Abstract

The design of the optical interconnection network (OIN) system is presented. The network is implemented by the use of only passive optical elements and is based on a shuffle-exchange interconnection pattern. Each passive optical shuffle-exchange stage is designed for cascadability. The OIN switch nodes are capable of broadcast and combine operations in addition to bypass and exchange. The OIN is designed to be controlled by an electronic address computer in a circuit-switched manner. Although the OIN is designed to be used as a subsystem on the shared-memory optical/electronic computer, it may be used as a complete subsystem in other communication or computing architectures.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. L. Giles, B. K. Jenkins, “Complexity implications of optical parallel computing,” in Proceedings of the Twentieth Annual Asilomar Conference on Signals, Systems, and Computers (Institute of Electrical and Electronic Engineers, New York, 1986), pp. 513–517.
  2. R. Barakat, J. Reif, “Lower bounds on the computational efficiency of optical computing systems,” Appl. Opt. 26, 1015–1018 (1987).
    [CrossRef] [PubMed]
  3. J. W. Goodman, F. I. Leonberger, S-Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
    [CrossRef]
  4. D. H. Hartman, “Digital high speed interconnects: A study of the optical alternative,” Opt. Eng. 25, 1086–1102 (1986).
  5. M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Opt. 27, 1742–1751 (1988).
    [CrossRef] [PubMed]
  6. A. Guha, J. Bristow, C. Sullivan, A. Husain, “Optical interconnections for massively parallel architectures,” Appl. Opt. 29, 1077–1092 (1990).
    [CrossRef] [PubMed]
  7. D. A. B. Miller, “Optics for low-energy communication inside digital processors: quantum detectors, sources, and modulators as efficient impedance converters,” Opt. Lett. 14, 146–148 (1989).
    [CrossRef] [PubMed]
  8. C. Waterson, B. K. Jenkins, “Shared memory optical/electronic computer: architecture and design,” in Optical Computing, Vol. 6 of 1991 OSA Technical Digest Series (Optical Society of America, Washington D.C., 1991), pp. 195–198.
  9. C. Waterson, B. K. Jenkins, “Shared-memory optical-electronic computer: architecture and control,” Appl. Opt. 33, 1559–1574 (1994).
    [CrossRef] [PubMed]
  10. G. F. Pfister, V. A. Norton, “‘Hot spot’ contention and combining in multistage interconnection networks,” in Proceedings of the 1985 International Conference on Parallel Processing (Institute of Electrical and Electronics Engineers, New York, New York, 1985), pp. 790–797.
  11. M. Kumar, G. F. Pfister, “The onset of hot spot contention,” in Proceedings of the 1986 International Conference on Parallel Processing (Institute of Electrical and Electronics Engineers, New York, New York, 1986), pp. 28–34.
  12. G. Lee, C. P. Kruskal, D. J. Kuck, “The effectiveness of combining in shared memory parallel computers in the presence of ‘hot spots’,” in Proceedings of the 1986 International Conference on Parallel Processing (Institute of Electrical and Electronics Engineers, New York, New York, 1986), pp. 35–41.
  13. R. H. Thomas, “Behavior of the Butterfly (tm) parallel processor in the presence of memory hot spots,” in Proceedings of the 1986 International Conference on Parallel Processing (Institute of Electrical and Electronics Engineers, New York, New York, 1986), pp. 46–50.
  14. P.-C. Yew, N.-F. Tzeng, J. H. Lawrie, “Distributing hot-spot addressing in large-scale multiprocessors,” in Proceedings of the 1986 International Conference on Parallel Processing (Institute of Electrical and Electronics Engineers, New York, New York, 1986), pp. 51–58.
  15. H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans. Comput. C-20, 153–161 (1971).
    [CrossRef]
  16. D. S. Parker, “Notes on shuffle/exchange-type networks,” IEEE Trans. Comput. C-29, 213–222 (1980).
    [CrossRef]
  17. A. Abdennadher, T.-Y. Feng, “On rearrangeability of omega-omega networks,” in Proceedings of the 1992 International Conference on Parallel Processing (CRC, Boca Raton, Fla., 1992), pp. I159–I165.
  18. C.-L. Wu, T.-Y. Feng, “The universality of the shuffle-exchange network,” IEEE Trans. Comput. C-30, 324–332 (1981).
    [CrossRef]
  19. F. W. Ostermayer, P. A. Kohl, R. H. Burton, “Photo-chemical etching of integral lenses on InGaAsP/InP light-emitting diodes,” Appl. Phys. Lett. 43, 642–644 (1983).
    [CrossRef]
  20. J. S. Patel, J. W. Goodby, “Properties and applications of ferroelectric liquid crystals,” Opt. Eng. 26, 373–384 (1987).
  21. K. M. Johnson, M. A. Handschy, L. A. Pagano-Stauffer, “Optical computing and image processing with ferroelectric liquid crystals,” Opt. Eng. 26, 385–392 (1987).
  22. K. M. Johnson, M. R. Surette, J. Shamir, “Optical interconnection network using polarization-based ferroelectric liquid crystal gates,” Appl. Opt. 27, 1727–1733 (1988).
    [CrossRef] [PubMed]
  23. L. R. McAdams, R. N. McRuer, J. W. Goodman, “Liquid-crystal optical routing switch,” Appl. Opt. 29, 1304–1307 (1990).
    [CrossRef] [PubMed]
  24. M. A. Handschy, K. M. Johnson, W. T. Cathey, L. A. Pagano-Stauffer, “Polarization-based optical parallel logic gate utilizing ferroelectric liquid crystals,” Opt. Lett. 12, 611–613 (1987).
    [CrossRef] [PubMed]
  25. M. O. Freeman, T. A. Brown, D. M. Walba, “Quantized complex ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 31, 3917–3929 (1992).
    [CrossRef] [PubMed]
  26. A. W. Lohmann, W. Stork, G. Stucke, “Optical perfect shuffle,” Appl. Opt. 25, 1530–1531 (1986).
    [CrossRef] [PubMed]
  27. A. W. Lohmann, “What classical optics can do for the digital optical computer,” Appl. Opt. 25, 1543–1549 (1986).
    [CrossRef] [PubMed]
  28. S.-H. Lin, T. F. Krile, J. F. Walkup, “2-D optical multistage interconnection networks,” in Digital Optical Computing, R. Arrathoon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.752, 209–216 (1987).
  29. A. A. Sawchuk, “3-D optical interconnection networks,” in Optics and the Information Age, H. H. Arsenault, ed., Proc. Soc. Photo-Opt. Instrum. Eng.813, 547–548 (1987).
  30. C. W. Stirk, R. A. Athale, M. W. Haney, “Folded perfect shuffle optical processor,” Appl. Opt. 27, 202–203 (1988).
    [CrossRef] [PubMed]
  31. K.-H. Brenner, A. Huang, “Optical implementations of the perfect shuffle interconnection,” Appl. Opt. 27, 135–137 (1988).
    [CrossRef] [PubMed]
  32. A. A. Sawchuk, I. Glaser, “Geometries for optical implementations of the perfect shuffle,” in Optical Computing ’88, P. Chavel, J. W. Goodman, G. Roblin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.963, 270–279 (1988).
  33. S. Jutamulia, G. Storti, “Incoherent optical interconnects (perfect shuffle) based on shadow casting,” Appl. Opt. 28, 4262–4263 (1989).
    [CrossRef] [PubMed]
  34. Y. Sheng, “Light effective 2-D optical perfect shuffle using Fresnel mirrors,” Appl. Opt. 28, 3290–3292 (1989).
    [CrossRef] [PubMed]
  35. K. Noguchi, T. Sakano, T. Matsumoto, “A rearrangeable multichannel free-space optical switch based on multistage network configuration,” J. Lightwave Technol. 9, 1726–1732 (1991).
    [CrossRef]

1994

1992

1991

K. Noguchi, T. Sakano, T. Matsumoto, “A rearrangeable multichannel free-space optical switch based on multistage network configuration,” J. Lightwave Technol. 9, 1726–1732 (1991).
[CrossRef]

1990

1989

1988

1987

R. Barakat, J. Reif, “Lower bounds on the computational efficiency of optical computing systems,” Appl. Opt. 26, 1015–1018 (1987).
[CrossRef] [PubMed]

M. A. Handschy, K. M. Johnson, W. T. Cathey, L. A. Pagano-Stauffer, “Polarization-based optical parallel logic gate utilizing ferroelectric liquid crystals,” Opt. Lett. 12, 611–613 (1987).
[CrossRef] [PubMed]

J. S. Patel, J. W. Goodby, “Properties and applications of ferroelectric liquid crystals,” Opt. Eng. 26, 373–384 (1987).

K. M. Johnson, M. A. Handschy, L. A. Pagano-Stauffer, “Optical computing and image processing with ferroelectric liquid crystals,” Opt. Eng. 26, 385–392 (1987).

1986

1984

J. W. Goodman, F. I. Leonberger, S-Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

1983

F. W. Ostermayer, P. A. Kohl, R. H. Burton, “Photo-chemical etching of integral lenses on InGaAsP/InP light-emitting diodes,” Appl. Phys. Lett. 43, 642–644 (1983).
[CrossRef]

1981

C.-L. Wu, T.-Y. Feng, “The universality of the shuffle-exchange network,” IEEE Trans. Comput. C-30, 324–332 (1981).
[CrossRef]

1980

D. S. Parker, “Notes on shuffle/exchange-type networks,” IEEE Trans. Comput. C-29, 213–222 (1980).
[CrossRef]

1971

H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans. Comput. C-20, 153–161 (1971).
[CrossRef]

Abdennadher, A.

A. Abdennadher, T.-Y. Feng, “On rearrangeability of omega-omega networks,” in Proceedings of the 1992 International Conference on Parallel Processing (CRC, Boca Raton, Fla., 1992), pp. I159–I165.

Athale, R. A.

C. W. Stirk, R. A. Athale, M. W. Haney, “Folded perfect shuffle optical processor,” Appl. Opt. 27, 202–203 (1988).
[CrossRef] [PubMed]

J. W. Goodman, F. I. Leonberger, S-Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Barakat, R.

Brenner, K.-H.

Bristow, J.

Brown, T. A.

Burton, R. H.

F. W. Ostermayer, P. A. Kohl, R. H. Burton, “Photo-chemical etching of integral lenses on InGaAsP/InP light-emitting diodes,” Appl. Phys. Lett. 43, 642–644 (1983).
[CrossRef]

Cathey, W. T.

Esener, S. C.

Feldman, M. R.

Feng, T.-Y.

C.-L. Wu, T.-Y. Feng, “The universality of the shuffle-exchange network,” IEEE Trans. Comput. C-30, 324–332 (1981).
[CrossRef]

A. Abdennadher, T.-Y. Feng, “On rearrangeability of omega-omega networks,” in Proceedings of the 1992 International Conference on Parallel Processing (CRC, Boca Raton, Fla., 1992), pp. I159–I165.

Freeman, M. O.

Giles, C. L.

C. L. Giles, B. K. Jenkins, “Complexity implications of optical parallel computing,” in Proceedings of the Twentieth Annual Asilomar Conference on Signals, Systems, and Computers (Institute of Electrical and Electronic Engineers, New York, 1986), pp. 513–517.

Glaser, I.

A. A. Sawchuk, I. Glaser, “Geometries for optical implementations of the perfect shuffle,” in Optical Computing ’88, P. Chavel, J. W. Goodman, G. Roblin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.963, 270–279 (1988).

Goodby, J. W.

J. S. Patel, J. W. Goodby, “Properties and applications of ferroelectric liquid crystals,” Opt. Eng. 26, 373–384 (1987).

Goodman, J. W.

L. R. McAdams, R. N. McRuer, J. W. Goodman, “Liquid-crystal optical routing switch,” Appl. Opt. 29, 1304–1307 (1990).
[CrossRef] [PubMed]

J. W. Goodman, F. I. Leonberger, S-Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Guest, C. C.

Guha, A.

Handschy, M. A.

M. A. Handschy, K. M. Johnson, W. T. Cathey, L. A. Pagano-Stauffer, “Polarization-based optical parallel logic gate utilizing ferroelectric liquid crystals,” Opt. Lett. 12, 611–613 (1987).
[CrossRef] [PubMed]

K. M. Johnson, M. A. Handschy, L. A. Pagano-Stauffer, “Optical computing and image processing with ferroelectric liquid crystals,” Opt. Eng. 26, 385–392 (1987).

Haney, M. W.

Hartman, D. H.

D. H. Hartman, “Digital high speed interconnects: A study of the optical alternative,” Opt. Eng. 25, 1086–1102 (1986).

Huang, A.

Husain, A.

Jenkins, B. K.

C. Waterson, B. K. Jenkins, “Shared-memory optical-electronic computer: architecture and control,” Appl. Opt. 33, 1559–1574 (1994).
[CrossRef] [PubMed]

C. L. Giles, B. K. Jenkins, “Complexity implications of optical parallel computing,” in Proceedings of the Twentieth Annual Asilomar Conference on Signals, Systems, and Computers (Institute of Electrical and Electronic Engineers, New York, 1986), pp. 513–517.

C. Waterson, B. K. Jenkins, “Shared memory optical/electronic computer: architecture and design,” in Optical Computing, Vol. 6 of 1991 OSA Technical Digest Series (Optical Society of America, Washington D.C., 1991), pp. 195–198.

Johnson, K. M.

Jutamulia, S.

Kohl, P. A.

F. W. Ostermayer, P. A. Kohl, R. H. Burton, “Photo-chemical etching of integral lenses on InGaAsP/InP light-emitting diodes,” Appl. Phys. Lett. 43, 642–644 (1983).
[CrossRef]

Krile, T. F.

S.-H. Lin, T. F. Krile, J. F. Walkup, “2-D optical multistage interconnection networks,” in Digital Optical Computing, R. Arrathoon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.752, 209–216 (1987).

Kruskal, C. P.

G. Lee, C. P. Kruskal, D. J. Kuck, “The effectiveness of combining in shared memory parallel computers in the presence of ‘hot spots’,” in Proceedings of the 1986 International Conference on Parallel Processing (Institute of Electrical and Electronics Engineers, New York, New York, 1986), pp. 35–41.

Kuck, D. J.

G. Lee, C. P. Kruskal, D. J. Kuck, “The effectiveness of combining in shared memory parallel computers in the presence of ‘hot spots’,” in Proceedings of the 1986 International Conference on Parallel Processing (Institute of Electrical and Electronics Engineers, New York, New York, 1986), pp. 35–41.

Kumar, M.

M. Kumar, G. F. Pfister, “The onset of hot spot contention,” in Proceedings of the 1986 International Conference on Parallel Processing (Institute of Electrical and Electronics Engineers, New York, New York, 1986), pp. 28–34.

Kung, S-Y.

J. W. Goodman, F. I. Leonberger, S-Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Lawrie, J. H.

P.-C. Yew, N.-F. Tzeng, J. H. Lawrie, “Distributing hot-spot addressing in large-scale multiprocessors,” in Proceedings of the 1986 International Conference on Parallel Processing (Institute of Electrical and Electronics Engineers, New York, New York, 1986), pp. 51–58.

Lee, G.

G. Lee, C. P. Kruskal, D. J. Kuck, “The effectiveness of combining in shared memory parallel computers in the presence of ‘hot spots’,” in Proceedings of the 1986 International Conference on Parallel Processing (Institute of Electrical and Electronics Engineers, New York, New York, 1986), pp. 35–41.

Lee, S. H.

Leonberger, F. I.

J. W. Goodman, F. I. Leonberger, S-Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Lin, S.-H.

S.-H. Lin, T. F. Krile, J. F. Walkup, “2-D optical multistage interconnection networks,” in Digital Optical Computing, R. Arrathoon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.752, 209–216 (1987).

Lohmann, A. W.

Matsumoto, T.

K. Noguchi, T. Sakano, T. Matsumoto, “A rearrangeable multichannel free-space optical switch based on multistage network configuration,” J. Lightwave Technol. 9, 1726–1732 (1991).
[CrossRef]

McAdams, L. R.

McRuer, R. N.

Miller, D. A. B.

Noguchi, K.

K. Noguchi, T. Sakano, T. Matsumoto, “A rearrangeable multichannel free-space optical switch based on multistage network configuration,” J. Lightwave Technol. 9, 1726–1732 (1991).
[CrossRef]

Norton, V. A.

G. F. Pfister, V. A. Norton, “‘Hot spot’ contention and combining in multistage interconnection networks,” in Proceedings of the 1985 International Conference on Parallel Processing (Institute of Electrical and Electronics Engineers, New York, New York, 1985), pp. 790–797.

Ostermayer, F. W.

F. W. Ostermayer, P. A. Kohl, R. H. Burton, “Photo-chemical etching of integral lenses on InGaAsP/InP light-emitting diodes,” Appl. Phys. Lett. 43, 642–644 (1983).
[CrossRef]

Pagano-Stauffer, L. A.

M. A. Handschy, K. M. Johnson, W. T. Cathey, L. A. Pagano-Stauffer, “Polarization-based optical parallel logic gate utilizing ferroelectric liquid crystals,” Opt. Lett. 12, 611–613 (1987).
[CrossRef] [PubMed]

K. M. Johnson, M. A. Handschy, L. A. Pagano-Stauffer, “Optical computing and image processing with ferroelectric liquid crystals,” Opt. Eng. 26, 385–392 (1987).

Parker, D. S.

D. S. Parker, “Notes on shuffle/exchange-type networks,” IEEE Trans. Comput. C-29, 213–222 (1980).
[CrossRef]

Patel, J. S.

J. S. Patel, J. W. Goodby, “Properties and applications of ferroelectric liquid crystals,” Opt. Eng. 26, 373–384 (1987).

Pfister, G. F.

M. Kumar, G. F. Pfister, “The onset of hot spot contention,” in Proceedings of the 1986 International Conference on Parallel Processing (Institute of Electrical and Electronics Engineers, New York, New York, 1986), pp. 28–34.

G. F. Pfister, V. A. Norton, “‘Hot spot’ contention and combining in multistage interconnection networks,” in Proceedings of the 1985 International Conference on Parallel Processing (Institute of Electrical and Electronics Engineers, New York, New York, 1985), pp. 790–797.

Reif, J.

Sakano, T.

K. Noguchi, T. Sakano, T. Matsumoto, “A rearrangeable multichannel free-space optical switch based on multistage network configuration,” J. Lightwave Technol. 9, 1726–1732 (1991).
[CrossRef]

Sawchuk, A. A.

A. A. Sawchuk, “3-D optical interconnection networks,” in Optics and the Information Age, H. H. Arsenault, ed., Proc. Soc. Photo-Opt. Instrum. Eng.813, 547–548 (1987).

A. A. Sawchuk, I. Glaser, “Geometries for optical implementations of the perfect shuffle,” in Optical Computing ’88, P. Chavel, J. W. Goodman, G. Roblin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.963, 270–279 (1988).

Shamir, J.

Sheng, Y.

Stirk, C. W.

Stone, H. S.

H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans. Comput. C-20, 153–161 (1971).
[CrossRef]

Stork, W.

Storti, G.

Stucke, G.

Sullivan, C.

Surette, M. R.

Thomas, R. H.

R. H. Thomas, “Behavior of the Butterfly (tm) parallel processor in the presence of memory hot spots,” in Proceedings of the 1986 International Conference on Parallel Processing (Institute of Electrical and Electronics Engineers, New York, New York, 1986), pp. 46–50.

Tzeng, N.-F.

P.-C. Yew, N.-F. Tzeng, J. H. Lawrie, “Distributing hot-spot addressing in large-scale multiprocessors,” in Proceedings of the 1986 International Conference on Parallel Processing (Institute of Electrical and Electronics Engineers, New York, New York, 1986), pp. 51–58.

Walba, D. M.

Walkup, J. F.

S.-H. Lin, T. F. Krile, J. F. Walkup, “2-D optical multistage interconnection networks,” in Digital Optical Computing, R. Arrathoon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.752, 209–216 (1987).

Waterson, C.

C. Waterson, B. K. Jenkins, “Shared-memory optical-electronic computer: architecture and control,” Appl. Opt. 33, 1559–1574 (1994).
[CrossRef] [PubMed]

C. Waterson, B. K. Jenkins, “Shared memory optical/electronic computer: architecture and design,” in Optical Computing, Vol. 6 of 1991 OSA Technical Digest Series (Optical Society of America, Washington D.C., 1991), pp. 195–198.

Wu, C.-L.

C.-L. Wu, T.-Y. Feng, “The universality of the shuffle-exchange network,” IEEE Trans. Comput. C-30, 324–332 (1981).
[CrossRef]

Yew, P.-C.

P.-C. Yew, N.-F. Tzeng, J. H. Lawrie, “Distributing hot-spot addressing in large-scale multiprocessors,” in Proceedings of the 1986 International Conference on Parallel Processing (Institute of Electrical and Electronics Engineers, New York, New York, 1986), pp. 51–58.

Appl. Opt.

A. W. Lohmann, “What classical optics can do for the digital optical computer,” Appl. Opt. 25, 1543–1549 (1986).
[CrossRef] [PubMed]

R. Barakat, J. Reif, “Lower bounds on the computational efficiency of optical computing systems,” Appl. Opt. 26, 1015–1018 (1987).
[CrossRef] [PubMed]

K.-H. Brenner, A. Huang, “Optical implementations of the perfect shuffle interconnection,” Appl. Opt. 27, 135–137 (1988).
[CrossRef] [PubMed]

K. M. Johnson, M. R. Surette, J. Shamir, “Optical interconnection network using polarization-based ferroelectric liquid crystal gates,” Appl. Opt. 27, 1727–1733 (1988).
[CrossRef] [PubMed]

M. R. Feldman, S. C. Esener, C. C. Guest, S. H. Lee, “Comparison between optical and electrical interconnects based on power and speed considerations,” Appl. Opt. 27, 1742–1751 (1988).
[CrossRef] [PubMed]

S. Jutamulia, G. Storti, “Incoherent optical interconnects (perfect shuffle) based on shadow casting,” Appl. Opt. 28, 4262–4263 (1989).
[CrossRef] [PubMed]

A. Guha, J. Bristow, C. Sullivan, A. Husain, “Optical interconnections for massively parallel architectures,” Appl. Opt. 29, 1077–1092 (1990).
[CrossRef] [PubMed]

L. R. McAdams, R. N. McRuer, J. W. Goodman, “Liquid-crystal optical routing switch,” Appl. Opt. 29, 1304–1307 (1990).
[CrossRef] [PubMed]

M. O. Freeman, T. A. Brown, D. M. Walba, “Quantized complex ferroelectric liquid-crystal spatial light modulators,” Appl. Opt. 31, 3917–3929 (1992).
[CrossRef] [PubMed]

C. Waterson, B. K. Jenkins, “Shared-memory optical-electronic computer: architecture and control,” Appl. Opt. 33, 1559–1574 (1994).
[CrossRef] [PubMed]

A. W. Lohmann, W. Stork, G. Stucke, “Optical perfect shuffle,” Appl. Opt. 25, 1530–1531 (1986).
[CrossRef] [PubMed]

C. W. Stirk, R. A. Athale, M. W. Haney, “Folded perfect shuffle optical processor,” Appl. Opt. 27, 202–203 (1988).
[CrossRef] [PubMed]

Y. Sheng, “Light effective 2-D optical perfect shuffle using Fresnel mirrors,” Appl. Opt. 28, 3290–3292 (1989).
[CrossRef] [PubMed]

Appl. Phys. Lett.

F. W. Ostermayer, P. A. Kohl, R. H. Burton, “Photo-chemical etching of integral lenses on InGaAsP/InP light-emitting diodes,” Appl. Phys. Lett. 43, 642–644 (1983).
[CrossRef]

IEEE Trans. Comput.

H. S. Stone, “Parallel processing with the perfect shuffle,” IEEE Trans. Comput. C-20, 153–161 (1971).
[CrossRef]

D. S. Parker, “Notes on shuffle/exchange-type networks,” IEEE Trans. Comput. C-29, 213–222 (1980).
[CrossRef]

C.-L. Wu, T.-Y. Feng, “The universality of the shuffle-exchange network,” IEEE Trans. Comput. C-30, 324–332 (1981).
[CrossRef]

J. Lightwave Technol.

K. Noguchi, T. Sakano, T. Matsumoto, “A rearrangeable multichannel free-space optical switch based on multistage network configuration,” J. Lightwave Technol. 9, 1726–1732 (1991).
[CrossRef]

Opt. Eng.

J. S. Patel, J. W. Goodby, “Properties and applications of ferroelectric liquid crystals,” Opt. Eng. 26, 373–384 (1987).

K. M. Johnson, M. A. Handschy, L. A. Pagano-Stauffer, “Optical computing and image processing with ferroelectric liquid crystals,” Opt. Eng. 26, 385–392 (1987).

D. H. Hartman, “Digital high speed interconnects: A study of the optical alternative,” Opt. Eng. 25, 1086–1102 (1986).

Opt. Lett.

Proc. IEEE

J. W. Goodman, F. I. Leonberger, S-Y. Kung, R. A. Athale, “Optical interconnections for VLSI systems,” Proc. IEEE 72, 850–866 (1984).
[CrossRef]

Other

A. Abdennadher, T.-Y. Feng, “On rearrangeability of omega-omega networks,” in Proceedings of the 1992 International Conference on Parallel Processing (CRC, Boca Raton, Fla., 1992), pp. I159–I165.

S.-H. Lin, T. F. Krile, J. F. Walkup, “2-D optical multistage interconnection networks,” in Digital Optical Computing, R. Arrathoon, ed., Proc. Soc. Photo-Opt. Instrum. Eng.752, 209–216 (1987).

A. A. Sawchuk, “3-D optical interconnection networks,” in Optics and the Information Age, H. H. Arsenault, ed., Proc. Soc. Photo-Opt. Instrum. Eng.813, 547–548 (1987).

A. A. Sawchuk, I. Glaser, “Geometries for optical implementations of the perfect shuffle,” in Optical Computing ’88, P. Chavel, J. W. Goodman, G. Roblin, eds., Proc. Soc. Photo-Opt. Instrum. Eng.963, 270–279 (1988).

C. L. Giles, B. K. Jenkins, “Complexity implications of optical parallel computing,” in Proceedings of the Twentieth Annual Asilomar Conference on Signals, Systems, and Computers (Institute of Electrical and Electronic Engineers, New York, 1986), pp. 513–517.

C. Waterson, B. K. Jenkins, “Shared memory optical/electronic computer: architecture and design,” in Optical Computing, Vol. 6 of 1991 OSA Technical Digest Series (Optical Society of America, Washington D.C., 1991), pp. 195–198.

G. F. Pfister, V. A. Norton, “‘Hot spot’ contention and combining in multistage interconnection networks,” in Proceedings of the 1985 International Conference on Parallel Processing (Institute of Electrical and Electronics Engineers, New York, New York, 1985), pp. 790–797.

M. Kumar, G. F. Pfister, “The onset of hot spot contention,” in Proceedings of the 1986 International Conference on Parallel Processing (Institute of Electrical and Electronics Engineers, New York, New York, 1986), pp. 28–34.

G. Lee, C. P. Kruskal, D. J. Kuck, “The effectiveness of combining in shared memory parallel computers in the presence of ‘hot spots’,” in Proceedings of the 1986 International Conference on Parallel Processing (Institute of Electrical and Electronics Engineers, New York, New York, 1986), pp. 35–41.

R. H. Thomas, “Behavior of the Butterfly (tm) parallel processor in the presence of memory hot spots,” in Proceedings of the 1986 International Conference on Parallel Processing (Institute of Electrical and Electronics Engineers, New York, New York, 1986), pp. 46–50.

P.-C. Yew, N.-F. Tzeng, J. H. Lawrie, “Distributing hot-spot addressing in large-scale multiprocessors,” in Proceedings of the 1986 International Conference on Parallel Processing (Institute of Electrical and Electronics Engineers, New York, New York, 1986), pp. 51–58.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (16)

Fig. 1
Fig. 1

Perfect shuffle.

Fig. 2
Fig. 2

Bypass–exchange switch settings.

Fig. 3
Fig. 3

Overview of LA ↔ CP format converter.

Fig. 4
Fig. 4

Ray trace of LA ↔ CP format converter.

Fig. 5
Fig. 5

Ray trace of PSA, design 1: IMGi, image plane i; FTi, Fourier-transform plane i; L i , lens i; LL i , lenslet array i; f i , focal length of lens–lenslet i. Note: f 3 = 2f 4; 2f 5 = f 6.

Fig. 6
Fig. 6

Ray trace of PSA, design 2. Notation is the same as that of Fig. 5. Note: 2f 3 = f 4; f 5 = 2f 6.

Fig. 7
Fig. 7

Overview of the CP unshuffle.

Fig. 8
Fig. 8

Ray trace of the CP unshuffle without Wollaston prisms (without PSA). Notation is the same as that of Fig. 5.

Fig. 9
Fig. 9

Ray trace of the CP unshuffle with Wollaston prisms (without PSA): W i , Wollaston prism i; other notation is the same as that of Fig. 5.

Fig. 10
Fig. 10

Ray trace of the CP unshuffle (complete). Notation is the same as that of Figs. 5 9. Note: f 3 = 2f 4; 2f 5 = f 6.

Fig. 11
Fig. 11

Overview of the CP exchange.

Fig. 12
Fig. 12

Overview of the shuffle-exchange stage operation: combine.

Fig. 13
Fig. 13

Overview of the shuffle-exchange stage operation: broadcast.

Fig. 14
Fig. 14

Ray trace of an unshuffle-exchange stage with broadcast and combine capability: Pol, polarizer (two polarizers are sandwiched around TLSM2); other notation is the same as that of Figs. 5 9. Note: f 3 = 2f 4; 2f 5 = f 6.

Fig. 15
Fig. 15

Two implementations for TSLM2.

Fig. 16
Fig. 16

Wollaston prism.

Tables (1)

Tables Icon

Table 1 TSLM Settings

Equations (14)

Equations on this page are rendered with MathJax. Learn more.

L = ( A L ) S
= ( 1 2 l ) s log 2 N             ( applying definitions )
= 2 s log 2 N log 2 ( 1 / 2 l )             ( by identity :             a x = b x log b a ) = N s log 2 ( 1 / 2 l )             ( collapsing :             N = 2 log 2 N ) = ( 1 N ) s log 2 ( 2 l ) = ( 1 N ) s ( 1 + log 2 l )
( 1 N ) s .
n i sin θ i = n r sin θ r .
: n i = 1 ; n r = n o sin δ = n o sin δ , : n i = 1 ; n r = n e sin δ n e sin δ .
: δ n o δ δ δ / n o , : δ n e δ δ δ / n e .
: n i = n o ; n r = n e , : n i n e ; n r = n o .
: n o α n e β ; n o ( α + δ ) n e ( β + ) : n e α n o β ; n e ( α + δ ) n o ( β + ) ,
: n o δ n e δ / n e , : n e δ n o δ / n o .
: n i = n e ; n r = 1 , : n i = n o ; n r = 1.
: θ α - β , : θ α - β .
: n e θ θ ; n e ( θ + ) θ + , : n o θ θ ; n o ( θ - ) θ - .
: n e δ , : n o δ .

Metrics