Abstract

Measurements of the directional–hemispherical reflectance ρ with the Physikalisch-Technische Bundesanstalt IR sphere reflectometer have been confirmed by calorimetric determination of the absorptance α in the same geometrical conditions (irradiation at 10°, hemispherical reflection). The good agreement of ρ with (1 − α) on both highly reflecting and low-reflecting surfaces indicates that in the mid-IR spectral range the integrating sphere reflectometer is capable of essentially correct reflectance measurements of diffusely reflecting surfaces, with an estimated uncertainty of 0.01 after correction for a small systematic deviation. This capability opens up the possibility of developing IR reflectance standards.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. R. Willey, “Results of a round-robin measurement of spectral emittance in the mid infrared,” in Passive Infrared Systems and Technology, H. M. Lamberton, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 807, 140–147 (1987).
  2. W. Budde, “Calibration of reflectance standards,” J. Res. Natl. Bur. Stand. Sect. A 80, 585–595 (1976).
  3. W. Erb, “Eine Anordnung zur Messung des spektralen Reflexionsgrades ρ(λ) für die Geometrie 0/d und die erforderlichen Korrekturen,” PTB-Mitt. 87, 283–287 (1977).
  4. “Absolute methods for reflection measurements,” Pub. CIE 44 (TC-2.3) (Bureau Central de la Commission Internationale de l’Eclairage, Paris, 1979).
  5. W. Richter, “Fourier transform reflectance spectrometry between 8000 cm−1 (1.25 m) and 800 cm−1 (12.5 μm) using an integrating sphere,” Appl. Spectrosc. 37, 32–38 (1983).
    [CrossRef]
  6. W. Richter, W. Erb, “Accurate diffuse reflection measurements in the infrared spectral range,” Appl. Opt. 26, 4620–4624 (1987).
    [CrossRef] [PubMed]
  7. R. R. Willey, “Fourier transform infrared spectrometer for transmittance and diffuse reflectance measurements,” Appl. Spectrosc. 30, 593–601 (1976).
    [CrossRef]
  8. K. Gindele, M. Köhl, M. Mast, “Spectral reflectance measurements using an integrating sphere in the infrared,” Appl. Opt. 24, 1757–1760 (1985).
    [CrossRef] [PubMed]
  9. D. Sheffer, U. P. Oppenheim, A. D. Devir, “Absolute reflectometer for the mid-infrared region,” Appl. Opt. 29, 129–132 (1990).
    [CrossRef] [PubMed]
  10. J. B. Gillespie, J. D. Lindberg, “Measuring absolute diffuse reflectance in the ultraviolet,” Appl. Opt. 31, 955–959 (1992).
    [CrossRef] [PubMed]
  11. A. H. Taylor, “A simple portable instrument for the absolute measurement of reflection and transmission factors,” Sci. Pap. Bur. Stand. Washington 17, 1–6 (1922); “Errors in reflectometry,” J. Opt. Soc. Am. 25, 51–56 (1935).

1992 (1)

1990 (1)

1987 (1)

1985 (1)

1983 (1)

1977 (1)

W. Erb, “Eine Anordnung zur Messung des spektralen Reflexionsgrades ρ(λ) für die Geometrie 0/d und die erforderlichen Korrekturen,” PTB-Mitt. 87, 283–287 (1977).

1976 (2)

W. Budde, “Calibration of reflectance standards,” J. Res. Natl. Bur. Stand. Sect. A 80, 585–595 (1976).

R. R. Willey, “Fourier transform infrared spectrometer for transmittance and diffuse reflectance measurements,” Appl. Spectrosc. 30, 593–601 (1976).
[CrossRef]

1922 (1)

A. H. Taylor, “A simple portable instrument for the absolute measurement of reflection and transmission factors,” Sci. Pap. Bur. Stand. Washington 17, 1–6 (1922); “Errors in reflectometry,” J. Opt. Soc. Am. 25, 51–56 (1935).

Budde, W.

W. Budde, “Calibration of reflectance standards,” J. Res. Natl. Bur. Stand. Sect. A 80, 585–595 (1976).

Devir, A. D.

Erb, W.

W. Richter, W. Erb, “Accurate diffuse reflection measurements in the infrared spectral range,” Appl. Opt. 26, 4620–4624 (1987).
[CrossRef] [PubMed]

W. Erb, “Eine Anordnung zur Messung des spektralen Reflexionsgrades ρ(λ) für die Geometrie 0/d und die erforderlichen Korrekturen,” PTB-Mitt. 87, 283–287 (1977).

Gillespie, J. B.

Gindele, K.

Köhl, M.

Lindberg, J. D.

Mast, M.

Oppenheim, U. P.

Richter, W.

Sheffer, D.

Taylor, A. H.

A. H. Taylor, “A simple portable instrument for the absolute measurement of reflection and transmission factors,” Sci. Pap. Bur. Stand. Washington 17, 1–6 (1922); “Errors in reflectometry,” J. Opt. Soc. Am. 25, 51–56 (1935).

Willey, R. R.

R. R. Willey, “Fourier transform infrared spectrometer for transmittance and diffuse reflectance measurements,” Appl. Spectrosc. 30, 593–601 (1976).
[CrossRef]

R. R. Willey, “Results of a round-robin measurement of spectral emittance in the mid infrared,” in Passive Infrared Systems and Technology, H. M. Lamberton, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 807, 140–147 (1987).

Appl. Opt. (4)

Appl. Spectrosc. (2)

J. Res. Natl. Bur. Stand. Sect. A (1)

W. Budde, “Calibration of reflectance standards,” J. Res. Natl. Bur. Stand. Sect. A 80, 585–595 (1976).

PTB-Mitt. (1)

W. Erb, “Eine Anordnung zur Messung des spektralen Reflexionsgrades ρ(λ) für die Geometrie 0/d und die erforderlichen Korrekturen,” PTB-Mitt. 87, 283–287 (1977).

Sci. Pap. Bur. Stand. Washington (1)

A. H. Taylor, “A simple portable instrument for the absolute measurement of reflection and transmission factors,” Sci. Pap. Bur. Stand. Washington 17, 1–6 (1922); “Errors in reflectometry,” J. Opt. Soc. Am. 25, 51–56 (1935).

Other (2)

R. R. Willey, “Results of a round-robin measurement of spectral emittance in the mid infrared,” in Passive Infrared Systems and Technology, H. M. Lamberton, ed., Proc. Soc. Photo-Opt. Instrum. Eng. 807, 140–147 (1987).

“Absolute methods for reflection measurements,” Pub. CIE 44 (TC-2.3) (Bureau Central de la Commission Internationale de l’Eclairage, Paris, 1979).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Integrating sphere arrangement (schematic, top view) for directional–hemispherical reflectance measurements in the IR spectral range, which is installed in the sample compartment of a Fourier spectrometer: 1, modulated IR radiation from the Michelson interferometer, the aperture image is the center of the sphere; 2, sample; 3, plane gold mirror of known reflectance; 4, IR detector, liquid-nitrogen cooled; 5, rotatable rod, computer controlled. The reflectance spectrum of the sample is obtained as the ratio of the spectra measured with the sample and gold mirror in the measurement position, corrected for the mirror reflectance and the radiation loss through the entrance hole. The mirror (and the sample) is inclined by 10° in relation to the optical axis of the incident beam so that the light spot on the sphere wall is above or below the entrance hole. (Details are in Ref. 6.)

Fig. 2
Fig. 2

Radiation calorimeter for absorptance measurements: left, side view; right, axial view. 1, Laser beam; 2, sample; 3, water thermostat; 4, black shields; 5, covers. The sample is fixed on a plate with good thermal contact with the heating elements and a small platinum resistance thermometer. The electrical wiring is led through thin-walled stainless-steel tubings of low thermal conductance that support the sample and holder system and are thermally connected to the water thermostat.

Fig. 3
Fig. 3

Reflectance spectra (directional–hemispherical reflectance ρ10/ d ), solid curves; reflectance values obtained from absorptance measurements at 10.6 μm (CO2 laser), crosses. Upper part, averages of measurements on five sandblasted and gold-coated copper disks; lower part, sandblasted copper disk covered with 3M Velvet Black. The spectral regions disturbed by atmospheric water vapor and carbon dioxide are indicated: σ, wave number; λ, wavelength.

Metrics