawa, “Parametric transducer for gravitational radiation detector,” Jpn. J. Appl. Phys. 25, 622–626 (1986).
[CrossRef]

Pang, Y.

Raab, F. J.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Güsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Rapagnani, P.

C. Cinquegrana, E. Majorana, P. Rapagnani, F. Ricci, “Back-action-evading transducer scheme for cryogenic gravitational wave antennas,” Phys. Rev. D 48, 448–465 (1993).
[CrossRef]

Rempe, G.

Ricci, F.

C. Cinquegrana, E. Majorana, P. Rapagnani, F. Ricci, “Back-action-evading transducer scheme for cryogenic gravitational wave antennas,” Phys. Rev. D 48, 448–465 (1993).
[CrossRef]

Richard, J.-P.

J.-P. Richard, Y. Pang, J. J. Hamilton, “Optical motion sensor for resonant-bar gravitational wave antennas,” Appl. Opt. 31, 1641–1645 (1992).
[CrossRef] [PubMed]

J.-P. Richard, “Approaching the quantum limit with optically instrumented multimode gravitational-wave bar detector,” Phys. Rev. D 46, 2309–2317 (1992).
[CrossRef]

J.-P. Richard, “Laser instrumentation for one-phonon sensitivity and wide bandwidth with multimode gravitational radiation detectors,” J. Appl. Phys. 64, 2202–2205 (1988).
[CrossRef]

Robertson, N. A.

G. A. Kerr, N. A. Robertson, J. Hough, C. N. Man, “The fast frequency stabilisation of an argon laser to an optical resonator using an extra-cavity electro-optic modulator,” Appl. Phys. B 37, 11–16 (1985).
[CrossRef]

Sampus, N. M.

Saulson, P. R.

P. R. Saulson, “Thermal noise in mechanical experiments,” Phys. Rev. D 42, 2437–2445 (1990).
[CrossRef]

Shiota, F.

K. Nakayama, M. Tanaka, F. Shiota, K. Kuroda, “Precision physical measurements and nanometrology,” Metrologia 28, 483–502 (1991/92).
[CrossRef]

Shoemaker, D.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Güsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

D. Shoemaker, A. Brillet, C. N. Man, O. Crégut, G. Kerr, “Frequency-stabilized laser-diode-pumped Nd:YAG laser,” Opt. Lett. 14, 609–611 (1989).
[CrossRef] [PubMed]

Sievers, L.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Güsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Spero, R. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Güsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Stephens, M.

M. Stephens, “A sensitive interferometric accelerometer,” Rev. Sci. Instrum. 64, 2612–2614 (1993).
[CrossRef]

Tanaka, M.

K. Nakayama, M. Tanaka, F. Shiota, K. Kuroda, “Precision physical measurements and nanometrology,” Metrologia 28, 483–502 (1991/92).
[CrossRef]

Thompson, R. J.

Thorne, K. S.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Güsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Tsubono, K.

K. Tsubono, N. Mio, A. Mizutani, “Laser interferometer instrumented in a disk antenna for gravitational radiation,” Jpn. J. Appl. Phys. 30, 1326–1330 (1991).
[CrossRef]

K. Tsubono, M. Ohashi, H. Hirakawa, “Parametric transducer for gravitational radiation detector,” Jpn. J. Appl. Phys. 25, 622–626 (1986).
[CrossRef]

Ueda, K.

Uehara, N.

Vager, Z.

A. Abramovich, Z. Vager, M. Weksler, “Experimental test of a prototype gravitational radiation detector employing an active cavity laser sensor,” J. Phys. E 19, 182–188 (1986).
[CrossRef]

Vogt, R. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Güsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Vyatchanin, S. P.

V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko, S. P. Vyatchanin, “On the ultimate sensitivity in coordinate measurements,” Phys. Lett. A 179, 244–248 (1993).
[CrossRef]

Ward, H.

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

Weiss, R.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Güsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Weksler, M.

A. Abramovich, Z. Vager, M. Weksler, “Experimental test of a prototype gravitational radiation detector employing an active cavity laser sensor,” J. Phys. E 19, 182–188 (1986).
[CrossRef]

Whitcomb, S. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Güsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Zucker, M. E.

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Güsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Appl. Opt. (2)

Appl. Phys. B (2)

R. W. P. Drever, J. L. Hall, F. V. Kowalski, J. Hough, G. M. Ford, A. J. Munley, H. Ward, “Laser phase and frequency stabilization using an optical resonator,” Appl. Phys. B 31, 97–105 (1983).
[CrossRef]

G. A. Kerr, N. A. Robertson, J. Hough, C. N. Man, “The fast frequency stabilisation of an argon laser to an optical resonator using an extra-cavity electro-optic modulator,” Appl. Phys. B 37, 11–16 (1985).
[CrossRef]

IEEE J. Quantum Electron. (1)

T. Day, E. K. Gustafson, R. L. Byer, “Sub-hertz relative frequency stabilization of two-diode laser pumped Nd:YAG lasers locked to a Fabry–Perot interferometer,” IEEE J. Quantum Electron. 28, 1106–1117 (1992).
[CrossRef]

J. Appl. Phys. (1)

J.-P. Richard, “Laser instrumentation for one-phonon sensitivity and wide bandwidth with multimode gravitational radiation detectors,” J. Appl. Phys. 64, 2202–2205 (1988).
[CrossRef]

J. Phys. E (1)

A. Abramovich, Z. Vager, M. Weksler, “Experimental test of a prototype gravitational radiation detector employing an active cavity laser sensor,” J. Phys. E 19, 182–188 (1986).
[CrossRef]

Jpn. J. Appl. Phys. (2)

K. Tsubono, N. Mio, A. Mizutani, “Laser interferometer instrumented in a disk antenna for gravitational radiation,” Jpn. J. Appl. Phys. 30, 1326–1330 (1991).
[CrossRef]

K. Tsubono, M. Ohashi, H. Hirakawa, “Parametric transducer for gravitational radiation detector,” Jpn. J. Appl. Phys. 25, 622–626 (1986).
[CrossRef]

Metrologia (1)

K. Nakayama, M. Tanaka, F. Shiota, K. Kuroda, “Precision physical measurements and nanometrology,” Metrologia 28, 483–502 (1991/92).
[CrossRef]

Opt. Lett. (7)

Phys. Lett. A (1)

V. B. Braginsky, M. L. Gorodetsky, V. S. Ilchenko, S. P. Vyatchanin, “On the ultimate sensitivity in coordinate measurements,” Phys. Lett. A 179, 244–248 (1993).
[CrossRef]

Phys. Rev. D (4)

F. Bordoni, M. Karim, M. F. Bocko, T. Mengxi, “Proposed room-temperature detector for gravitational radiation from galactic sources,” Phys. Rev. D 42, 2952–2955 (1990).
[CrossRef]

J.-P. Richard, “Approaching the quantum limit with optically instrumented multimode gravitational-wave bar detector,” Phys. Rev. D 46, 2309–2317 (1992).
[CrossRef]

C. Cinquegrana, E. Majorana, P. Rapagnani, F. Ricci, “Back-action-evading transducer scheme for cryogenic gravitational wave antennas,” Phys. Rev. D 48, 448–465 (1993).
[CrossRef]

P. R. Saulson, “Thermal noise in mechanical experiments,” Phys. Rev. D 42, 2437–2445 (1990).
[CrossRef]

Rev. Sci. Instrum. (2)

O. D. Aguair, W. W. Johnson, W. O. Hamilton, “A cryogenic double-resonant parabridge motion transducer for resonant-mass gravitational wave detectors,” Rev. Sci. Instrum. 62, 2523–2534 (1991).
[CrossRef]

M. Stephens, “A sensitive interferometric accelerometer,” Rev. Sci. Instrum. 64, 2612–2614 (1993).
[CrossRef]

Science (1)

A. Abramovici, W. E. Althouse, R. W. P. Drever, Y. Güsel, S. Kawamura, F. J. Raab, D. Shoemaker, L. Sievers, R. E. Spero, K. S. Thorne, R. E. Vogt, R. Weiss, S. E. Whitcomb, M. E. Zucker, “LIGO: the Laser Interferometer Gravitational-Wave Observatory,” Science 256, 325–333 (1992).
[CrossRef] [PubMed]

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic diagram of the laser transducer system. A laser-diode-pumped Nd:YAG laser is used as a light source. The Fabry–Perot cavity comprises two concave mirrors whose nominal radius of curvature and reflectance are 1 m and 99.7%, respectively. The cavity is housed in a vacuum tank and set on a vibration isolation system. R t , R r , feedback resistances of current-to-voltage converters; PBS, polarizing beam splitter.

Fig. 2
Fig. 2

Flexure support of the cavity. This support structure is machined from a monolithic aluminum block with a numerically controlled wire-cutting machine. One of the mirrors is fixed on a flexure hinge and controlled by a coil-and-magnet actuator.

Fig. 3
Fig. 3

Noise spectrum of the flexure support system. There are a few sharp peaks from 1 to 3 kHz and many broad peaks from 5 to 10 kHz. They indicate the mechanical resonances around the cavity. Moreover the floor noise, which is rather flat near 1 kHz, limits the sensitivity, even between the resonance peaks. Its level is ~1.3 × 10−16 m/√Hz and is ~20 times larger than that of the shot noise.

Fig. 4
Fig. 4

Noise spectra obtained in different conditions. The continuous curve shows the same data as in Fig. 3, whereas the dashed curve shows the noise spectrum measured when the cavity was fixed to the base plate by a thin spacer between them. This spacer might mean additional loss to the mechanical system.

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

ξ shot = 1 4 F ( λ c π η P ) 1 / 2 ,
ξ FM = ν n ν 0 L ,

Metrics