Abstract

In the past, in sealed-off Lyman-α radiation sources (121.57 nm), uranium hydride was used as the hydrogen reservoir. We found that the zirconium–cobalt alloy ZrCo, which has similar thermodynamic properties, can also be used for hydrogen storage in such lamps. Like uranium, ZrCo acts as a getter for atmospheric contaminants. The advantage of the use of ZrCo lies in much easier and safer handling during production and disposal of the lamps. Using ZrCo, we succeeded in producing radiation sources with a large Lyman-α radiation output and high spectral purity, which were successfully applied in a Lyman-α fluorescence hygrometer for stratospheric observations.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. H. Dieke, S. P. Cunningham, “A new type of hydrogen discharge tube,” J. Opt. Soc. Am. 42, 187–189 (1952).
    [CrossRef]
  2. A. L. Buck, “Lyman-α radiation source with high spectral purity,” Appl. Opt. 16, 2634–2636 (1977).
    [CrossRef] [PubMed]
  3. D. Kley, E. J. Stone, “Measurement of water vapor in the stratosphere by photodissociation with Ly α (1216 Å) light,” Rev. Sci. Instrum. 49, 691–697 (1978).
    [CrossRef] [PubMed]
  4. J. Z. Klose, J. M. Bridges, W. R. Ott, “Monochromatic source of Lyman-α radiation,” Appl. Opt. 24, 2263–2266 (1985).
    [CrossRef] [PubMed]
  5. A. Zuber, G. Witt, “Optical hygrometer using differential absorption of hydrogen Lyman-α radiation,” Appl. Opt. 26, 3083–3089 (1987).
    [CrossRef] [PubMed]
  6. U. Mörschel, E. Klein, D. Kley, U. Schmidt, “A new balloon borne stratospheric hygrometer,” in Proceedings of the 10th ESA Symposium on European Rocket and Balloon Programmes and Related Research, B. Kaldeich, ed. (European Space Agency Publications Division, European Space Research and Technology Centre, Nordwijk, The Netherlands, 1991), pp. 201–205.
  7. M. Zöger, E. Klein, U. Mörschel, C. Schiller, U. Schmidt, T. Woyke, “Design and performance of an improved in-situ stratospheric hygrometer,” submitted to Rev. Sci. Instrum.
  8. J.-L. Bertaux, A. Delannoy, “Vertical distribution of H2O in the stratosphere as determined by UV fluorescence in-situ measurements,” Geophys. Res. Lett. 5, 1017–1020 (1978).
    [CrossRef]
  9. T. Nagasaki, S. Konishi, H. Katsuta, Y. Naruse, “A zirconium-cobalt compound as the material for a reversible tritium getter,” Fusion Technol. 9, 506–514 (1986).
  10. R.-D. Penzhorn, M. Devillers, M. Sirch, “Evaluation of ZrCo and other getters for tritium handling and storage,” J. Nucl. Mater. 170, 217–231 (1990).
    [CrossRef]
  11. T. Schober, J. Friedrich, “A transmission electron microscopy and differential thermal analysis study of the ZrCo–H system,” J. Alloys Compounds 182, 243–252 (1991).
    [CrossRef]
  12. T. Tanabe, S. Miura, S. Imoto, “Isotope effect in dissociation of uranium hydride,” J. Nucl. Sci. Technol. 16, 690–696 (1979).
    [CrossRef]
  13. J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Wiley, New York, 1967).

1991 (1)

T. Schober, J. Friedrich, “A transmission electron microscopy and differential thermal analysis study of the ZrCo–H system,” J. Alloys Compounds 182, 243–252 (1991).
[CrossRef]

1990 (1)

R.-D. Penzhorn, M. Devillers, M. Sirch, “Evaluation of ZrCo and other getters for tritium handling and storage,” J. Nucl. Mater. 170, 217–231 (1990).
[CrossRef]

1987 (1)

1986 (1)

T. Nagasaki, S. Konishi, H. Katsuta, Y. Naruse, “A zirconium-cobalt compound as the material for a reversible tritium getter,” Fusion Technol. 9, 506–514 (1986).

1985 (1)

1979 (1)

T. Tanabe, S. Miura, S. Imoto, “Isotope effect in dissociation of uranium hydride,” J. Nucl. Sci. Technol. 16, 690–696 (1979).
[CrossRef]

1978 (2)

D. Kley, E. J. Stone, “Measurement of water vapor in the stratosphere by photodissociation with Ly α (1216 Å) light,” Rev. Sci. Instrum. 49, 691–697 (1978).
[CrossRef] [PubMed]

J.-L. Bertaux, A. Delannoy, “Vertical distribution of H2O in the stratosphere as determined by UV fluorescence in-situ measurements,” Geophys. Res. Lett. 5, 1017–1020 (1978).
[CrossRef]

1977 (1)

1952 (1)

Bertaux, J.-L.

J.-L. Bertaux, A. Delannoy, “Vertical distribution of H2O in the stratosphere as determined by UV fluorescence in-situ measurements,” Geophys. Res. Lett. 5, 1017–1020 (1978).
[CrossRef]

Bridges, J. M.

Buck, A. L.

Cunningham, S. P.

Delannoy, A.

J.-L. Bertaux, A. Delannoy, “Vertical distribution of H2O in the stratosphere as determined by UV fluorescence in-situ measurements,” Geophys. Res. Lett. 5, 1017–1020 (1978).
[CrossRef]

Devillers, M.

R.-D. Penzhorn, M. Devillers, M. Sirch, “Evaluation of ZrCo and other getters for tritium handling and storage,” J. Nucl. Mater. 170, 217–231 (1990).
[CrossRef]

Dieke, G. H.

Friedrich, J.

T. Schober, J. Friedrich, “A transmission electron microscopy and differential thermal analysis study of the ZrCo–H system,” J. Alloys Compounds 182, 243–252 (1991).
[CrossRef]

Imoto, S.

T. Tanabe, S. Miura, S. Imoto, “Isotope effect in dissociation of uranium hydride,” J. Nucl. Sci. Technol. 16, 690–696 (1979).
[CrossRef]

Katsuta, H.

T. Nagasaki, S. Konishi, H. Katsuta, Y. Naruse, “A zirconium-cobalt compound as the material for a reversible tritium getter,” Fusion Technol. 9, 506–514 (1986).

Klein, E.

U. Mörschel, E. Klein, D. Kley, U. Schmidt, “A new balloon borne stratospheric hygrometer,” in Proceedings of the 10th ESA Symposium on European Rocket and Balloon Programmes and Related Research, B. Kaldeich, ed. (European Space Agency Publications Division, European Space Research and Technology Centre, Nordwijk, The Netherlands, 1991), pp. 201–205.

M. Zöger, E. Klein, U. Mörschel, C. Schiller, U. Schmidt, T. Woyke, “Design and performance of an improved in-situ stratospheric hygrometer,” submitted to Rev. Sci. Instrum.

Kley, D.

D. Kley, E. J. Stone, “Measurement of water vapor in the stratosphere by photodissociation with Ly α (1216 Å) light,” Rev. Sci. Instrum. 49, 691–697 (1978).
[CrossRef] [PubMed]

U. Mörschel, E. Klein, D. Kley, U. Schmidt, “A new balloon borne stratospheric hygrometer,” in Proceedings of the 10th ESA Symposium on European Rocket and Balloon Programmes and Related Research, B. Kaldeich, ed. (European Space Agency Publications Division, European Space Research and Technology Centre, Nordwijk, The Netherlands, 1991), pp. 201–205.

Klose, J. Z.

Konishi, S.

T. Nagasaki, S. Konishi, H. Katsuta, Y. Naruse, “A zirconium-cobalt compound as the material for a reversible tritium getter,” Fusion Technol. 9, 506–514 (1986).

Miura, S.

T. Tanabe, S. Miura, S. Imoto, “Isotope effect in dissociation of uranium hydride,” J. Nucl. Sci. Technol. 16, 690–696 (1979).
[CrossRef]

Mörschel, U.

U. Mörschel, E. Klein, D. Kley, U. Schmidt, “A new balloon borne stratospheric hygrometer,” in Proceedings of the 10th ESA Symposium on European Rocket and Balloon Programmes and Related Research, B. Kaldeich, ed. (European Space Agency Publications Division, European Space Research and Technology Centre, Nordwijk, The Netherlands, 1991), pp. 201–205.

M. Zöger, E. Klein, U. Mörschel, C. Schiller, U. Schmidt, T. Woyke, “Design and performance of an improved in-situ stratospheric hygrometer,” submitted to Rev. Sci. Instrum.

Nagasaki, T.

T. Nagasaki, S. Konishi, H. Katsuta, Y. Naruse, “A zirconium-cobalt compound as the material for a reversible tritium getter,” Fusion Technol. 9, 506–514 (1986).

Naruse, Y.

T. Nagasaki, S. Konishi, H. Katsuta, Y. Naruse, “A zirconium-cobalt compound as the material for a reversible tritium getter,” Fusion Technol. 9, 506–514 (1986).

Ott, W. R.

Penzhorn, R.-D.

R.-D. Penzhorn, M. Devillers, M. Sirch, “Evaluation of ZrCo and other getters for tritium handling and storage,” J. Nucl. Mater. 170, 217–231 (1990).
[CrossRef]

Samson, J. A. R.

J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Wiley, New York, 1967).

Schiller, C.

M. Zöger, E. Klein, U. Mörschel, C. Schiller, U. Schmidt, T. Woyke, “Design and performance of an improved in-situ stratospheric hygrometer,” submitted to Rev. Sci. Instrum.

Schmidt, U.

M. Zöger, E. Klein, U. Mörschel, C. Schiller, U. Schmidt, T. Woyke, “Design and performance of an improved in-situ stratospheric hygrometer,” submitted to Rev. Sci. Instrum.

U. Mörschel, E. Klein, D. Kley, U. Schmidt, “A new balloon borne stratospheric hygrometer,” in Proceedings of the 10th ESA Symposium on European Rocket and Balloon Programmes and Related Research, B. Kaldeich, ed. (European Space Agency Publications Division, European Space Research and Technology Centre, Nordwijk, The Netherlands, 1991), pp. 201–205.

Schober, T.

T. Schober, J. Friedrich, “A transmission electron microscopy and differential thermal analysis study of the ZrCo–H system,” J. Alloys Compounds 182, 243–252 (1991).
[CrossRef]

Sirch, M.

R.-D. Penzhorn, M. Devillers, M. Sirch, “Evaluation of ZrCo and other getters for tritium handling and storage,” J. Nucl. Mater. 170, 217–231 (1990).
[CrossRef]

Stone, E. J.

D. Kley, E. J. Stone, “Measurement of water vapor in the stratosphere by photodissociation with Ly α (1216 Å) light,” Rev. Sci. Instrum. 49, 691–697 (1978).
[CrossRef] [PubMed]

Tanabe, T.

T. Tanabe, S. Miura, S. Imoto, “Isotope effect in dissociation of uranium hydride,” J. Nucl. Sci. Technol. 16, 690–696 (1979).
[CrossRef]

Witt, G.

Woyke, T.

M. Zöger, E. Klein, U. Mörschel, C. Schiller, U. Schmidt, T. Woyke, “Design and performance of an improved in-situ stratospheric hygrometer,” submitted to Rev. Sci. Instrum.

Zöger, M.

M. Zöger, E. Klein, U. Mörschel, C. Schiller, U. Schmidt, T. Woyke, “Design and performance of an improved in-situ stratospheric hygrometer,” submitted to Rev. Sci. Instrum.

Zuber, A.

Appl. Opt. (3)

Fusion Technol. (1)

T. Nagasaki, S. Konishi, H. Katsuta, Y. Naruse, “A zirconium-cobalt compound as the material for a reversible tritium getter,” Fusion Technol. 9, 506–514 (1986).

Geophys. Res. Lett. (1)

J.-L. Bertaux, A. Delannoy, “Vertical distribution of H2O in the stratosphere as determined by UV fluorescence in-situ measurements,” Geophys. Res. Lett. 5, 1017–1020 (1978).
[CrossRef]

J. Alloys Compounds (1)

T. Schober, J. Friedrich, “A transmission electron microscopy and differential thermal analysis study of the ZrCo–H system,” J. Alloys Compounds 182, 243–252 (1991).
[CrossRef]

J. Nucl. Mater. (1)

R.-D. Penzhorn, M. Devillers, M. Sirch, “Evaluation of ZrCo and other getters for tritium handling and storage,” J. Nucl. Mater. 170, 217–231 (1990).
[CrossRef]

J. Nucl. Sci. Technol. (1)

T. Tanabe, S. Miura, S. Imoto, “Isotope effect in dissociation of uranium hydride,” J. Nucl. Sci. Technol. 16, 690–696 (1979).
[CrossRef]

J. Opt. Soc. Am. (1)

Rev. Sci. Instrum. (1)

D. Kley, E. J. Stone, “Measurement of water vapor in the stratosphere by photodissociation with Ly α (1216 Å) light,” Rev. Sci. Instrum. 49, 691–697 (1978).
[CrossRef] [PubMed]

Other (3)

U. Mörschel, E. Klein, D. Kley, U. Schmidt, “A new balloon borne stratospheric hygrometer,” in Proceedings of the 10th ESA Symposium on European Rocket and Balloon Programmes and Related Research, B. Kaldeich, ed. (European Space Agency Publications Division, European Space Research and Technology Centre, Nordwijk, The Netherlands, 1991), pp. 201–205.

M. Zöger, E. Klein, U. Mörschel, C. Schiller, U. Schmidt, T. Woyke, “Design and performance of an improved in-situ stratospheric hygrometer,” submitted to Rev. Sci. Instrum.

J. A. R. Samson, Techniques of Vacuum Ultraviolet Spectroscopy (Wiley, New York, 1967).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Cross section of the discharge bulb. ZrCo hydride is filled into the sidearm. The flange on the left is used during preparation and is melted off before the use of the bulbs.

Fig. 2
Fig. 2

Equilibrium pressure of hydrogen as a function of temperature (the van’t Hoff plot) of ZrCo hydride and UH3.1012 The shaded rectangle shows the technically useful range for operational parameters of Lyman-α radiation sources (T ≈ 50–170 °C, PH2 ≈ 1–20 Pa).

Fig. 3
Fig. 3

Spectrum of a Lyman-α radiation source from 110 to 350 nm with major contributions by the Lyman-α line (121.57 nm) and the molecular hydrogen continuum (200–300 nm). The spectrum is not scaled to the sensitivity of the spectrograph, which is ~2 orders of magnitude larger at 250 nm than at 120 nm.

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

log 10 P = - A T + B ,

Metrics