Abstract

The implementation of what we believe to be the first stored-program digital optical computer is described. The implementation domain consists of lithium niobate directional couplers that are modified to provide optical control and are interconnected with single-mode fiber. The architecture is also the first to employ time-of-flight synchronization. That is, there are no flip-flops used as synchronizing memory elements. Synchronization is achieved by the precise timing of the arrival of information at all points of interaction. The design is a minimal one, employing only 62 directional couplers. Previous papers have discussed the primary architecture and synchronization conditions for the machine. Here we focus on the secondary architecture, construction, debugging, and performance of the machine.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. R. Hartree, Calculating Instruments and Machines (U. Illinois Press, Urbana, Ill., 1949), Chap. 5, p. 55.
  2. M. V. Wilkes, Memoirs of a Computer Pioneer (MIT, Cambridge, Mass., 1985), Chap. 10, pp. 108–109.
  3. K. H. Brenner, A. Huang, N. Streibl, “Digital optical computing with symbolic substitution,” Appl. Opt. 25, 3054–3060 (1986).
    [CrossRef] [PubMed]
  4. M. J. Murdocca, A Digital Design Methodology for Optical Computing (MIT, Cambridge, Mass., 1990), Chap. 2, p. 14.
  5. M. E. Prise, N. Streibl, M. M. Downs, “Optical considerations in the design of a digital optical computer,” Opt. Quantum Electron. 20, 49–77 (1988).
    [CrossRef]
  6. J. Tanida, Y. Ichioka, “OPALS: optical parallel array logic systems,” Appl. Opt. 25, 1565–1570 (1986).
    [CrossRef] [PubMed]
  7. P. T. Main, Implementation of a General Purpose Stored Program Digital Optical Computer at Boulder, M.S. thesis and OCS Tech. Rep. 93-04 (University of Colorado, Boulder, Colo., 1993). (OCS technical reports are available without charge from the Optoelectronic Computing Systems Center, University of Colorado at Boulder, Campus Box 525, Boulder, Colo. 80309-0525.)
  8. V. P. Heuring, H. F. Jordan, J. P. Pratt, “Bit-serial architecture for optical computing,” Appl. Opt. 31, 3213–3224, (1992).
    [CrossRef] [PubMed]
  9. J. P. Pratt, V. P. Heuring, “Delay synchronization in time-of-flight optical systems,” Appl. Opt. 31, 2430–2437 (1992).
    [CrossRef] [PubMed]
  10. J. P. Pratt, V. P. Heuring, “Designing digital optical computing systems: power distribution and cross talk,” Appl. Opt. 31, 4657–4661 (1992).
    [CrossRef] [PubMed]
  11. A. B. Yadlowsky, “The design and implementation of a bit-serial optical counter,” OCS Tech. Rep. 89-22 (University of Colorado at Boulder, Boulder, Colo., 1989).
  12. A. F. Benner, J. Bowman, T. Erkkila, R. J. Feuerstein, V. P. Heuring, H. F. Jordan, J. Sauer, T. Soukup, “Digital optical counter using directional coupler switches,” Appl. Opt. 30, 4179–4189 (1991); OCS Tech. Rep. 90-31 (University of Colorado at Boulder, Boulder, Colo., 1990).
    [CrossRef] [PubMed]
  13. R. J. Feuerstein, T. Soukup, V. P. Heuring, “100 MHz optical counter that uses directional coupler switches,” Opt. Lett. 16, 1599–1601 (1991); OCS Tech. Rep. 91-02 (University of Colorado at Boulder, Boulder, Colo., 1991).
    [CrossRef] [PubMed]
  14. H. F. Jordan, V. P. Heuring, “Time multiplexed optical computers,” OCS Tech. Rep. 91-03 (University of Colorado at Boulder, Boulder, Colo., 1991).
  15. T. J. Soukup, R. J. Feuerstein, V. P. Heuring, “Implementation of a fiber-optic delay-line memory,” Appl. Opt. 31, 3233–3240 (1992); OCS Tech. Rep. 91-36 (University of Colorado at Boulder, Boulder, Colo., 1991).
    [CrossRef] [PubMed]
  16. T. J. Soukup, “Implementation of a fiber-optic delay-line memory,” M.S. thesis; OCS Tech. Rep. 91-18 (University of Colorado at Boulder, Boulder, Colo., 1991).
  17. E. T. Lode, V. P. Heuring, “A monitor for the bit serial optical computer,” OCS Tech. Rep. 90-17 (University of Colorado at Boulder, Boulder, Colo., 1990).
  18. J. R. Feehrer, “BMON II: a new design for the BSOC monitor,” OCS Tech. Rep. 92-02 (University of Colorado at Boulder, Boulder, Colo., 1992).
  19. F. T. Stone, J. E. Watson, D. T. Moser, W. J. Minford, “Performance and yield of pilot line quantities of lithium niobate switches,” in Integrated Optics and Optoelectronics, L. McCaughan, M. A. Mentzer, S. Peng, H. J. Wojtunik, K. Wong, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1177, 322–325 (1989).
  20. R. J. Feuerstein, “Lithium niobate switch evaluations,” OCS Tech. Rep. 90-16 (University of Colorado at Boulder, Boulder, Colo., 1990).
  21. D. B. Sarrazin, “Behavior of miniaturized polarization controllers,” OCS Tech. Rep. 89-49 (University of Colorado at Boulder, Boulder, Colo., 1989).
  22. S. L. Garrahan, “Undergraduate research experience in the digital optical computing laboratory,” OCS Tech. Rep. 91-22 (University of Colorado at Boulder, Boulder, Colo., 1991).
  23. F. M. Ngai, “A study of interference effects in passive Ring optical signals,” OCS Tech. Rep. 90-21 (University of Colorado at Boulder, Boulder, Colo., 1990).
  24. J. Pratt, “Hatch user’s manual,” OCS Tech. Rep. 89-31 (University of Colorado at Boulder, Boulder, Colo., 1989).
  25. M. Salerno, “XHatch user’s guide,” OCS Tech. Rep.91-25 (University of Colorado, Boulder, Colo., 1991).
  26. H. F. Jordan, A. R. Mickelson, B. Van Zeghbroek, I. Januar, “An integrated optics, stored program computer,” in Optical Computing, Vol. 7 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 318–321.
  27. S. V. Ramanan, H. F. Jordan, J. R. Sauer, “A new time domain, multistage permutation algorithm,” IEEE Trans. Inf. Theory 36, 171–173 (1990).
    [CrossRef]
  28. D. B. Sarrazin, “Optical delay line memory systems,” Ph.D. dissertation; OCS Tech. Rep. 92-18 (University of Colorado at Boulder, Boulder, Colo., 1992).

1992 (4)

1991 (2)

1990 (1)

S. V. Ramanan, H. F. Jordan, J. R. Sauer, “A new time domain, multistage permutation algorithm,” IEEE Trans. Inf. Theory 36, 171–173 (1990).
[CrossRef]

1988 (1)

M. E. Prise, N. Streibl, M. M. Downs, “Optical considerations in the design of a digital optical computer,” Opt. Quantum Electron. 20, 49–77 (1988).
[CrossRef]

1986 (2)

Benner, A. F.

Bowman, J.

Brenner, K. H.

Downs, M. M.

M. E. Prise, N. Streibl, M. M. Downs, “Optical considerations in the design of a digital optical computer,” Opt. Quantum Electron. 20, 49–77 (1988).
[CrossRef]

Erkkila, T.

Feehrer, J. R.

J. R. Feehrer, “BMON II: a new design for the BSOC monitor,” OCS Tech. Rep. 92-02 (University of Colorado at Boulder, Boulder, Colo., 1992).

Feuerstein, R. J.

Garrahan, S. L.

S. L. Garrahan, “Undergraduate research experience in the digital optical computing laboratory,” OCS Tech. Rep. 91-22 (University of Colorado at Boulder, Boulder, Colo., 1991).

Hartree, D. R.

D. R. Hartree, Calculating Instruments and Machines (U. Illinois Press, Urbana, Ill., 1949), Chap. 5, p. 55.

Heuring, V. P.

V. P. Heuring, H. F. Jordan, J. P. Pratt, “Bit-serial architecture for optical computing,” Appl. Opt. 31, 3213–3224, (1992).
[CrossRef] [PubMed]

J. P. Pratt, V. P. Heuring, “Delay synchronization in time-of-flight optical systems,” Appl. Opt. 31, 2430–2437 (1992).
[CrossRef] [PubMed]

J. P. Pratt, V. P. Heuring, “Designing digital optical computing systems: power distribution and cross talk,” Appl. Opt. 31, 4657–4661 (1992).
[CrossRef] [PubMed]

T. J. Soukup, R. J. Feuerstein, V. P. Heuring, “Implementation of a fiber-optic delay-line memory,” Appl. Opt. 31, 3233–3240 (1992); OCS Tech. Rep. 91-36 (University of Colorado at Boulder, Boulder, Colo., 1991).
[CrossRef] [PubMed]

R. J. Feuerstein, T. Soukup, V. P. Heuring, “100 MHz optical counter that uses directional coupler switches,” Opt. Lett. 16, 1599–1601 (1991); OCS Tech. Rep. 91-02 (University of Colorado at Boulder, Boulder, Colo., 1991).
[CrossRef] [PubMed]

A. F. Benner, J. Bowman, T. Erkkila, R. J. Feuerstein, V. P. Heuring, H. F. Jordan, J. Sauer, T. Soukup, “Digital optical counter using directional coupler switches,” Appl. Opt. 30, 4179–4189 (1991); OCS Tech. Rep. 90-31 (University of Colorado at Boulder, Boulder, Colo., 1990).
[CrossRef] [PubMed]

H. F. Jordan, V. P. Heuring, “Time multiplexed optical computers,” OCS Tech. Rep. 91-03 (University of Colorado at Boulder, Boulder, Colo., 1991).

E. T. Lode, V. P. Heuring, “A monitor for the bit serial optical computer,” OCS Tech. Rep. 90-17 (University of Colorado at Boulder, Boulder, Colo., 1990).

Huang, A.

Ichioka, Y.

Januar, I.

H. F. Jordan, A. R. Mickelson, B. Van Zeghbroek, I. Januar, “An integrated optics, stored program computer,” in Optical Computing, Vol. 7 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 318–321.

Jordan, H. F.

V. P. Heuring, H. F. Jordan, J. P. Pratt, “Bit-serial architecture for optical computing,” Appl. Opt. 31, 3213–3224, (1992).
[CrossRef] [PubMed]

A. F. Benner, J. Bowman, T. Erkkila, R. J. Feuerstein, V. P. Heuring, H. F. Jordan, J. Sauer, T. Soukup, “Digital optical counter using directional coupler switches,” Appl. Opt. 30, 4179–4189 (1991); OCS Tech. Rep. 90-31 (University of Colorado at Boulder, Boulder, Colo., 1990).
[CrossRef] [PubMed]

S. V. Ramanan, H. F. Jordan, J. R. Sauer, “A new time domain, multistage permutation algorithm,” IEEE Trans. Inf. Theory 36, 171–173 (1990).
[CrossRef]

H. F. Jordan, A. R. Mickelson, B. Van Zeghbroek, I. Januar, “An integrated optics, stored program computer,” in Optical Computing, Vol. 7 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 318–321.

H. F. Jordan, V. P. Heuring, “Time multiplexed optical computers,” OCS Tech. Rep. 91-03 (University of Colorado at Boulder, Boulder, Colo., 1991).

Lode, E. T.

E. T. Lode, V. P. Heuring, “A monitor for the bit serial optical computer,” OCS Tech. Rep. 90-17 (University of Colorado at Boulder, Boulder, Colo., 1990).

Main, P. T.

P. T. Main, Implementation of a General Purpose Stored Program Digital Optical Computer at Boulder, M.S. thesis and OCS Tech. Rep. 93-04 (University of Colorado, Boulder, Colo., 1993). (OCS technical reports are available without charge from the Optoelectronic Computing Systems Center, University of Colorado at Boulder, Campus Box 525, Boulder, Colo. 80309-0525.)

Mickelson, A. R.

H. F. Jordan, A. R. Mickelson, B. Van Zeghbroek, I. Januar, “An integrated optics, stored program computer,” in Optical Computing, Vol. 7 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 318–321.

Minford, W. J.

F. T. Stone, J. E. Watson, D. T. Moser, W. J. Minford, “Performance and yield of pilot line quantities of lithium niobate switches,” in Integrated Optics and Optoelectronics, L. McCaughan, M. A. Mentzer, S. Peng, H. J. Wojtunik, K. Wong, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1177, 322–325 (1989).

Moser, D. T.

F. T. Stone, J. E. Watson, D. T. Moser, W. J. Minford, “Performance and yield of pilot line quantities of lithium niobate switches,” in Integrated Optics and Optoelectronics, L. McCaughan, M. A. Mentzer, S. Peng, H. J. Wojtunik, K. Wong, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1177, 322–325 (1989).

Murdocca, M. J.

M. J. Murdocca, A Digital Design Methodology for Optical Computing (MIT, Cambridge, Mass., 1990), Chap. 2, p. 14.

Ngai, F. M.

F. M. Ngai, “A study of interference effects in passive Ring optical signals,” OCS Tech. Rep. 90-21 (University of Colorado at Boulder, Boulder, Colo., 1990).

Pratt, J.

J. Pratt, “Hatch user’s manual,” OCS Tech. Rep. 89-31 (University of Colorado at Boulder, Boulder, Colo., 1989).

Pratt, J. P.

Prise, M. E.

M. E. Prise, N. Streibl, M. M. Downs, “Optical considerations in the design of a digital optical computer,” Opt. Quantum Electron. 20, 49–77 (1988).
[CrossRef]

Ramanan, S. V.

S. V. Ramanan, H. F. Jordan, J. R. Sauer, “A new time domain, multistage permutation algorithm,” IEEE Trans. Inf. Theory 36, 171–173 (1990).
[CrossRef]

Salerno, M.

M. Salerno, “XHatch user’s guide,” OCS Tech. Rep.91-25 (University of Colorado, Boulder, Colo., 1991).

Sarrazin, D. B.

D. B. Sarrazin, “Behavior of miniaturized polarization controllers,” OCS Tech. Rep. 89-49 (University of Colorado at Boulder, Boulder, Colo., 1989).

D. B. Sarrazin, “Optical delay line memory systems,” Ph.D. dissertation; OCS Tech. Rep. 92-18 (University of Colorado at Boulder, Boulder, Colo., 1992).

Sauer, J.

Sauer, J. R.

S. V. Ramanan, H. F. Jordan, J. R. Sauer, “A new time domain, multistage permutation algorithm,” IEEE Trans. Inf. Theory 36, 171–173 (1990).
[CrossRef]

Soukup, T.

Soukup, T. J.

T. J. Soukup, R. J. Feuerstein, V. P. Heuring, “Implementation of a fiber-optic delay-line memory,” Appl. Opt. 31, 3233–3240 (1992); OCS Tech. Rep. 91-36 (University of Colorado at Boulder, Boulder, Colo., 1991).
[CrossRef] [PubMed]

T. J. Soukup, “Implementation of a fiber-optic delay-line memory,” M.S. thesis; OCS Tech. Rep. 91-18 (University of Colorado at Boulder, Boulder, Colo., 1991).

Stone, F. T.

F. T. Stone, J. E. Watson, D. T. Moser, W. J. Minford, “Performance and yield of pilot line quantities of lithium niobate switches,” in Integrated Optics and Optoelectronics, L. McCaughan, M. A. Mentzer, S. Peng, H. J. Wojtunik, K. Wong, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1177, 322–325 (1989).

Streibl, N.

M. E. Prise, N. Streibl, M. M. Downs, “Optical considerations in the design of a digital optical computer,” Opt. Quantum Electron. 20, 49–77 (1988).
[CrossRef]

K. H. Brenner, A. Huang, N. Streibl, “Digital optical computing with symbolic substitution,” Appl. Opt. 25, 3054–3060 (1986).
[CrossRef] [PubMed]

Tanida, J.

Van Zeghbroek, B.

H. F. Jordan, A. R. Mickelson, B. Van Zeghbroek, I. Januar, “An integrated optics, stored program computer,” in Optical Computing, Vol. 7 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 318–321.

Watson, J. E.

F. T. Stone, J. E. Watson, D. T. Moser, W. J. Minford, “Performance and yield of pilot line quantities of lithium niobate switches,” in Integrated Optics and Optoelectronics, L. McCaughan, M. A. Mentzer, S. Peng, H. J. Wojtunik, K. Wong, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1177, 322–325 (1989).

Wilkes, M. V.

M. V. Wilkes, Memoirs of a Computer Pioneer (MIT, Cambridge, Mass., 1985), Chap. 10, pp. 108–109.

Yadlowsky, A. B.

A. B. Yadlowsky, “The design and implementation of a bit-serial optical counter,” OCS Tech. Rep. 89-22 (University of Colorado at Boulder, Boulder, Colo., 1989).

Appl. Opt. (7)

IEEE Trans. Inf. Theory (1)

S. V. Ramanan, H. F. Jordan, J. R. Sauer, “A new time domain, multistage permutation algorithm,” IEEE Trans. Inf. Theory 36, 171–173 (1990).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

M. E. Prise, N. Streibl, M. M. Downs, “Optical considerations in the design of a digital optical computer,” Opt. Quantum Electron. 20, 49–77 (1988).
[CrossRef]

Other (18)

D. B. Sarrazin, “Optical delay line memory systems,” Ph.D. dissertation; OCS Tech. Rep. 92-18 (University of Colorado at Boulder, Boulder, Colo., 1992).

H. F. Jordan, V. P. Heuring, “Time multiplexed optical computers,” OCS Tech. Rep. 91-03 (University of Colorado at Boulder, Boulder, Colo., 1991).

P. T. Main, Implementation of a General Purpose Stored Program Digital Optical Computer at Boulder, M.S. thesis and OCS Tech. Rep. 93-04 (University of Colorado, Boulder, Colo., 1993). (OCS technical reports are available without charge from the Optoelectronic Computing Systems Center, University of Colorado at Boulder, Campus Box 525, Boulder, Colo. 80309-0525.)

T. J. Soukup, “Implementation of a fiber-optic delay-line memory,” M.S. thesis; OCS Tech. Rep. 91-18 (University of Colorado at Boulder, Boulder, Colo., 1991).

E. T. Lode, V. P. Heuring, “A monitor for the bit serial optical computer,” OCS Tech. Rep. 90-17 (University of Colorado at Boulder, Boulder, Colo., 1990).

J. R. Feehrer, “BMON II: a new design for the BSOC monitor,” OCS Tech. Rep. 92-02 (University of Colorado at Boulder, Boulder, Colo., 1992).

F. T. Stone, J. E. Watson, D. T. Moser, W. J. Minford, “Performance and yield of pilot line quantities of lithium niobate switches,” in Integrated Optics and Optoelectronics, L. McCaughan, M. A. Mentzer, S. Peng, H. J. Wojtunik, K. Wong, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1177, 322–325 (1989).

R. J. Feuerstein, “Lithium niobate switch evaluations,” OCS Tech. Rep. 90-16 (University of Colorado at Boulder, Boulder, Colo., 1990).

D. B. Sarrazin, “Behavior of miniaturized polarization controllers,” OCS Tech. Rep. 89-49 (University of Colorado at Boulder, Boulder, Colo., 1989).

S. L. Garrahan, “Undergraduate research experience in the digital optical computing laboratory,” OCS Tech. Rep. 91-22 (University of Colorado at Boulder, Boulder, Colo., 1991).

F. M. Ngai, “A study of interference effects in passive Ring optical signals,” OCS Tech. Rep. 90-21 (University of Colorado at Boulder, Boulder, Colo., 1990).

J. Pratt, “Hatch user’s manual,” OCS Tech. Rep. 89-31 (University of Colorado at Boulder, Boulder, Colo., 1989).

M. Salerno, “XHatch user’s guide,” OCS Tech. Rep.91-25 (University of Colorado, Boulder, Colo., 1991).

H. F. Jordan, A. R. Mickelson, B. Van Zeghbroek, I. Januar, “An integrated optics, stored program computer,” in Optical Computing, Vol. 7 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 318–321.

A. B. Yadlowsky, “The design and implementation of a bit-serial optical counter,” OCS Tech. Rep. 89-22 (University of Colorado at Boulder, Boulder, Colo., 1989).

M. J. Murdocca, A Digital Design Methodology for Optical Computing (MIT, Cambridge, Mass., 1990), Chap. 2, p. 14.

D. R. Hartree, Calculating Instruments and Machines (U. Illinois Press, Urbana, Ill., 1949), Chap. 5, p. 55.

M. V. Wilkes, Memoirs of a Computer Pioneer (MIT, Cambridge, Mass., 1985), Chap. 10, pp. 108–109.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (10)

Fig. 1
Fig. 1

SPOC specifications.

Fig. 2
Fig. 2

Optical devices.

Fig. 3
Fig. 3

C terminal electronics.

Fig. 4
Fig. 4

16-bit instruction.

Fig. 5
Fig. 5

Block diagram.

Fig. 6
Fig. 6

SPOC schematic. See text for discussion.

Fig. 7
Fig. 7

Pulse replicator.

Fig. 8
Fig. 8

(a) Old and (b) new state toggle circuits.

Fig. 10
Fig. 10

Test program: test.asm.

Tables (1)

Tables Icon

Table 1 SPOC Instruction Set

Equations (1)

Equations on this page are rendered with MathJax. Learn more.

δ = l n c .

Metrics