Abstract

An inexpensive resonant optoacoustic monitoring system using near-infrared laser diodes was developed. It was demonstrated that wavelength modulation at the resonance frequency of the cell provides a superior signal-to-noise ratio compared with amplitude modulation and eliminates background drifts and fluctuations. The system was tested out on ammonia. Its sensitivity is 8 parts in 109 (S/N = 1) at atmospheric pressure, which corresponds to a minimum detectable absorption coefficient of approximately 3.5 × 10−11 cm−1 W−1. The pressure dependence of the optoacoustic resonance was also investigated. The monitor can be used as a continuous flow-through system up to a flow rate of approximately 3.5 L/min.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. Grisar, H. Preier, G. Schmidtke, G. Restelli, D. Reidel, eds., Monitoring Gaseous Pollutants by Tunable Diode Lasers (Kluwer, Dordrecht, The Netherlands, 1987), part 1 of a series.
    [CrossRef]
  2. R. Grisar, G. Schmidtke, M. Tacke, G. Restelli, eds., Monitoring Gaseous Pollutants by Tunable Diode Lasers (Kluwer, Dordrecht, The Netherlands, 1989), part 2 of a series.
    [CrossRef]
  3. R. Grisar, H. Böttner, M. Tacke, G. Restelli, eds., Monitoring Gaseous Pollutants by Tunable Diode Lasers (Kluwer, Dordrecht, The Netherlands, 1992), part 3 of a series.
  4. M. Fehér, P. A. Martin, A. Rohrbacher, A. M. Soliva, J. P. Maier, “Inexpensive near-infrared diode-laser-based detection system for ammonia,” Appl. Opt. 32, 2028–2030 (1993).
    [CrossRef] [PubMed]
  5. V. P. Zharov, V. S. Letokhov, Laser Optoacoustic Spectroscopy, Vol. 37 of Springer Series in Optical Science (Springer-Verlag, Berlin, 1986).
  6. P. Hess, J. Pelzl, eds., Photothermal and Photoacoustic Phenomena, Vol. 58 of Springer Series in Optical Science (Springer-Verlag, Berlin, 1988).
  7. J. C. Murphy, F. W. Maclachlan Spicer, L. C. Armodt, B. S. H. Royce, eds., Photothermal and Photoacoustic Phenomena, Vol. 62 of Springer Series in Optical Science (Springer-Verlag, Berlin, 1990).
  8. A. Mandelis, ed., Principles and Perspectives of Photothermal and Photoacoustic Phenomena (Elsevier, New York, 1992).
  9. M. W. Sigrist, S. Bernegger, P. L. Meyer, “Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
    [CrossRef]
  10. A. DiLieto, P. Minguzzi, M. Tonelli, “Design of an optoacoustic cell for laser-Stark spectroscopy,” Appl. Phys. B 27, 1–3 (1982).
    [CrossRef]
  11. H. Sauren, T. Regts, C. van Asselt, D. Bicanic, “Simplifying the laser photoacoustic trace detection of ammonia by effective suppression of water vapour and of carbon dioxide as the major absorbing atmospheric constituents,” Environ. Technol. 12, 719–724 (1991).
    [CrossRef]
  12. T. H. Vasteenkiste, F. R. Faxvog, D. M. Rössler, “Photoacoustic measurement of carbon dioxide using a semiconductor diode laser,” Appl. Spectrosc. 35, 194–196 (1981).
    [CrossRef]
  13. S. A. Johnson, “Trace gas detection using infrared lasers,” Anal. Proc. 23, 1–4 (1986).
    [CrossRef]
  14. K. Stephan, W. Hurdelbrink, “Line strength measurement using optoacoustic spectroscopy,” in Monitoring Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, G. Schmidtke, M. Tacke, G. Restelli, eds. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 263–273.
    [CrossRef]
  15. A. Mohebati, T. A. King, “Differential absorption fiberoptic gas sensor,” in Fiber Optic Sensors III, R. T. Kersten, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1011, 183–189 (1988).
  16. J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203 (1981).
    [CrossRef]
  17. A. Miklós, Z. Bozóki, Y. Jiang, M. Fehér, “Experimental and theoretical investigation of photoacoustic signal generation by wavelength modulated diode lasers,” J. Appl. Phys. (to be published).
  18. J. Davidsson, J. H. Gutow, R. N. Zare, “Experimental improvements in recording gas-phase photoacoustic spectra,” J. Phys. Chem. 94, 4069–4073 (1990).
    [CrossRef]
  19. A. C. Stanton, D. S. Bomse, J. A. Silver, D. C. Hovde, D. B. Oh, “Measurement of atmospheric species by mid-infrared and near-infrared tunable diode laser absorptions,” in Monitoring Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Böttner, M. Tacke, G. Restelli, eds. (Kluwer, Dordrecht, The Netherlands, 1992), p. 31.
  20. B. R. Henry, M. G. Sowa, “Intracavity dye laser photoacoustic spectroscopy and its application to high energy vibrational overtone spectra,” Prog. Anal. At. Spectrosc. 12, 349–368 (1989).
  21. S. A. Trushin, “Photoacoustic air pollution monitoring with an isotopic CO2 laser,” Ber. Bunsenges. Phys. Chem. 96, 319–322 (1992).
    [CrossRef]

1993 (1)

1992 (1)

S. A. Trushin, “Photoacoustic air pollution monitoring with an isotopic CO2 laser,” Ber. Bunsenges. Phys. Chem. 96, 319–322 (1992).
[CrossRef]

1991 (1)

H. Sauren, T. Regts, C. van Asselt, D. Bicanic, “Simplifying the laser photoacoustic trace detection of ammonia by effective suppression of water vapour and of carbon dioxide as the major absorbing atmospheric constituents,” Environ. Technol. 12, 719–724 (1991).
[CrossRef]

1990 (2)

M. W. Sigrist, S. Bernegger, P. L. Meyer, “Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

J. Davidsson, J. H. Gutow, R. N. Zare, “Experimental improvements in recording gas-phase photoacoustic spectra,” J. Phys. Chem. 94, 4069–4073 (1990).
[CrossRef]

1989 (1)

B. R. Henry, M. G. Sowa, “Intracavity dye laser photoacoustic spectroscopy and its application to high energy vibrational overtone spectra,” Prog. Anal. At. Spectrosc. 12, 349–368 (1989).

1986 (1)

S. A. Johnson, “Trace gas detection using infrared lasers,” Anal. Proc. 23, 1–4 (1986).
[CrossRef]

1982 (1)

A. DiLieto, P. Minguzzi, M. Tonelli, “Design of an optoacoustic cell for laser-Stark spectroscopy,” Appl. Phys. B 27, 1–3 (1982).
[CrossRef]

1981 (2)

T. H. Vasteenkiste, F. R. Faxvog, D. M. Rössler, “Photoacoustic measurement of carbon dioxide using a semiconductor diode laser,” Appl. Spectrosc. 35, 194–196 (1981).
[CrossRef]

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203 (1981).
[CrossRef]

Bernegger, S.

M. W. Sigrist, S. Bernegger, P. L. Meyer, “Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

Bicanic, D.

H. Sauren, T. Regts, C. van Asselt, D. Bicanic, “Simplifying the laser photoacoustic trace detection of ammonia by effective suppression of water vapour and of carbon dioxide as the major absorbing atmospheric constituents,” Environ. Technol. 12, 719–724 (1991).
[CrossRef]

Bomse, D. S.

A. C. Stanton, D. S. Bomse, J. A. Silver, D. C. Hovde, D. B. Oh, “Measurement of atmospheric species by mid-infrared and near-infrared tunable diode laser absorptions,” in Monitoring Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Böttner, M. Tacke, G. Restelli, eds. (Kluwer, Dordrecht, The Netherlands, 1992), p. 31.

Bozóki, Z.

A. Miklós, Z. Bozóki, Y. Jiang, M. Fehér, “Experimental and theoretical investigation of photoacoustic signal generation by wavelength modulated diode lasers,” J. Appl. Phys. (to be published).

Davidsson, J.

J. Davidsson, J. H. Gutow, R. N. Zare, “Experimental improvements in recording gas-phase photoacoustic spectra,” J. Phys. Chem. 94, 4069–4073 (1990).
[CrossRef]

DiLieto, A.

A. DiLieto, P. Minguzzi, M. Tonelli, “Design of an optoacoustic cell for laser-Stark spectroscopy,” Appl. Phys. B 27, 1–3 (1982).
[CrossRef]

Faxvog, F. R.

Fehér, M.

M. Fehér, P. A. Martin, A. Rohrbacher, A. M. Soliva, J. P. Maier, “Inexpensive near-infrared diode-laser-based detection system for ammonia,” Appl. Opt. 32, 2028–2030 (1993).
[CrossRef] [PubMed]

A. Miklós, Z. Bozóki, Y. Jiang, M. Fehér, “Experimental and theoretical investigation of photoacoustic signal generation by wavelength modulated diode lasers,” J. Appl. Phys. (to be published).

Gutow, J. H.

J. Davidsson, J. H. Gutow, R. N. Zare, “Experimental improvements in recording gas-phase photoacoustic spectra,” J. Phys. Chem. 94, 4069–4073 (1990).
[CrossRef]

Henry, B. R.

B. R. Henry, M. G. Sowa, “Intracavity dye laser photoacoustic spectroscopy and its application to high energy vibrational overtone spectra,” Prog. Anal. At. Spectrosc. 12, 349–368 (1989).

Hovde, D. C.

A. C. Stanton, D. S. Bomse, J. A. Silver, D. C. Hovde, D. B. Oh, “Measurement of atmospheric species by mid-infrared and near-infrared tunable diode laser absorptions,” in Monitoring Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Böttner, M. Tacke, G. Restelli, eds. (Kluwer, Dordrecht, The Netherlands, 1992), p. 31.

Hurdelbrink, W.

K. Stephan, W. Hurdelbrink, “Line strength measurement using optoacoustic spectroscopy,” in Monitoring Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, G. Schmidtke, M. Tacke, G. Restelli, eds. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 263–273.
[CrossRef]

Jiang, Y.

A. Miklós, Z. Bozóki, Y. Jiang, M. Fehér, “Experimental and theoretical investigation of photoacoustic signal generation by wavelength modulated diode lasers,” J. Appl. Phys. (to be published).

Johnson, S. A.

S. A. Johnson, “Trace gas detection using infrared lasers,” Anal. Proc. 23, 1–4 (1986).
[CrossRef]

King, T. A.

A. Mohebati, T. A. King, “Differential absorption fiberoptic gas sensor,” in Fiber Optic Sensors III, R. T. Kersten, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1011, 183–189 (1988).

Labrie, D.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203 (1981).
[CrossRef]

Letokhov, V. S.

V. P. Zharov, V. S. Letokhov, Laser Optoacoustic Spectroscopy, Vol. 37 of Springer Series in Optical Science (Springer-Verlag, Berlin, 1986).

Maier, J. P.

Martin, P. A.

Meyer, P. L.

M. W. Sigrist, S. Bernegger, P. L. Meyer, “Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

Miklós, A.

A. Miklós, Z. Bozóki, Y. Jiang, M. Fehér, “Experimental and theoretical investigation of photoacoustic signal generation by wavelength modulated diode lasers,” J. Appl. Phys. (to be published).

Minguzzi, P.

A. DiLieto, P. Minguzzi, M. Tonelli, “Design of an optoacoustic cell for laser-Stark spectroscopy,” Appl. Phys. B 27, 1–3 (1982).
[CrossRef]

Mohebati, A.

A. Mohebati, T. A. King, “Differential absorption fiberoptic gas sensor,” in Fiber Optic Sensors III, R. T. Kersten, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1011, 183–189 (1988).

Oh, D. B.

A. C. Stanton, D. S. Bomse, J. A. Silver, D. C. Hovde, D. B. Oh, “Measurement of atmospheric species by mid-infrared and near-infrared tunable diode laser absorptions,” in Monitoring Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Böttner, M. Tacke, G. Restelli, eds. (Kluwer, Dordrecht, The Netherlands, 1992), p. 31.

Regts, T.

H. Sauren, T. Regts, C. van Asselt, D. Bicanic, “Simplifying the laser photoacoustic trace detection of ammonia by effective suppression of water vapour and of carbon dioxide as the major absorbing atmospheric constituents,” Environ. Technol. 12, 719–724 (1991).
[CrossRef]

Reid, J.

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203 (1981).
[CrossRef]

Rohrbacher, A.

Rössler, D. M.

Sauren, H.

H. Sauren, T. Regts, C. van Asselt, D. Bicanic, “Simplifying the laser photoacoustic trace detection of ammonia by effective suppression of water vapour and of carbon dioxide as the major absorbing atmospheric constituents,” Environ. Technol. 12, 719–724 (1991).
[CrossRef]

Sigrist, M. W.

M. W. Sigrist, S. Bernegger, P. L. Meyer, “Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

Silver, J. A.

A. C. Stanton, D. S. Bomse, J. A. Silver, D. C. Hovde, D. B. Oh, “Measurement of atmospheric species by mid-infrared and near-infrared tunable diode laser absorptions,” in Monitoring Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Böttner, M. Tacke, G. Restelli, eds. (Kluwer, Dordrecht, The Netherlands, 1992), p. 31.

Soliva, A. M.

Sowa, M. G.

B. R. Henry, M. G. Sowa, “Intracavity dye laser photoacoustic spectroscopy and its application to high energy vibrational overtone spectra,” Prog. Anal. At. Spectrosc. 12, 349–368 (1989).

Stanton, A. C.

A. C. Stanton, D. S. Bomse, J. A. Silver, D. C. Hovde, D. B. Oh, “Measurement of atmospheric species by mid-infrared and near-infrared tunable diode laser absorptions,” in Monitoring Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Böttner, M. Tacke, G. Restelli, eds. (Kluwer, Dordrecht, The Netherlands, 1992), p. 31.

Stephan, K.

K. Stephan, W. Hurdelbrink, “Line strength measurement using optoacoustic spectroscopy,” in Monitoring Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, G. Schmidtke, M. Tacke, G. Restelli, eds. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 263–273.
[CrossRef]

Tonelli, M.

A. DiLieto, P. Minguzzi, M. Tonelli, “Design of an optoacoustic cell for laser-Stark spectroscopy,” Appl. Phys. B 27, 1–3 (1982).
[CrossRef]

Trushin, S. A.

S. A. Trushin, “Photoacoustic air pollution monitoring with an isotopic CO2 laser,” Ber. Bunsenges. Phys. Chem. 96, 319–322 (1992).
[CrossRef]

van Asselt, C.

H. Sauren, T. Regts, C. van Asselt, D. Bicanic, “Simplifying the laser photoacoustic trace detection of ammonia by effective suppression of water vapour and of carbon dioxide as the major absorbing atmospheric constituents,” Environ. Technol. 12, 719–724 (1991).
[CrossRef]

Vasteenkiste, T. H.

Zare, R. N.

J. Davidsson, J. H. Gutow, R. N. Zare, “Experimental improvements in recording gas-phase photoacoustic spectra,” J. Phys. Chem. 94, 4069–4073 (1990).
[CrossRef]

Zharov, V. P.

V. P. Zharov, V. S. Letokhov, Laser Optoacoustic Spectroscopy, Vol. 37 of Springer Series in Optical Science (Springer-Verlag, Berlin, 1986).

Anal. Proc. (1)

S. A. Johnson, “Trace gas detection using infrared lasers,” Anal. Proc. 23, 1–4 (1986).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. B (2)

A. DiLieto, P. Minguzzi, M. Tonelli, “Design of an optoacoustic cell for laser-Stark spectroscopy,” Appl. Phys. B 27, 1–3 (1982).
[CrossRef]

J. Reid, D. Labrie, “Second-harmonic detection with tunable diode lasers—comparison of experiment and theory,” Appl. Phys. B 26, 203 (1981).
[CrossRef]

Appl. Spectrosc. (1)

Ber. Bunsenges. Phys. Chem. (1)

S. A. Trushin, “Photoacoustic air pollution monitoring with an isotopic CO2 laser,” Ber. Bunsenges. Phys. Chem. 96, 319–322 (1992).
[CrossRef]

Environ. Technol. (1)

H. Sauren, T. Regts, C. van Asselt, D. Bicanic, “Simplifying the laser photoacoustic trace detection of ammonia by effective suppression of water vapour and of carbon dioxide as the major absorbing atmospheric constituents,” Environ. Technol. 12, 719–724 (1991).
[CrossRef]

J. Phys. Chem. (1)

J. Davidsson, J. H. Gutow, R. N. Zare, “Experimental improvements in recording gas-phase photoacoustic spectra,” J. Phys. Chem. 94, 4069–4073 (1990).
[CrossRef]

Prog. Anal. At. Spectrosc. (1)

B. R. Henry, M. G. Sowa, “Intracavity dye laser photoacoustic spectroscopy and its application to high energy vibrational overtone spectra,” Prog. Anal. At. Spectrosc. 12, 349–368 (1989).

Rev. Sci. Instrum. (1)

M. W. Sigrist, S. Bernegger, P. L. Meyer, “Atmospheric pollution monitoring using CO2-laser photoacoustic spectroscopy and other techniques,” Rev. Sci. Instrum. 61, 1779–1807 (1990).
[CrossRef]

Other (11)

K. Stephan, W. Hurdelbrink, “Line strength measurement using optoacoustic spectroscopy,” in Monitoring Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, G. Schmidtke, M. Tacke, G. Restelli, eds. (Kluwer, Dordrecht, The Netherlands, 1989), pp. 263–273.
[CrossRef]

A. Mohebati, T. A. King, “Differential absorption fiberoptic gas sensor,” in Fiber Optic Sensors III, R. T. Kersten, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1011, 183–189 (1988).

A. C. Stanton, D. S. Bomse, J. A. Silver, D. C. Hovde, D. B. Oh, “Measurement of atmospheric species by mid-infrared and near-infrared tunable diode laser absorptions,” in Monitoring Gaseous Pollutants by Tunable Diode Lasers, R. Grisar, H. Böttner, M. Tacke, G. Restelli, eds. (Kluwer, Dordrecht, The Netherlands, 1992), p. 31.

A. Miklós, Z. Bozóki, Y. Jiang, M. Fehér, “Experimental and theoretical investigation of photoacoustic signal generation by wavelength modulated diode lasers,” J. Appl. Phys. (to be published).

R. Grisar, H. Preier, G. Schmidtke, G. Restelli, D. Reidel, eds., Monitoring Gaseous Pollutants by Tunable Diode Lasers (Kluwer, Dordrecht, The Netherlands, 1987), part 1 of a series.
[CrossRef]

R. Grisar, G. Schmidtke, M. Tacke, G. Restelli, eds., Monitoring Gaseous Pollutants by Tunable Diode Lasers (Kluwer, Dordrecht, The Netherlands, 1989), part 2 of a series.
[CrossRef]

R. Grisar, H. Böttner, M. Tacke, G. Restelli, eds., Monitoring Gaseous Pollutants by Tunable Diode Lasers (Kluwer, Dordrecht, The Netherlands, 1992), part 3 of a series.

V. P. Zharov, V. S. Letokhov, Laser Optoacoustic Spectroscopy, Vol. 37 of Springer Series in Optical Science (Springer-Verlag, Berlin, 1986).

P. Hess, J. Pelzl, eds., Photothermal and Photoacoustic Phenomena, Vol. 58 of Springer Series in Optical Science (Springer-Verlag, Berlin, 1988).

J. C. Murphy, F. W. Maclachlan Spicer, L. C. Armodt, B. S. H. Royce, eds., Photothermal and Photoacoustic Phenomena, Vol. 62 of Springer Series in Optical Science (Springer-Verlag, Berlin, 1990).

A. Mandelis, ed., Principles and Perspectives of Photothermal and Photoacoustic Phenomena (Elsevier, New York, 1992).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Gas cell for the simultaneous detection of ammonia with optoacoustic spectroscopy and direct absorption (ϕ, diameter).

Fig. 2
Fig. 2

Part of the ammonia spectrum, recorded for 2 Torr NH3 in unpurified room air at 760 Torr (1f): (a) with optoacoustic detection and (b) in direct absorption.

Fig. 3
Fig. 3

Concentration dependence of the optoacoustic signal intensity in 1f (peak-to-peak) for ammonia.

Metrics