Abstract

We describe, demonstrate, and characterize an analog self-electro-optic-effect device that gives a difference between two optical output powers that is linearly proportional to an electrical or an optical drive. Such a device should permit bipolar (positive and negative) processing in novel image processing arrays. The device is able to operate over a range of more than 4 orders of magnitude of optical power from 50 nW to 2.5 mW, corresponding to uniform incident intensities as low as 3.3 mW/cm2. The frequency response (3-dB limit) varies linearly from 7 kHz at 1-μW absorber power to 3.5 MHz at 1 mW of absorbed powers.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. A. B. Miller, “Quantum-well self-electro-optic effect devices,” Opt. Quantum Electron. 22, S61–S98 (1990).
  2. A. L. Lentine, D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE J. Quantum Electron. 29, 655–669 (1993).
    [CrossRef]
  3. D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The quantum well self-electrooptic effect device: optoelectronic bistability and oscillation, and self-linearized modulation,” IEEE J. Quantum Electron. QE-21, 1462–1476 (1985).
    [CrossRef]
  4. D. A. B. Miller, “Novel analog self-electrooptic-effect devices,” IEEE J. Quantum Electron. 29, 678–698 (1993).
    [CrossRef]
  5. E. A. De Souza, L. Carraresi, G. D. Boyd, D. A. B. Miller, “Analog differential self-linearized quantum-well self-electro-optic-effect modulator,” Opt. Lett. 18, 974–976 (1993).
    [CrossRef] [PubMed]
  6. D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32, 1043–1069 (1985).
    [CrossRef]
  7. L. M. F. Chirovsky, N. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, F. J. Przybylek, L. E. Smith, L. A. D’Asaro, A. L. Lentine, R. A. Novotny, D. B. Buchholz, “Large arrays of symmetric self-electro-optic effect devices,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 56–59.
  8. A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunnigham, W. Y. Yan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27, 2281–2295 (1991).
    [CrossRef]

1993 (3)

A. L. Lentine, D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE J. Quantum Electron. 29, 655–669 (1993).
[CrossRef]

D. A. B. Miller, “Novel analog self-electrooptic-effect devices,” IEEE J. Quantum Electron. 29, 678–698 (1993).
[CrossRef]

E. A. De Souza, L. Carraresi, G. D. Boyd, D. A. B. Miller, “Analog differential self-linearized quantum-well self-electro-optic-effect modulator,” Opt. Lett. 18, 974–976 (1993).
[CrossRef] [PubMed]

1991 (1)

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunnigham, W. Y. Yan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27, 2281–2295 (1991).
[CrossRef]

1990 (1)

D. A. B. Miller, “Quantum-well self-electro-optic effect devices,” Opt. Quantum Electron. 22, S61–S98 (1990).

1985 (2)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32, 1043–1069 (1985).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The quantum well self-electrooptic effect device: optoelectronic bistability and oscillation, and self-linearized modulation,” IEEE J. Quantum Electron. QE-21, 1462–1476 (1985).
[CrossRef]

Boyd, G. D.

Buchholz, D. B.

L. M. F. Chirovsky, N. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, F. J. Przybylek, L. E. Smith, L. A. D’Asaro, A. L. Lentine, R. A. Novotny, D. B. Buchholz, “Large arrays of symmetric self-electro-optic effect devices,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 56–59.

Burrus, C. A.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The quantum well self-electrooptic effect device: optoelectronic bistability and oscillation, and self-linearized modulation,” IEEE J. Quantum Electron. QE-21, 1462–1476 (1985).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32, 1043–1069 (1985).
[CrossRef]

Carraresi, L.

Chemla, D. S.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The quantum well self-electrooptic effect device: optoelectronic bistability and oscillation, and self-linearized modulation,” IEEE J. Quantum Electron. QE-21, 1462–1476 (1985).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32, 1043–1069 (1985).
[CrossRef]

Chirovsky, L. M. F.

L. M. F. Chirovsky, N. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, F. J. Przybylek, L. E. Smith, L. A. D’Asaro, A. L. Lentine, R. A. Novotny, D. B. Buchholz, “Large arrays of symmetric self-electro-optic effect devices,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 56–59.

Cunnigham, J. E.

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunnigham, W. Y. Yan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27, 2281–2295 (1991).
[CrossRef]

D’Asaro, L. A.

L. M. F. Chirovsky, N. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, F. J. Przybylek, L. E. Smith, L. A. D’Asaro, A. L. Lentine, R. A. Novotny, D. B. Buchholz, “Large arrays of symmetric self-electro-optic effect devices,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 56–59.

Damen, T. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The quantum well self-electrooptic effect device: optoelectronic bistability and oscillation, and self-linearized modulation,” IEEE J. Quantum Electron. QE-21, 1462–1476 (1985).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32, 1043–1069 (1985).
[CrossRef]

De Souza, E. A.

Focht, N. W.

L. M. F. Chirovsky, N. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, F. J. Przybylek, L. E. Smith, L. A. D’Asaro, A. L. Lentine, R. A. Novotny, D. B. Buchholz, “Large arrays of symmetric self-electro-optic effect devices,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 56–59.

Fox, A. M.

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunnigham, W. Y. Yan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27, 2281–2295 (1991).
[CrossRef]

Freund, J. M.

L. M. F. Chirovsky, N. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, F. J. Przybylek, L. E. Smith, L. A. D’Asaro, A. L. Lentine, R. A. Novotny, D. B. Buchholz, “Large arrays of symmetric self-electro-optic effect devices,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 56–59.

Gossard, A. C.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The quantum well self-electrooptic effect device: optoelectronic bistability and oscillation, and self-linearized modulation,” IEEE J. Quantum Electron. QE-21, 1462–1476 (1985).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32, 1043–1069 (1985).
[CrossRef]

Guth, G. D.

L. M. F. Chirovsky, N. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, F. J. Przybylek, L. E. Smith, L. A. D’Asaro, A. L. Lentine, R. A. Novotny, D. B. Buchholz, “Large arrays of symmetric self-electro-optic effect devices,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 56–59.

Leibenguth, R. E.

L. M. F. Chirovsky, N. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, F. J. Przybylek, L. E. Smith, L. A. D’Asaro, A. L. Lentine, R. A. Novotny, D. B. Buchholz, “Large arrays of symmetric self-electro-optic effect devices,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 56–59.

Lentine, A. L.

A. L. Lentine, D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE J. Quantum Electron. 29, 655–669 (1993).
[CrossRef]

L. M. F. Chirovsky, N. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, F. J. Przybylek, L. E. Smith, L. A. D’Asaro, A. L. Lentine, R. A. Novotny, D. B. Buchholz, “Large arrays of symmetric self-electro-optic effect devices,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 56–59.

Livescu, G.

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunnigham, W. Y. Yan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27, 2281–2295 (1991).
[CrossRef]

Miller, D. A. B.

D. A. B. Miller, “Novel analog self-electrooptic-effect devices,” IEEE J. Quantum Electron. 29, 678–698 (1993).
[CrossRef]

A. L. Lentine, D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE J. Quantum Electron. 29, 655–669 (1993).
[CrossRef]

E. A. De Souza, L. Carraresi, G. D. Boyd, D. A. B. Miller, “Analog differential self-linearized quantum-well self-electro-optic-effect modulator,” Opt. Lett. 18, 974–976 (1993).
[CrossRef] [PubMed]

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunnigham, W. Y. Yan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27, 2281–2295 (1991).
[CrossRef]

D. A. B. Miller, “Quantum-well self-electro-optic effect devices,” Opt. Quantum Electron. 22, S61–S98 (1990).

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32, 1043–1069 (1985).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The quantum well self-electrooptic effect device: optoelectronic bistability and oscillation, and self-linearized modulation,” IEEE J. Quantum Electron. QE-21, 1462–1476 (1985).
[CrossRef]

Novotny, R. A.

L. M. F. Chirovsky, N. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, F. J. Przybylek, L. E. Smith, L. A. D’Asaro, A. L. Lentine, R. A. Novotny, D. B. Buchholz, “Large arrays of symmetric self-electro-optic effect devices,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 56–59.

Przybylek, F. J.

L. M. F. Chirovsky, N. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, F. J. Przybylek, L. E. Smith, L. A. D’Asaro, A. L. Lentine, R. A. Novotny, D. B. Buchholz, “Large arrays of symmetric self-electro-optic effect devices,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 56–59.

Smith, L. E.

L. M. F. Chirovsky, N. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, F. J. Przybylek, L. E. Smith, L. A. D’Asaro, A. L. Lentine, R. A. Novotny, D. B. Buchholz, “Large arrays of symmetric self-electro-optic effect devices,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 56–59.

Wiegmann, W.

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The quantum well self-electrooptic effect device: optoelectronic bistability and oscillation, and self-linearized modulation,” IEEE J. Quantum Electron. QE-21, 1462–1476 (1985).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32, 1043–1069 (1985).
[CrossRef]

Wood, T. H.

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32, 1043–1069 (1985).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The quantum well self-electrooptic effect device: optoelectronic bistability and oscillation, and self-linearized modulation,” IEEE J. Quantum Electron. QE-21, 1462–1476 (1985).
[CrossRef]

Yan, W. Y.

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunnigham, W. Y. Yan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27, 2281–2295 (1991).
[CrossRef]

IEEE J. Quantum Electron. (4)

A. L. Lentine, D. A. B. Miller, “Evolution of the SEED technology: bistable logic gates to optoelectronic smart pixels,” IEEE J. Quantum Electron. 29, 655–669 (1993).
[CrossRef]

D. A. B. Miller, D. S. Chemla, T. C. Damen, T. H. Wood, C. A. Burrus, A. C. Gossard, W. Wiegmann, “The quantum well self-electrooptic effect device: optoelectronic bistability and oscillation, and self-linearized modulation,” IEEE J. Quantum Electron. QE-21, 1462–1476 (1985).
[CrossRef]

D. A. B. Miller, “Novel analog self-electrooptic-effect devices,” IEEE J. Quantum Electron. 29, 678–698 (1993).
[CrossRef]

A. M. Fox, D. A. B. Miller, G. Livescu, J. E. Cunnigham, W. Y. Yan, “Quantum well carrier sweep out: relation to electroabsorption and exciton saturation,” IEEE J. Quantum Electron. 27, 2281–2295 (1991).
[CrossRef]

Opt. Lett. (1)

Opt. Quantum Electron. (1)

D. A. B. Miller, “Quantum-well self-electro-optic effect devices,” Opt. Quantum Electron. 22, S61–S98 (1990).

Phys. Rev. B (1)

D. A. B. Miller, D. S. Chemla, T. C. Damen, A. C. Gossard, W. Wiegmann, T. H. Wood, C. A. Burrus, “Electric field dependence of optical absorption near the band gap of quantum-well structures,” Phys. Rev. B 32, 1043–1069 (1985).
[CrossRef]

Other (1)

L. M. F. Chirovsky, N. W. Focht, J. M. Freund, G. D. Guth, R. E. Leibenguth, F. J. Przybylek, L. E. Smith, L. A. D’Asaro, A. L. Lentine, R. A. Novotny, D. B. Buchholz, “Large arrays of symmetric self-electro-optic effect devices,” in Photonic Switching, H. S. Hinton, J. W. Goodman, eds., Vol. 8 of OSA Proceedings Series (Optical Society of America, Washington, D.C., 1991), pp. 56–59.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Absorption of the quantum well as a function of wavelength for 0 V (solid curve), 8 V (dashed curve), and 12.5 V (dotted curve) voltages applied to it. The shift to a long wavelength is due to the quantum-confined Stark effect. The absorption at the wavelength of 850 nm decreases with increasing voltage, but for 856 nm the absorption increases as required for analog applications.

Fig. 2
Fig. 2

Self-linearized differential modulator circuits with an electrical current source.

Fig. 3
Fig. 3

Self-linearized differential modulator circuits with two conventional photodiodes providing a current proportional to the difference between input powers (P α1P α2).

Fig. 4
Fig. 4

Output power from the quantum-well diodes and voltage applied to them as a function of the drive current. The operating wavelength is 856 nm.

Fig. 5
Fig. 5

Difference between the output from the two quantum-well diodes as a function of the source current flowing into the center point for various powers incident upon the quantum-well diode. The operating wavelength is 856 nm. For the lower powers, the scales on both axes are modified by the factor shown.

Fig. 6
Fig. 6

Difference between the outputs from the two quantum-well diodes as a function of the injected current into the center point for different supply voltages (4, 6, 8, and 9 V) applied on the quantum-well diode. The operating wavelength is 856 nm.

Fig. 7
Fig. 7

Difference between the outputs from the two quantum-well diodes as a function of the current injected into the center point for two different wavelengths, 854 and 856 nm, incident upon the quantum-well diode.

Fig. 8
Fig. 8

Difference between the outputs from the two quantum-well diodes as a function of P α1 for two values of P α2: 25μm (solid curve), 38 μW (dashed curve). The voltage applied on the quantum-well diode and the wavelength operation were 7 V and 856 nm, respectively.

Fig. 9
Fig. 9

Modulated amplitude of the difference of the output beam powers from the two quantum-well diodes as a function of modulation frequency of P α2. The voltage applied on the quantum-well diode and the wavelength were 7 V and 856 nm, respectively.

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

I c = ( e / h ν ) P abs ,
I c = ( e / h ν ) ( P absA - P absB ) ,
D β = P β B - P β A ,
D out = P outB - P outA ,
D out = D β + ( h ν / e ) I c .
I c = ( e / h ν ) ( P abs 1 - P abs 2 ) ,
D α = P α 1 - P α 2 ,
D out = D α + D β .
f = e γ P in / 2 π h ν C ,

Metrics