Abstract

Dark-field imaging is attained by use of a λ/4 plate and an analyzer in a confocal scanning microscope. This dark-field microscope detects only the edge-diffracted wave whose polarization is different from that of the incident beam. The fact that images of photoresist patterns taken by the microscope show only the edges of the patterns confirms the dark-field nature of the imaging.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), p. 424.
  2. T. Wilson, C. Sheppard, Theory and Practice of Scanning Microscopy (Academic, London, 1984).
  3. T. Wilson, D. K. Hamilton, “Dark-field scanning optical microscopy,” Optik 71, 23–26 (1985).
  4. I. J. Cox, C. J. R. Sheppard, T. Wilson, “Improvement in resolution by nearly confocal microscopy,” Appl. Opt. 21, 778–781 (1982).
    [CrossRef] [PubMed]
  5. G. Otis, “Application of the boundary-diffraction-wave theory to Gaussian beams,” J. Opt. Soc. Am. 64, 1545–1550 (1974).
    [CrossRef]
  6. S. Kimura, K. Suda, S. Hase, C. Munakata, “Optical method for inspecting LSI patterns using reflected diffraction waves,” Appl. Opt. 27, 1187–1192 (1988).
    [CrossRef] [PubMed]
  7. S. Inoué, Video Microscopy (Plenum, New York, 1986).
  8. Ref. 1, p.556.
  9. G. A. Deschamps, J. Boersma, S. Lee, “Three-dimensional half-plane diffraction: exact solution and testing of uniform theories,” IEEE Trans. Antennas Propag. AP-32, 264–271 (1984).
    [CrossRef]
  10. B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. Soc. London Ser. A 253, 358–379 (1959).
    [CrossRef]
  11. S. Inoué, W. L. Hyde, “Studies on depolarization of light at microscope lens surfaces. II. The simultaneous realization of high resolution and high sensitivity with the polarizing microscope,” J. Biophys. Biochem. 3, 831–838 (1957).
    [CrossRef]

1988 (1)

1985 (1)

T. Wilson, D. K. Hamilton, “Dark-field scanning optical microscopy,” Optik 71, 23–26 (1985).

1984 (1)

G. A. Deschamps, J. Boersma, S. Lee, “Three-dimensional half-plane diffraction: exact solution and testing of uniform theories,” IEEE Trans. Antennas Propag. AP-32, 264–271 (1984).
[CrossRef]

1982 (1)

1974 (1)

1959 (1)

B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. Soc. London Ser. A 253, 358–379 (1959).
[CrossRef]

1957 (1)

S. Inoué, W. L. Hyde, “Studies on depolarization of light at microscope lens surfaces. II. The simultaneous realization of high resolution and high sensitivity with the polarizing microscope,” J. Biophys. Biochem. 3, 831–838 (1957).
[CrossRef]

Boersma, J.

G. A. Deschamps, J. Boersma, S. Lee, “Three-dimensional half-plane diffraction: exact solution and testing of uniform theories,” IEEE Trans. Antennas Propag. AP-32, 264–271 (1984).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), p. 424.

Cox, I. J.

Deschamps, G. A.

G. A. Deschamps, J. Boersma, S. Lee, “Three-dimensional half-plane diffraction: exact solution and testing of uniform theories,” IEEE Trans. Antennas Propag. AP-32, 264–271 (1984).
[CrossRef]

Hamilton, D. K.

T. Wilson, D. K. Hamilton, “Dark-field scanning optical microscopy,” Optik 71, 23–26 (1985).

Hase, S.

Hyde, W. L.

S. Inoué, W. L. Hyde, “Studies on depolarization of light at microscope lens surfaces. II. The simultaneous realization of high resolution and high sensitivity with the polarizing microscope,” J. Biophys. Biochem. 3, 831–838 (1957).
[CrossRef]

Inoué, S.

S. Inoué, W. L. Hyde, “Studies on depolarization of light at microscope lens surfaces. II. The simultaneous realization of high resolution and high sensitivity with the polarizing microscope,” J. Biophys. Biochem. 3, 831–838 (1957).
[CrossRef]

S. Inoué, Video Microscopy (Plenum, New York, 1986).

Kimura, S.

Lee, S.

G. A. Deschamps, J. Boersma, S. Lee, “Three-dimensional half-plane diffraction: exact solution and testing of uniform theories,” IEEE Trans. Antennas Propag. AP-32, 264–271 (1984).
[CrossRef]

Munakata, C.

Otis, G.

Richards, B.

B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. Soc. London Ser. A 253, 358–379 (1959).
[CrossRef]

Sheppard, C.

T. Wilson, C. Sheppard, Theory and Practice of Scanning Microscopy (Academic, London, 1984).

Sheppard, C. J. R.

Suda, K.

Wilson, T.

T. Wilson, D. K. Hamilton, “Dark-field scanning optical microscopy,” Optik 71, 23–26 (1985).

I. J. Cox, C. J. R. Sheppard, T. Wilson, “Improvement in resolution by nearly confocal microscopy,” Appl. Opt. 21, 778–781 (1982).
[CrossRef] [PubMed]

T. Wilson, C. Sheppard, Theory and Practice of Scanning Microscopy (Academic, London, 1984).

Wolf, E.

B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. Soc. London Ser. A 253, 358–379 (1959).
[CrossRef]

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), p. 424.

Appl. Opt. (2)

IEEE Trans. Antennas Propag. (1)

G. A. Deschamps, J. Boersma, S. Lee, “Three-dimensional half-plane diffraction: exact solution and testing of uniform theories,” IEEE Trans. Antennas Propag. AP-32, 264–271 (1984).
[CrossRef]

J. Biophys. Biochem. (1)

S. Inoué, W. L. Hyde, “Studies on depolarization of light at microscope lens surfaces. II. The simultaneous realization of high resolution and high sensitivity with the polarizing microscope,” J. Biophys. Biochem. 3, 831–838 (1957).
[CrossRef]

J. Opt. Soc. Am. (1)

Optik (1)

T. Wilson, D. K. Hamilton, “Dark-field scanning optical microscopy,” Optik 71, 23–26 (1985).

Proc. Soc. London Ser. A (1)

B. Richards, E. Wolf, “Electromagnetic diffraction in optical systems II. Structure of the image field in an aplanatic system,” Proc. Soc. London Ser. A 253, 358–379 (1959).
[CrossRef]

Other (4)

S. Inoué, Video Microscopy (Plenum, New York, 1986).

Ref. 1, p.556.

M. Born, E. Wolf, Principles of Optics (Pergamon, Oxford, 1980), p. 424.

T. Wilson, C. Sheppard, Theory and Practice of Scanning Microscopy (Academic, London, 1984).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Geometry of edge diffraction.

Fig. 2
Fig. 2

(a) Polarization change of the edge-diffracted wave. (b) Angle difference between the polarization axes of the incident light and the edge-diffracted wave.

Fig. 3
Fig. 3

Experimental setup for the confocal dark-field microscope.

Fig. 4
Fig. 4

Images of the photoresist pattern on a silicon substrate. The focus is on the top surface of the photoresist: (a) the dark-field image and (b) confocal image.

Fig. 5
Fig. 5

(a) Dark-field image and (b) confocal image of photoresist line patterns.

Fig. 6
Fig. 6

(a) Dark-field image and (b) confocal image of photoresist line patterns. The right-hand-side edge of the lines is strongly imaged.

Fig. 7
Fig. 7

(a) Dark-field image and (b) confocal image of photoresist line patterns. The left-hand-side edge of the lines is strongly imaged.

Equations (7)

Equations on this page are rendered with MathJax. Learn more.

E ( t ) ( P ) = E ( g ) ( P ) + E ( d ) ( P ) ,
E 0 = ( E cos α , E sin α , 0 ) ,
E ( d ) ( P ) = exp ( i k s ) s ( D s E cos α x ^ + D h E sin α y ^ ) ,
D s = exp ( i π / 4 ) 2 ( 2 π k ) 1 / 2 ( csc 1 2 ψ i - csc 1 2 ψ r ) ,
D h = exp ( i π / 4 ) 2 ( 2 π k ) 1 / 2 ( csc 1 2 ψ i - csc 1 2 ψ r ) .
tan β = D s D h tan α ,
D s D h = cos 1 2 ( ψ r - π 2 ) sin 1 2 ( ψ r - π 2 ) .

Metrics