Expand this Topic clickable element to expand a topic
Skip to content
Optica Publishing Group

Modeling and simulation methodology for digital optical computing systems

Not Accessible

Your library or personal account may give you access

Abstract

A modeling and simulation methodology for digital optical computing systems is introduced in this paper. The methodology predicts maximum performance of a given optical computing architecture and evaluates its feasibility. As an application example, we apply this methodology to evaluate the feasibility and performance of the optical content-addressable parallel processor proposed in Appl. Opt. 31, 3241 (1992). The approach consists of two major phases. The first phase involves analytical studies of the effects of design parameters such as cross talk, diffraction-limited beam spot diameter, and pitch on system performance parameters such as signal packing density and skew time. In the second phase, a simulation model and a simulator are introduced by the use of glad (General Laser Analysis and Design, an optical software package developed by Applied Optics Research) to evaluate the combined effects of bit-error rate, bit rate, optical power efficiency, available source power, and signal contrast on the performance parameters such as signal packing density, misalignment tolerance, and distance between devices. The methodology presented here investigates the model, not on a component-by-component basis, but as a whole, which produces a more realistic representation of the actual laboratory prototype. The proposed methodology is intended to reduce the optical computing system design time as well as the design risk associated with building a prototype system.

© 1994 Optical Society of America

Full Article  |  PDF Article
More Like This
Simulating free-space optical computing architectures

Irvin R. Jones and Vincent P. Heuring
Appl. Opt. 37(26) 6127-6135 (1998)

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Figures (13)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Equations (19)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an Optica member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access Optica Member Subscription

Select as filters


Select Topics Cancel
© Copyright 2024 | Optica Publishing Group. All rights reserved, including rights for text and data mining and training of artificial technologies or similar technologies.