Abstract

Two designs incorporating embedded fiber Fabry–Perot interferometers as strain gauges were used for monitoring gas pressure in internal combustion engines. Measurements on a Diesel engine, a gasoline-fueled engine, and a natural-gas engine are reported.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Beshouri, “On the development of modern analysis techniques for single-cylinder testing of large-bore engines,” J. Eng. Gas Turbines Power 113, 390–398 (1991).
    [CrossRef]
  2. C. E. Lee, R. A. Atkins, H. F. Taylor, “Performance of a fiber-optic temperature sensor from −200 to 1050 °C,” Opt. Lett. 13, 1038–1040 (1988).
    [CrossRef] [PubMed]
  3. M. T. Wlodarczyk, D. Vokovich, V. Astrakhan, M. Kluzner, O. Ulrich, “Fiber-optic pressure sensor for combustion monitoring and control,” in Chemical, Biochemical, and Environmental Fiber Sensors III, M. T. Wlodarczyk, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1587, 4–10 (1991).
  4. C. E. Lee, H. F. Taylor, “Interferometric optical fibre sensors using internal mirrors,” Electron. Lett. 24, 193–194 (1988).
    [CrossRef]
  5. T. Valis, D. Hogg, R. M. Measures, Fiber-optic Fabry–Perot strain gauge,” IEEE Photon. Technol. Lett. 2, 227–228 (1990).
    [CrossRef]
  6. J. A. Caton, W. P. Ruemmele, D. T. Kelso, W. R. Epperly, “Performance and fuel consumption of a single-cylinder, direct injection diesel engine using platinum fuel additive,” in 1991 SAE Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa. 15096, 1991), paper 910229.
  7. C. E. Lee, W. N. Gibler, R. A. Atkins, J. J. Alcoz, H. F. Taylor, “Metal-embedded fiber-optic Fabry–Perot sensors,” Opt. Lett. 16, 1990–1992 (1991).
    [CrossRef] [PubMed]
  8. G. B. Hocker, “Fiber-optic sensing of pressure and temperature,” Appl. Opt. 18, 1445–1448 (1979).
    [CrossRef] [PubMed]

1991 (2)

G. Beshouri, “On the development of modern analysis techniques for single-cylinder testing of large-bore engines,” J. Eng. Gas Turbines Power 113, 390–398 (1991).
[CrossRef]

C. E. Lee, W. N. Gibler, R. A. Atkins, J. J. Alcoz, H. F. Taylor, “Metal-embedded fiber-optic Fabry–Perot sensors,” Opt. Lett. 16, 1990–1992 (1991).
[CrossRef] [PubMed]

1990 (1)

T. Valis, D. Hogg, R. M. Measures, Fiber-optic Fabry–Perot strain gauge,” IEEE Photon. Technol. Lett. 2, 227–228 (1990).
[CrossRef]

1988 (2)

C. E. Lee, R. A. Atkins, H. F. Taylor, “Performance of a fiber-optic temperature sensor from −200 to 1050 °C,” Opt. Lett. 13, 1038–1040 (1988).
[CrossRef] [PubMed]

C. E. Lee, H. F. Taylor, “Interferometric optical fibre sensors using internal mirrors,” Electron. Lett. 24, 193–194 (1988).
[CrossRef]

1979 (1)

Alcoz, J. J.

Astrakhan, V.

M. T. Wlodarczyk, D. Vokovich, V. Astrakhan, M. Kluzner, O. Ulrich, “Fiber-optic pressure sensor for combustion monitoring and control,” in Chemical, Biochemical, and Environmental Fiber Sensors III, M. T. Wlodarczyk, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1587, 4–10 (1991).

Atkins, R. A.

Beshouri, G.

G. Beshouri, “On the development of modern analysis techniques for single-cylinder testing of large-bore engines,” J. Eng. Gas Turbines Power 113, 390–398 (1991).
[CrossRef]

Caton, J. A.

J. A. Caton, W. P. Ruemmele, D. T. Kelso, W. R. Epperly, “Performance and fuel consumption of a single-cylinder, direct injection diesel engine using platinum fuel additive,” in 1991 SAE Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa. 15096, 1991), paper 910229.

Epperly, W. R.

J. A. Caton, W. P. Ruemmele, D. T. Kelso, W. R. Epperly, “Performance and fuel consumption of a single-cylinder, direct injection diesel engine using platinum fuel additive,” in 1991 SAE Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa. 15096, 1991), paper 910229.

Gibler, W. N.

Hocker, G. B.

Hogg, D.

T. Valis, D. Hogg, R. M. Measures, Fiber-optic Fabry–Perot strain gauge,” IEEE Photon. Technol. Lett. 2, 227–228 (1990).
[CrossRef]

Kelso, D. T.

J. A. Caton, W. P. Ruemmele, D. T. Kelso, W. R. Epperly, “Performance and fuel consumption of a single-cylinder, direct injection diesel engine using platinum fuel additive,” in 1991 SAE Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa. 15096, 1991), paper 910229.

Kluzner, M.

M. T. Wlodarczyk, D. Vokovich, V. Astrakhan, M. Kluzner, O. Ulrich, “Fiber-optic pressure sensor for combustion monitoring and control,” in Chemical, Biochemical, and Environmental Fiber Sensors III, M. T. Wlodarczyk, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1587, 4–10 (1991).

Lee, C. E.

Measures, R. M.

T. Valis, D. Hogg, R. M. Measures, Fiber-optic Fabry–Perot strain gauge,” IEEE Photon. Technol. Lett. 2, 227–228 (1990).
[CrossRef]

Ruemmele, W. P.

J. A. Caton, W. P. Ruemmele, D. T. Kelso, W. R. Epperly, “Performance and fuel consumption of a single-cylinder, direct injection diesel engine using platinum fuel additive,” in 1991 SAE Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa. 15096, 1991), paper 910229.

Taylor, H. F.

Ulrich, O.

M. T. Wlodarczyk, D. Vokovich, V. Astrakhan, M. Kluzner, O. Ulrich, “Fiber-optic pressure sensor for combustion monitoring and control,” in Chemical, Biochemical, and Environmental Fiber Sensors III, M. T. Wlodarczyk, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1587, 4–10 (1991).

Valis, T.

T. Valis, D. Hogg, R. M. Measures, Fiber-optic Fabry–Perot strain gauge,” IEEE Photon. Technol. Lett. 2, 227–228 (1990).
[CrossRef]

Vokovich, D.

M. T. Wlodarczyk, D. Vokovich, V. Astrakhan, M. Kluzner, O. Ulrich, “Fiber-optic pressure sensor for combustion monitoring and control,” in Chemical, Biochemical, and Environmental Fiber Sensors III, M. T. Wlodarczyk, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1587, 4–10 (1991).

Wlodarczyk, M. T.

M. T. Wlodarczyk, D. Vokovich, V. Astrakhan, M. Kluzner, O. Ulrich, “Fiber-optic pressure sensor for combustion monitoring and control,” in Chemical, Biochemical, and Environmental Fiber Sensors III, M. T. Wlodarczyk, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1587, 4–10 (1991).

Appl. Opt. (1)

Electron. Lett. (1)

C. E. Lee, H. F. Taylor, “Interferometric optical fibre sensors using internal mirrors,” Electron. Lett. 24, 193–194 (1988).
[CrossRef]

IEEE Photon. Technol. Lett. (1)

T. Valis, D. Hogg, R. M. Measures, Fiber-optic Fabry–Perot strain gauge,” IEEE Photon. Technol. Lett. 2, 227–228 (1990).
[CrossRef]

J. Eng. Gas Turbines Power (1)

G. Beshouri, “On the development of modern analysis techniques for single-cylinder testing of large-bore engines,” J. Eng. Gas Turbines Power 113, 390–398 (1991).
[CrossRef]

Opt. Lett. (2)

Other (2)

M. T. Wlodarczyk, D. Vokovich, V. Astrakhan, M. Kluzner, O. Ulrich, “Fiber-optic pressure sensor for combustion monitoring and control,” in Chemical, Biochemical, and Environmental Fiber Sensors III, M. T. Wlodarczyk, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 1587, 4–10 (1991).

J. A. Caton, W. P. Ruemmele, D. T. Kelso, W. R. Epperly, “Performance and fuel consumption of a single-cylinder, direct injection diesel engine using platinum fuel additive,” in 1991 SAE Congress and Exposition (Society of Automotive Engineers, Warrendale, Pa. 15096, 1991), paper 910229.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Fiber Fabry–Perot interferometer.

Fig. 2
Fig. 2

Designs for the fiber-optic pressure sensor: (a) the FFPI is embedded in a bolt that attaches the fuel injector valve to the cylinder head; (b) the FFPI is embedded in a metal rod in contact with metal diaphragms that are exposed to the combustion chamber pressure.

Fig. 3
Fig. 3

Experimental arrangement for monitoring a pressure sensor.

Fig. 4
Fig. 4

Oscilloscope traces of sensor output from a Diesel engine operating at 950 rpm: horizontal scale: (a) 5 ms/division, (b) 10 ms/division, (c) 50 ms/division. In each case the upper trace is the piezoelectric sensor output, the middle trace is the FFPI output, and the lower trace indicates the top dead center position of the piston. The cursors above and below the FFPI trace indicate the maximum and minimum signals from the photodetector as determined by thermal tuning of the laser.

Fig. 5
Fig. 5

Comparison of pressure determined from a piezoelectric sensor with the linearized output of the FFPI by using the oscilloscope plot of Fig. 4(a).

Fig. 6
Fig. 6

Oscilloscope traces of sensor output from a gasoline-powered engine: (a) revolution rate, 1500 rpm, load, 50 psi, with diaphragms in place; (b) revolution rate, 2000 rpm, load, 150 psi, with diaphragms. In each case the upper trace is the FFPI output, and the lower trace is electrical pickup from the spark plug. The cursors above and below the FFPI trace indicate the maximum and minimum signals from the photodetector as determined by thermal tuning of the laser.

Fig. 7
Fig. 7

Oscilloscope traces of sensor output from a natural-gas-powered engine operating at 275 rpm. The cursors indicate the maximum and minimum signals from the photodetector as determined by thermal tuning of the laser.

Tables (1)

Tables Icon

Table 1 Summary of Engine Test Resultsa

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

R FP = R 1 + R 2 + 2 ( R 1 R 2 ) 1 / 2 cos ϕ ,
ϕ = 4 π n L ν / c ,
ϕ ϕ 0 + K P ,
P = cos - 1 [ ( I FP - I max ) / ( I max - I min ) ] / K - ϕ 0 / K ,
ɛ z = - A P P / ( A 0 E ) ,
Δ n = - n 3 ( p 12 - μ p 11 - μ p 12 ) ɛ z / 2 ,
Δ ϕ ( 4 π n L ν / c ) ɛ z [ 1 - n 2 ( p 12 - μ p 11 - μ p 12 ) / 2 ] .
Δ ϕ 0.78 ( 4 π n L ν / c ) ɛ z .
K = - 3.12 π n L ν A p / ( c A 0 E ) .

Metrics