Abstract

Here a large deflection angle, low optical frequency-shift acousto-optic device is presented. This is realized by two successive acousto-optic interactions in the same cell. The relevant parameters of operation are analyzed in detail. A practical case with paratellurite material is then considered. Results from numerical computations leading to practical design parameters are given and compared with experimental ones.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. T. Lee, “Optical-gyroscope application of efficient crossed-channel acoustooptic devices,” Appl. Phys. B 35, 113–118 (1984).
    [CrossRef]
  2. P. F. Wysocki, M. J. Digonnet, B. Y. Kim, “Broad-spectrum, wavelength-swept, erbium-doped fiber laser at 1.55 μm,” Opt. Lett. 15, 879–881 (1990).
    [CrossRef] [PubMed]
  3. R. F. Cahill, E. Udd, “Phase-nulling fiber-optic laser gyro,” Opt. Lett. 4, 93–95 (1979).
    [CrossRef] [PubMed]
  4. N. Ohgi, M. Kondoh, M. Shimizu, “Optical fiber gyroscope with integrated optical frequency modulator,” in OFS’84, proceedings of the Second International Conference on Optical Fiber Sensors (Papers Nachachtentechnische Geschlischaft im VDE, Stuttgart, 1984), pp. 297–300.
  5. J. L. Davis, S. Ezekiel, “Techniques for shot-noise-limited inertial rotation measurement using a multiturn fiber sagnac interferometer,” in Laser Inertial Rotation Sensors, S. Ezekiel, G. E. Knausenberger, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 157, 131–136 (1978).
  6. P. Debye, F. W. Sears, “On the scattering of light by supersonic waves,” Proc. Natl. Acad. Sci. USA 18, 409–414 (1932).
    [CrossRef] [PubMed]
  7. R. Lucas, P. Biquart, “Propriétés optiques des milieux solides et liquides soumis aux vibrations élastiques ultra sonores,” J. Phys. Radium 3, 464–477 (1932).
    [CrossRef]
  8. A. B. Bathia, W. J. Noble, “Diffraction of light by ultrasonic waves—I General theory,” Proc. R. Soc. London Ser. A 220, 356–368 (1953).
    [CrossRef]
  9. I. C. Chang, “I. Acoustooptic devices and applications,” IEEE Trans. Sonics Ultrason. SU-23, 3–22 (1976).
  10. E. I. Gordon, “A review of acousto-optical deflection and modulation devices,” Proc. IEEE 54, 1391–1401 (1966).
    [CrossRef]
  11. Y. Ohmachi, N. Uchida, N. Nizeki, “Acoustic wave propagation in TeO2 single crystal,” J. Acoust. Soc. Am. 51, 164–167 (1972).
    [CrossRef]
  12. T. Yano, A. Watanabe, “Acousto-optic figure of merit of TeO2 for circularly polarized light,” J. Appl. Phys. 45, 1243–1245 (1974).
    [CrossRef]
  13. K. Yasutake, K. Sugiura, H. Inoue, A. Kakeuchi, M. Uemura, K. Yoshii, H. Kawabe, “Dislocations and ultrasonic attenuation in paratellurite,” Phys. Status Solidi A 125, 489–502 (1991).
    [CrossRef]
  14. J. Neev, F. V. Kowalski, “Optical frequency scanning without deflection using an acoustooptic modulator,” IEEE J. Quantum Electron. 26, 1682–1685 (1990).
    [CrossRef]
  15. Z. Y. Cheng, C. S. Tsai, “Baseband integrated acousto-optic frequency shifter,” Appl. Phys. Lett. 60, 12–14 (1992).
    [CrossRef]
  16. N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4, 3736–3745 (1971).
    [CrossRef]
  17. I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
    [CrossRef]
  18. A. W. Warner, D. L. White, W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43, 4489–4495 (1972).
    [CrossRef]
  19. T. Yano, M. Kawabuchi, A. Fukumoto, A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–691 (1975).
    [CrossRef]
  20. J. M. Rouvaen, M. G. Ghazaleh, E. Bridoux, R. Torguet, “On a general treatment of acousto-optic interactions in linear anisotropic crystals,” J. Appl. Phys. 50, 5472–5477 (1979).
    [CrossRef]
  21. A. Fukumoto, M. Kawabuchi, H. Hayami, “Polarization considerations in the operation of two-dimensional TeO2 abnormal Bragg deflector,” Appl. Opt. 14, 812–813 (1975).
    [CrossRef] [PubMed]
  22. M. S. Kharusi, G. W. Farnell, “Observation of optical activity in Brillouin scattering experiments,” Can. J. Phys. 47, 2719–2725 (1969).
    [CrossRef]
  23. R. S. Seymour, “Acoustooptic Bragg diffraction in anisotropic optically active media,” Appl. Opt. 29, 822–826 (1990).
    [CrossRef] [PubMed]
  24. T. M. Smith, A. Korpel, “Measurement of light-sound interaction efficiency in solids,” IEEE J. Quantum Electron. QE-1, 283–284 (1965).
    [CrossRef]
  25. E. I. Gordon, “Figures of merit for acousto-optic deflection and modulation devices,” IEEE J. Quantum Electron. QE-2, 104–105 (1966).
    [CrossRef]
  26. R. W. Dixon, “Acoustic diffraction of light in anisotropic media,” IEEE J. Quantum Electron. QE-3, 85–93 (1967).
    [CrossRef]
  27. E. G. H. Lean, C. F. Quate, H. J. Shaw, “Continuous deflection of laser beams,” Appl. Phys. Lett. 10, 48–51 (1967).
    [CrossRef]

1992 (1)

Z. Y. Cheng, C. S. Tsai, “Baseband integrated acousto-optic frequency shifter,” Appl. Phys. Lett. 60, 12–14 (1992).
[CrossRef]

1991 (1)

K. Yasutake, K. Sugiura, H. Inoue, A. Kakeuchi, M. Uemura, K. Yoshii, H. Kawabe, “Dislocations and ultrasonic attenuation in paratellurite,” Phys. Status Solidi A 125, 489–502 (1991).
[CrossRef]

1990 (3)

1984 (1)

C. T. Lee, “Optical-gyroscope application of efficient crossed-channel acoustooptic devices,” Appl. Phys. B 35, 113–118 (1984).
[CrossRef]

1979 (2)

R. F. Cahill, E. Udd, “Phase-nulling fiber-optic laser gyro,” Opt. Lett. 4, 93–95 (1979).
[CrossRef] [PubMed]

J. M. Rouvaen, M. G. Ghazaleh, E. Bridoux, R. Torguet, “On a general treatment of acousto-optic interactions in linear anisotropic crystals,” J. Appl. Phys. 50, 5472–5477 (1979).
[CrossRef]

1976 (1)

I. C. Chang, “I. Acoustooptic devices and applications,” IEEE Trans. Sonics Ultrason. SU-23, 3–22 (1976).

1975 (2)

T. Yano, M. Kawabuchi, A. Fukumoto, A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–691 (1975).
[CrossRef]

A. Fukumoto, M. Kawabuchi, H. Hayami, “Polarization considerations in the operation of two-dimensional TeO2 abnormal Bragg deflector,” Appl. Opt. 14, 812–813 (1975).
[CrossRef] [PubMed]

1974 (2)

T. Yano, A. Watanabe, “Acousto-optic figure of merit of TeO2 for circularly polarized light,” J. Appl. Phys. 45, 1243–1245 (1974).
[CrossRef]

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
[CrossRef]

1972 (2)

A. W. Warner, D. L. White, W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43, 4489–4495 (1972).
[CrossRef]

Y. Ohmachi, N. Uchida, N. Nizeki, “Acoustic wave propagation in TeO2 single crystal,” J. Acoust. Soc. Am. 51, 164–167 (1972).
[CrossRef]

1971 (1)

N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4, 3736–3745 (1971).
[CrossRef]

1969 (1)

M. S. Kharusi, G. W. Farnell, “Observation of optical activity in Brillouin scattering experiments,” Can. J. Phys. 47, 2719–2725 (1969).
[CrossRef]

1967 (2)

R. W. Dixon, “Acoustic diffraction of light in anisotropic media,” IEEE J. Quantum Electron. QE-3, 85–93 (1967).
[CrossRef]

E. G. H. Lean, C. F. Quate, H. J. Shaw, “Continuous deflection of laser beams,” Appl. Phys. Lett. 10, 48–51 (1967).
[CrossRef]

1966 (2)

E. I. Gordon, “Figures of merit for acousto-optic deflection and modulation devices,” IEEE J. Quantum Electron. QE-2, 104–105 (1966).
[CrossRef]

E. I. Gordon, “A review of acousto-optical deflection and modulation devices,” Proc. IEEE 54, 1391–1401 (1966).
[CrossRef]

1965 (1)

T. M. Smith, A. Korpel, “Measurement of light-sound interaction efficiency in solids,” IEEE J. Quantum Electron. QE-1, 283–284 (1965).
[CrossRef]

1953 (1)

A. B. Bathia, W. J. Noble, “Diffraction of light by ultrasonic waves—I General theory,” Proc. R. Soc. London Ser. A 220, 356–368 (1953).
[CrossRef]

1932 (2)

P. Debye, F. W. Sears, “On the scattering of light by supersonic waves,” Proc. Natl. Acad. Sci. USA 18, 409–414 (1932).
[CrossRef] [PubMed]

R. Lucas, P. Biquart, “Propriétés optiques des milieux solides et liquides soumis aux vibrations élastiques ultra sonores,” J. Phys. Radium 3, 464–477 (1932).
[CrossRef]

Bathia, A. B.

A. B. Bathia, W. J. Noble, “Diffraction of light by ultrasonic waves—I General theory,” Proc. R. Soc. London Ser. A 220, 356–368 (1953).
[CrossRef]

Biquart, P.

R. Lucas, P. Biquart, “Propriétés optiques des milieux solides et liquides soumis aux vibrations élastiques ultra sonores,” J. Phys. Radium 3, 464–477 (1932).
[CrossRef]

Bonner, W. A.

A. W. Warner, D. L. White, W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43, 4489–4495 (1972).
[CrossRef]

Bridoux, E.

J. M. Rouvaen, M. G. Ghazaleh, E. Bridoux, R. Torguet, “On a general treatment of acousto-optic interactions in linear anisotropic crystals,” J. Appl. Phys. 50, 5472–5477 (1979).
[CrossRef]

Cahill, R. F.

Chang, I. C.

I. C. Chang, “I. Acoustooptic devices and applications,” IEEE Trans. Sonics Ultrason. SU-23, 3–22 (1976).

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
[CrossRef]

Cheng, Z. Y.

Z. Y. Cheng, C. S. Tsai, “Baseband integrated acousto-optic frequency shifter,” Appl. Phys. Lett. 60, 12–14 (1992).
[CrossRef]

Davis, J. L.

J. L. Davis, S. Ezekiel, “Techniques for shot-noise-limited inertial rotation measurement using a multiturn fiber sagnac interferometer,” in Laser Inertial Rotation Sensors, S. Ezekiel, G. E. Knausenberger, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 157, 131–136 (1978).

Debye, P.

P. Debye, F. W. Sears, “On the scattering of light by supersonic waves,” Proc. Natl. Acad. Sci. USA 18, 409–414 (1932).
[CrossRef] [PubMed]

Digonnet, M. J.

Dixon, R. W.

R. W. Dixon, “Acoustic diffraction of light in anisotropic media,” IEEE J. Quantum Electron. QE-3, 85–93 (1967).
[CrossRef]

Ezekiel, S.

J. L. Davis, S. Ezekiel, “Techniques for shot-noise-limited inertial rotation measurement using a multiturn fiber sagnac interferometer,” in Laser Inertial Rotation Sensors, S. Ezekiel, G. E. Knausenberger, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 157, 131–136 (1978).

Farnell, G. W.

M. S. Kharusi, G. W. Farnell, “Observation of optical activity in Brillouin scattering experiments,” Can. J. Phys. 47, 2719–2725 (1969).
[CrossRef]

Fukumoto, A.

T. Yano, M. Kawabuchi, A. Fukumoto, A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–691 (1975).
[CrossRef]

A. Fukumoto, M. Kawabuchi, H. Hayami, “Polarization considerations in the operation of two-dimensional TeO2 abnormal Bragg deflector,” Appl. Opt. 14, 812–813 (1975).
[CrossRef] [PubMed]

Ghazaleh, M. G.

J. M. Rouvaen, M. G. Ghazaleh, E. Bridoux, R. Torguet, “On a general treatment of acousto-optic interactions in linear anisotropic crystals,” J. Appl. Phys. 50, 5472–5477 (1979).
[CrossRef]

Gordon, E. I.

E. I. Gordon, “A review of acousto-optical deflection and modulation devices,” Proc. IEEE 54, 1391–1401 (1966).
[CrossRef]

E. I. Gordon, “Figures of merit for acousto-optic deflection and modulation devices,” IEEE J. Quantum Electron. QE-2, 104–105 (1966).
[CrossRef]

Hayami, H.

Inoue, H.

K. Yasutake, K. Sugiura, H. Inoue, A. Kakeuchi, M. Uemura, K. Yoshii, H. Kawabe, “Dislocations and ultrasonic attenuation in paratellurite,” Phys. Status Solidi A 125, 489–502 (1991).
[CrossRef]

Kakeuchi, A.

K. Yasutake, K. Sugiura, H. Inoue, A. Kakeuchi, M. Uemura, K. Yoshii, H. Kawabe, “Dislocations and ultrasonic attenuation in paratellurite,” Phys. Status Solidi A 125, 489–502 (1991).
[CrossRef]

Kawabe, H.

K. Yasutake, K. Sugiura, H. Inoue, A. Kakeuchi, M. Uemura, K. Yoshii, H. Kawabe, “Dislocations and ultrasonic attenuation in paratellurite,” Phys. Status Solidi A 125, 489–502 (1991).
[CrossRef]

Kawabuchi, M.

A. Fukumoto, M. Kawabuchi, H. Hayami, “Polarization considerations in the operation of two-dimensional TeO2 abnormal Bragg deflector,” Appl. Opt. 14, 812–813 (1975).
[CrossRef] [PubMed]

T. Yano, M. Kawabuchi, A. Fukumoto, A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–691 (1975).
[CrossRef]

Kharusi, M. S.

M. S. Kharusi, G. W. Farnell, “Observation of optical activity in Brillouin scattering experiments,” Can. J. Phys. 47, 2719–2725 (1969).
[CrossRef]

Kim, B. Y.

Kondoh, M.

N. Ohgi, M. Kondoh, M. Shimizu, “Optical fiber gyroscope with integrated optical frequency modulator,” in OFS’84, proceedings of the Second International Conference on Optical Fiber Sensors (Papers Nachachtentechnische Geschlischaft im VDE, Stuttgart, 1984), pp. 297–300.

Korpel, A.

T. M. Smith, A. Korpel, “Measurement of light-sound interaction efficiency in solids,” IEEE J. Quantum Electron. QE-1, 283–284 (1965).
[CrossRef]

Kowalski, F. V.

J. Neev, F. V. Kowalski, “Optical frequency scanning without deflection using an acoustooptic modulator,” IEEE J. Quantum Electron. 26, 1682–1685 (1990).
[CrossRef]

Lean, E. G. H.

E. G. H. Lean, C. F. Quate, H. J. Shaw, “Continuous deflection of laser beams,” Appl. Phys. Lett. 10, 48–51 (1967).
[CrossRef]

Lee, C. T.

C. T. Lee, “Optical-gyroscope application of efficient crossed-channel acoustooptic devices,” Appl. Phys. B 35, 113–118 (1984).
[CrossRef]

Lucas, R.

R. Lucas, P. Biquart, “Propriétés optiques des milieux solides et liquides soumis aux vibrations élastiques ultra sonores,” J. Phys. Radium 3, 464–477 (1932).
[CrossRef]

Neev, J.

J. Neev, F. V. Kowalski, “Optical frequency scanning without deflection using an acoustooptic modulator,” IEEE J. Quantum Electron. 26, 1682–1685 (1990).
[CrossRef]

Nizeki, N.

Y. Ohmachi, N. Uchida, N. Nizeki, “Acoustic wave propagation in TeO2 single crystal,” J. Acoust. Soc. Am. 51, 164–167 (1972).
[CrossRef]

Noble, W. J.

A. B. Bathia, W. J. Noble, “Diffraction of light by ultrasonic waves—I General theory,” Proc. R. Soc. London Ser. A 220, 356–368 (1953).
[CrossRef]

Ohgi, N.

N. Ohgi, M. Kondoh, M. Shimizu, “Optical fiber gyroscope with integrated optical frequency modulator,” in OFS’84, proceedings of the Second International Conference on Optical Fiber Sensors (Papers Nachachtentechnische Geschlischaft im VDE, Stuttgart, 1984), pp. 297–300.

Ohmachi, Y.

Y. Ohmachi, N. Uchida, N. Nizeki, “Acoustic wave propagation in TeO2 single crystal,” J. Acoust. Soc. Am. 51, 164–167 (1972).
[CrossRef]

Quate, C. F.

E. G. H. Lean, C. F. Quate, H. J. Shaw, “Continuous deflection of laser beams,” Appl. Phys. Lett. 10, 48–51 (1967).
[CrossRef]

Rouvaen, J. M.

J. M. Rouvaen, M. G. Ghazaleh, E. Bridoux, R. Torguet, “On a general treatment of acousto-optic interactions in linear anisotropic crystals,” J. Appl. Phys. 50, 5472–5477 (1979).
[CrossRef]

Sears, F. W.

P. Debye, F. W. Sears, “On the scattering of light by supersonic waves,” Proc. Natl. Acad. Sci. USA 18, 409–414 (1932).
[CrossRef] [PubMed]

Seymour, R. S.

Shaw, H. J.

E. G. H. Lean, C. F. Quate, H. J. Shaw, “Continuous deflection of laser beams,” Appl. Phys. Lett. 10, 48–51 (1967).
[CrossRef]

Shimizu, M.

N. Ohgi, M. Kondoh, M. Shimizu, “Optical fiber gyroscope with integrated optical frequency modulator,” in OFS’84, proceedings of the Second International Conference on Optical Fiber Sensors (Papers Nachachtentechnische Geschlischaft im VDE, Stuttgart, 1984), pp. 297–300.

Smith, T. M.

T. M. Smith, A. Korpel, “Measurement of light-sound interaction efficiency in solids,” IEEE J. Quantum Electron. QE-1, 283–284 (1965).
[CrossRef]

Sugiura, K.

K. Yasutake, K. Sugiura, H. Inoue, A. Kakeuchi, M. Uemura, K. Yoshii, H. Kawabe, “Dislocations and ultrasonic attenuation in paratellurite,” Phys. Status Solidi A 125, 489–502 (1991).
[CrossRef]

Torguet, R.

J. M. Rouvaen, M. G. Ghazaleh, E. Bridoux, R. Torguet, “On a general treatment of acousto-optic interactions in linear anisotropic crystals,” J. Appl. Phys. 50, 5472–5477 (1979).
[CrossRef]

Tsai, C. S.

Z. Y. Cheng, C. S. Tsai, “Baseband integrated acousto-optic frequency shifter,” Appl. Phys. Lett. 60, 12–14 (1992).
[CrossRef]

Uchida, N.

Y. Ohmachi, N. Uchida, N. Nizeki, “Acoustic wave propagation in TeO2 single crystal,” J. Acoust. Soc. Am. 51, 164–167 (1972).
[CrossRef]

N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4, 3736–3745 (1971).
[CrossRef]

Udd, E.

Uemura, M.

K. Yasutake, K. Sugiura, H. Inoue, A. Kakeuchi, M. Uemura, K. Yoshii, H. Kawabe, “Dislocations and ultrasonic attenuation in paratellurite,” Phys. Status Solidi A 125, 489–502 (1991).
[CrossRef]

Warner, A. W.

A. W. Warner, D. L. White, W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43, 4489–4495 (1972).
[CrossRef]

Watanabe, A.

T. Yano, M. Kawabuchi, A. Fukumoto, A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–691 (1975).
[CrossRef]

T. Yano, A. Watanabe, “Acousto-optic figure of merit of TeO2 for circularly polarized light,” J. Appl. Phys. 45, 1243–1245 (1974).
[CrossRef]

White, D. L.

A. W. Warner, D. L. White, W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43, 4489–4495 (1972).
[CrossRef]

Wysocki, P. F.

Yano, T.

T. Yano, M. Kawabuchi, A. Fukumoto, A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–691 (1975).
[CrossRef]

T. Yano, A. Watanabe, “Acousto-optic figure of merit of TeO2 for circularly polarized light,” J. Appl. Phys. 45, 1243–1245 (1974).
[CrossRef]

Yasutake, K.

K. Yasutake, K. Sugiura, H. Inoue, A. Kakeuchi, M. Uemura, K. Yoshii, H. Kawabe, “Dislocations and ultrasonic attenuation in paratellurite,” Phys. Status Solidi A 125, 489–502 (1991).
[CrossRef]

Yoshii, K.

K. Yasutake, K. Sugiura, H. Inoue, A. Kakeuchi, M. Uemura, K. Yoshii, H. Kawabe, “Dislocations and ultrasonic attenuation in paratellurite,” Phys. Status Solidi A 125, 489–502 (1991).
[CrossRef]

Appl. Opt. (2)

Appl. Phys. B (1)

C. T. Lee, “Optical-gyroscope application of efficient crossed-channel acoustooptic devices,” Appl. Phys. B 35, 113–118 (1984).
[CrossRef]

Appl. Phys. Lett. (4)

E. G. H. Lean, C. F. Quate, H. J. Shaw, “Continuous deflection of laser beams,” Appl. Phys. Lett. 10, 48–51 (1967).
[CrossRef]

Z. Y. Cheng, C. S. Tsai, “Baseband integrated acousto-optic frequency shifter,” Appl. Phys. Lett. 60, 12–14 (1992).
[CrossRef]

I. C. Chang, “Noncollinear acousto-optic filter with large angular aperture,” Appl. Phys. Lett. 25, 370–372 (1974).
[CrossRef]

T. Yano, M. Kawabuchi, A. Fukumoto, A. Watanabe, “TeO2 anisotropic Bragg light deflector without midband degeneracy,” Appl. Phys. Lett. 26, 689–691 (1975).
[CrossRef]

Can. J. Phys. (1)

M. S. Kharusi, G. W. Farnell, “Observation of optical activity in Brillouin scattering experiments,” Can. J. Phys. 47, 2719–2725 (1969).
[CrossRef]

IEEE J. Quantum Electron. (4)

T. M. Smith, A. Korpel, “Measurement of light-sound interaction efficiency in solids,” IEEE J. Quantum Electron. QE-1, 283–284 (1965).
[CrossRef]

E. I. Gordon, “Figures of merit for acousto-optic deflection and modulation devices,” IEEE J. Quantum Electron. QE-2, 104–105 (1966).
[CrossRef]

R. W. Dixon, “Acoustic diffraction of light in anisotropic media,” IEEE J. Quantum Electron. QE-3, 85–93 (1967).
[CrossRef]

J. Neev, F. V. Kowalski, “Optical frequency scanning without deflection using an acoustooptic modulator,” IEEE J. Quantum Electron. 26, 1682–1685 (1990).
[CrossRef]

IEEE Trans. Sonics Ultrason. (1)

I. C. Chang, “I. Acoustooptic devices and applications,” IEEE Trans. Sonics Ultrason. SU-23, 3–22 (1976).

J. Acoust. Soc. Am. (1)

Y. Ohmachi, N. Uchida, N. Nizeki, “Acoustic wave propagation in TeO2 single crystal,” J. Acoust. Soc. Am. 51, 164–167 (1972).
[CrossRef]

J. Appl. Phys. (3)

T. Yano, A. Watanabe, “Acousto-optic figure of merit of TeO2 for circularly polarized light,” J. Appl. Phys. 45, 1243–1245 (1974).
[CrossRef]

J. M. Rouvaen, M. G. Ghazaleh, E. Bridoux, R. Torguet, “On a general treatment of acousto-optic interactions in linear anisotropic crystals,” J. Appl. Phys. 50, 5472–5477 (1979).
[CrossRef]

A. W. Warner, D. L. White, W. A. Bonner, “Acousto-optic light deflectors using optical activity in paratellurite,” J. Appl. Phys. 43, 4489–4495 (1972).
[CrossRef]

J. Phys. Radium (1)

R. Lucas, P. Biquart, “Propriétés optiques des milieux solides et liquides soumis aux vibrations élastiques ultra sonores,” J. Phys. Radium 3, 464–477 (1932).
[CrossRef]

Opt. Lett. (2)

Phys. Rev. B (1)

N. Uchida, “Optical properties of single-crystal paratellurite (TeO2),” Phys. Rev. B 4, 3736–3745 (1971).
[CrossRef]

Phys. Status Solidi A (1)

K. Yasutake, K. Sugiura, H. Inoue, A. Kakeuchi, M. Uemura, K. Yoshii, H. Kawabe, “Dislocations and ultrasonic attenuation in paratellurite,” Phys. Status Solidi A 125, 489–502 (1991).
[CrossRef]

Proc. IEEE (1)

E. I. Gordon, “A review of acousto-optical deflection and modulation devices,” Proc. IEEE 54, 1391–1401 (1966).
[CrossRef]

Proc. Natl. Acad. Sci. USA (1)

P. Debye, F. W. Sears, “On the scattering of light by supersonic waves,” Proc. Natl. Acad. Sci. USA 18, 409–414 (1932).
[CrossRef] [PubMed]

Proc. R. Soc. London Ser. A (1)

A. B. Bathia, W. J. Noble, “Diffraction of light by ultrasonic waves—I General theory,” Proc. R. Soc. London Ser. A 220, 356–368 (1953).
[CrossRef]

Other (2)

N. Ohgi, M. Kondoh, M. Shimizu, “Optical fiber gyroscope with integrated optical frequency modulator,” in OFS’84, proceedings of the Second International Conference on Optical Fiber Sensors (Papers Nachachtentechnische Geschlischaft im VDE, Stuttgart, 1984), pp. 297–300.

J. L. Davis, S. Ezekiel, “Techniques for shot-noise-limited inertial rotation measurement using a multiturn fiber sagnac interferometer,” in Laser Inertial Rotation Sensors, S. Ezekiel, G. E. Knausenberger, eds., Proc. Soc. Photo-Opt. Instrum. Eng. 157, 131–136 (1978).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (5)

Fig. 1
Fig. 1

Geometrical configuration of the double acousto-optic interaction; ν0 is the laser frequency and f 1 and f 2 are the two acoustic frequencies.

Fig. 2
Fig. 2

Interaction wave-vector diagram: (a) IEI, (b) EIE. The dotted lines represent the second-order rediffraction related to the first interaction.

Fig. 3
Fig. 3

Variations of figure of merit (relative to its maximal value) M 2rel versus acoustical direction θ a [in degrees, measured from the 110 direction in the (1 1 ¯ 0) plane].

Fig. 4
Fig. 4

Variations of (a) elliptical ratio α versus light angular direction θ l (in degrees) for an optical wavelength λ = 0.8 μm, (b) coupling factor R (abscissa) versus elliptical ratio α (ordinate).

Fig. 5
Fig. 5

Experimental setup: SC, semiconductor; PD, photodetector.

Tables (2)

Tables Icon

Table 1 IEI Interaction

Tables Icon

Table 2 EIE Interaction

Equations (9)

Equations on this page are rendered with MathJax. Learn more.

θ = λ f / v ,
M 2 rel = M 2 ( θ a ) M 2 ( 0 ) .
Δ φ = W · Δ k ,
R = 1 1 + α 2 .
λ f 1 v 1 + λ f 2 v 2 = λ f 0 ( 1 v 1 + 1 v 2 ) ,
f 1 = f 0 + δ f v 1 v 1 + v 2 , f 2 = f 0 - δ f v 2 v 1 + v 2 .
f 1 , 2 = f 0 ± δ f 2 .
δ θ = λ δ f 2 ( 1 v 1 - 1 v 2 ) .
δ f < v 1 v 2 L ( v 1 - v 2 )

Metrics