Abstract

Mueller-matrix polarimetry performed in the visible and near IR indicates that an integrating sphere acts as an ideal depolarizer to the 0.5% accuracy of the polarimeter. The integrating sphere emits unpolarized light regardless of the incident polarization state.

© 1995 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. Haner, R. T. Menzies, “Integrating sphere depolarization at 10 μm for a non-Lambertian wall surface: application to lidar calibration,” Appl. Opt. 32, 6804–6807 (1993).
    [CrossRef] [PubMed]
  2. R. Anderson, “Polarized light, the integrating sphere, and target calibration,” Appl. Opt. 29, 4235–4240 (1990).
    [CrossRef] [PubMed]
  3. M. J. Kavaya, “Polarization effects on hard target calibration lidar systems,” Appl. Opt. 26, 796–804 (1987).
    [CrossRef] [PubMed]
  4. J. A. Jacquez, H. F. Kuppenheim, “Theory of the integrating sphere,” J. Opt. Soc. Am. 45, 460–470 (1955).
    [CrossRef]
  5. D. G. Goebel, “Generalized integrating-sphere theory,” Appl. Opt. 6, 125–128 (1967).
    [CrossRef] [PubMed]
  6. D. K. Edwards, F. T. Gier, K. E. Nelson, R. D. Roddick, “Integrating sphere for imperfectly diffuse samples,” J. Opt. Soc. Am. 51, 1279–1288 (1961).
    [CrossRef]
  7. H. L. Tardy, “Flat-sample and limited-field effects in integrating sphere measurements,” J. Opt. Soc. Am. A 5, 241–245 (1988).
    [CrossRef]
  8. R. Winston, X. Ning, “Generalized radiance of uniform Lambertian sources,” J. Opt. Soc. Am. A 5, 516–519 (1988).
    [CrossRef]
  9. A. K. Jaiswal, G. P. Agrawal, C. L. Mehta, “Coherence functions in the far-field diffraction plane,” Nuovo Cimento B 15, 295–307 (1973).
    [CrossRef]
  10. D. F. V. James, “Polarization of light radiated by black-body sources,” submitted to Opt. Commun.
  11. R. A. Chipman, “Polarimetry,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1994).
  12. R. M. A. Azzam, “Photopolarimetric measurement of the Mueller matrix by Fourier analysis of a single detected signal,” Opt. Lett. 2, 148–150 (1978).
    [CrossRef] [PubMed]
  13. D. B. Chenault, J. L. Pezzaniti, “Mueller matrix algorithms,” in Polarization Analysis and Measurement, D. H. Goldstein, R. A. Chipman, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1746, 231–246 (1992).
  14. J. J. Gil, E. Bernabeu, “Depolarization and polarization indices of an optical system,” Opt. Acta 33, 185–189 (1986).
    [CrossRef]

1993 (1)

1990 (1)

1988 (2)

1987 (1)

1986 (1)

J. J. Gil, E. Bernabeu, “Depolarization and polarization indices of an optical system,” Opt. Acta 33, 185–189 (1986).
[CrossRef]

1978 (1)

1973 (1)

A. K. Jaiswal, G. P. Agrawal, C. L. Mehta, “Coherence functions in the far-field diffraction plane,” Nuovo Cimento B 15, 295–307 (1973).
[CrossRef]

1967 (1)

1961 (1)

1955 (1)

Agrawal, G. P.

A. K. Jaiswal, G. P. Agrawal, C. L. Mehta, “Coherence functions in the far-field diffraction plane,” Nuovo Cimento B 15, 295–307 (1973).
[CrossRef]

Anderson, R.

Azzam, R. M. A.

Bernabeu, E.

J. J. Gil, E. Bernabeu, “Depolarization and polarization indices of an optical system,” Opt. Acta 33, 185–189 (1986).
[CrossRef]

Chenault, D. B.

D. B. Chenault, J. L. Pezzaniti, “Mueller matrix algorithms,” in Polarization Analysis and Measurement, D. H. Goldstein, R. A. Chipman, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1746, 231–246 (1992).

Chipman, R. A.

R. A. Chipman, “Polarimetry,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1994).

Edwards, D. K.

Gier, F. T.

Gil, J. J.

J. J. Gil, E. Bernabeu, “Depolarization and polarization indices of an optical system,” Opt. Acta 33, 185–189 (1986).
[CrossRef]

Goebel, D. G.

Haner, D. A.

Jacquez, J. A.

Jaiswal, A. K.

A. K. Jaiswal, G. P. Agrawal, C. L. Mehta, “Coherence functions in the far-field diffraction plane,” Nuovo Cimento B 15, 295–307 (1973).
[CrossRef]

James, D. F. V.

D. F. V. James, “Polarization of light radiated by black-body sources,” submitted to Opt. Commun.

Kavaya, M. J.

Kuppenheim, H. F.

Mehta, C. L.

A. K. Jaiswal, G. P. Agrawal, C. L. Mehta, “Coherence functions in the far-field diffraction plane,” Nuovo Cimento B 15, 295–307 (1973).
[CrossRef]

Menzies, R. T.

Nelson, K. E.

Ning, X.

Pezzaniti, J. L.

D. B. Chenault, J. L. Pezzaniti, “Mueller matrix algorithms,” in Polarization Analysis and Measurement, D. H. Goldstein, R. A. Chipman, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1746, 231–246 (1992).

Roddick, R. D.

Tardy, H. L.

Winston, R.

Appl. Opt. (4)

J. Opt. Soc. Am. (2)

J. Opt. Soc. Am. A (2)

Nuovo Cimento B (1)

A. K. Jaiswal, G. P. Agrawal, C. L. Mehta, “Coherence functions in the far-field diffraction plane,” Nuovo Cimento B 15, 295–307 (1973).
[CrossRef]

Opt. Acta (1)

J. J. Gil, E. Bernabeu, “Depolarization and polarization indices of an optical system,” Opt. Acta 33, 185–189 (1986).
[CrossRef]

Opt. Lett. (1)

Other (3)

D. F. V. James, “Polarization of light radiated by black-body sources,” submitted to Opt. Commun.

R. A. Chipman, “Polarimetry,” in Handbook of Optics, M. Bass, ed. (McGraw-Hill, New York, 1994).

D. B. Chenault, J. L. Pezzaniti, “Mueller matrix algorithms,” in Polarization Analysis and Measurement, D. H. Goldstein, R. A. Chipman, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1746, 231–246 (1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (1)

Fig. 1
Fig. 1

Mueller-matrix polarimeter configured for measurements of an integrating sphere. Glan–Thompson polarizers and rotating quarter-wave retarders generate and analyze 60 polarization states. The 16-element Mueller matrix is determined by reducing the 60 measured intensities. Wavelength selection is provided by a filtered white-light source. Instrument control, data acquisition, and data reduction are automated by a personal computer.

Tables (1)

Tables Icon

Table 1 Depolarization Measurements of an Integrating Sphere

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

DOP ( S ) = ( s 1 2 + s 2 2 + s 3 2 ) 1 / 2 s 0 .
Dep = 1 - [ ( i , j m i , j 2 ) - m 00 2 ] 1 / 2 3 m 00 .

Metrics