Abstract

Recording holographic optical elements in planar waveguides with both interfering beams being guided modes has certain advantages. We show that such holograms can be efficiently recorded when only a small fraction of the guided modes penetrates the recording material that is deposited outside the main guiding region. An integrated optic wavelength-division demultiplexer is analyzed and implemented as a specific example. In this example the holographic grating also acts as a focusing element; thus no additional collimating or focusing lenses are required.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. D. G. Hall, “Optical waveguide diffraction gratings: coupling between guided modes,” Prog. Opt. 29, 3–63 (1991).
  2. R. P. Kenan, “Theory of diffraction of guided optical waves by thick holograms,” J. Appl. Phys. 46, 4545–4551 (1975).
    [CrossRef]
  3. W. J. Tomlinson, “Wavelength multiplexing in multimode optical fibers,” Appl. Opt. 16, 2180–2194 (1977).
    [CrossRef] [PubMed]
  4. W. Lukosz, A. Wurthrich, “Holography with evanescent waves, I. Theory of diffraction efficiency for s-polarized light,” Optik, 41, 191–211 (1974).
  5. W. Lukosz, A. Wurthrich, “Hologram recording and readout with evanescent field of guided waves,” Opt. Commun. 19, 232–235 (1976).
    [CrossRef]
  6. A. Wüthrich, W. Lukosz, “Holography with guided optical waves I,” Appl. Phys. 21, 55–64 (1980).
    [CrossRef]
  7. A. Wüthrich, W. Lukosz, “Holography with guided optical waves II,” Appl. Phys. 22, 161–170 (1980).
    [CrossRef]
  8. S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. LT-4, 913–918 (1986).
    [CrossRef]
  9. P. J. Cronkite, G. N. Lawrence, “Focusing grating coupler design method using holographic optical elements,” Appl. Opt. 27, 679–683 (1988).
    [CrossRef] [PubMed]
  10. H. J. Caulfield, Q. Huang, J. Shamir, “Wide field of view transmission holography,” Opt. Commun. 86, 487–490 (1991).
    [CrossRef]
  11. V. E. Wood, N. F. Hartman, C. M. Verber, R. P. Kenan, “Holographic formation of gratings in optical waveguiding layers,” J. Appl. Phys. 46, 1214–1215 (1975).
    [CrossRef]
  12. C. De Bernardi, S. Morasca, C. Rigo, B. Sordo, A. Stano, “Wavelength demultiplexer integrated on AlGaInAs/InP for 1.5 μm operation,” Electron. Lett. 25, 1488–1489 (1989).
    [CrossRef]
  13. M. Gibbon, G. H. B. Thompson, S. J. Clements, D. J. Moule, C. B. Rogers, C. G. Cureton, “Optical performance of integrated 1.5 μm grating wavelength-demultiplexer on InP-based waveguide,” Electron. Lett. 25, 1441–1442 (1989).
    [CrossRef]
  14. B. Moslehi, P. Harvey, J. Ng, T. Jannson, “Fiber-optic wavelength-division multiplexing and demultiplexing using volume holographic gratings,” Opt. Lett. 14, 1088–1090 (1989).
    [CrossRef] [PubMed]
  15. F. Sogawa, Y. Hori, M. Kato, “Fabrication of aberration-free focusing grating couplers,” Appl. Opt. 29, 5103–5105 (1990).
    [CrossRef] [PubMed]
  16. I. R. Croston, T. P. Young, “Design of an InGaAlAs/InP ‘3mi’ wavelength division demultiplexer employing a novel mode transformer,” Electron. Lett. 26, 336–337 (1990).
    [CrossRef]
  17. S. Ura, M. Morisawa, T. Suhara, H. Nishihara, “Integrated optic wavelength demultiplexer using a coplanar grating lens,” Appl. Opt. 29, 1369–1373 (1990).
    [CrossRef] [PubMed]
  18. J. P. Lin, S. Thaniyavarn, “Four-channel Ti:LiNbO3 WDM for 1.3 μm wavelength operation,” Opt. Lett. 16, 473–475 (1991).
    [CrossRef] [PubMed]
  19. Y. Amitai, I. A. Erteza, J. W. Goodman, “Recursive design of a holographic focusing grating coupler,” Appl. Opt. 30, 3886–3890 (1991).
    [CrossRef] [PubMed]
  20. R. Grange, M. Laget, “Holographic diffraction gratings generated by aberrated wave fronts: application to a high-resolution far-ultraviolet spectrograph,” Appl. Opt. 30, 3598–3603 (1991).
    [CrossRef] [PubMed]
  21. K. Wagatsuma, H. Sakaki, S. Saito, “Mode conversion and optical filtering of obliquely incident waves in corrugated waveguide filters,” IEEE J. Quantum Electron. QE-15, 632–637 (1979).
    [CrossRef]
  22. T. Suhara, Y. Handa, H. Nishihara, J. Koyama, “Monolithic integrated microgratings and photodiodes for wavelength demultiplexing,” Appl. Phys. Lett. 40, 120–122 (1982).
    [CrossRef]
  23. Z. Q. Lin, S. T. Zhou, W. S. C. Chang, S. Forouhar, J. M. Delavaux, “A generalized two-dimensional coupled-mode analysis of curved and chirped periodic structures in open dielectric waveguides,” IEEE Trans. Microwave Theory Tech. MTT-29, 881–890 (1981).
  24. A. Yariv, Optical Electronics, 4th ed. (Saunders, Philadelphia, Pa., 1991).
  25. G. F. Carrier, C. E. Pearson, Partial Differential Equations (Academic, London, 1976), p. 152.
  26. I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, London, 1980), p. 955.
  27. T. Tamir, ed., Integrated Optics, Vol. 7 of Topics in Applied Physics (Springer-Verlag, Berlin, 1979), p. 47.
  28. M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
    [CrossRef]
  29. ISOPOLY K-747 is a negative photoresist manufactured by Kodak and refined and distributed by Micro-Image Technology.

1991 (5)

1990 (3)

1989 (3)

C. De Bernardi, S. Morasca, C. Rigo, B. Sordo, A. Stano, “Wavelength demultiplexer integrated on AlGaInAs/InP for 1.5 μm operation,” Electron. Lett. 25, 1488–1489 (1989).
[CrossRef]

M. Gibbon, G. H. B. Thompson, S. J. Clements, D. J. Moule, C. B. Rogers, C. G. Cureton, “Optical performance of integrated 1.5 μm grating wavelength-demultiplexer on InP-based waveguide,” Electron. Lett. 25, 1441–1442 (1989).
[CrossRef]

B. Moslehi, P. Harvey, J. Ng, T. Jannson, “Fiber-optic wavelength-division multiplexing and demultiplexing using volume holographic gratings,” Opt. Lett. 14, 1088–1090 (1989).
[CrossRef] [PubMed]

1988 (1)

1986 (2)

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. LT-4, 913–918 (1986).
[CrossRef]

1982 (1)

T. Suhara, Y. Handa, H. Nishihara, J. Koyama, “Monolithic integrated microgratings and photodiodes for wavelength demultiplexing,” Appl. Phys. Lett. 40, 120–122 (1982).
[CrossRef]

1981 (1)

Z. Q. Lin, S. T. Zhou, W. S. C. Chang, S. Forouhar, J. M. Delavaux, “A generalized two-dimensional coupled-mode analysis of curved and chirped periodic structures in open dielectric waveguides,” IEEE Trans. Microwave Theory Tech. MTT-29, 881–890 (1981).

1980 (2)

A. Wüthrich, W. Lukosz, “Holography with guided optical waves I,” Appl. Phys. 21, 55–64 (1980).
[CrossRef]

A. Wüthrich, W. Lukosz, “Holography with guided optical waves II,” Appl. Phys. 22, 161–170 (1980).
[CrossRef]

1979 (1)

K. Wagatsuma, H. Sakaki, S. Saito, “Mode conversion and optical filtering of obliquely incident waves in corrugated waveguide filters,” IEEE J. Quantum Electron. QE-15, 632–637 (1979).
[CrossRef]

1977 (1)

1976 (1)

W. Lukosz, A. Wurthrich, “Hologram recording and readout with evanescent field of guided waves,” Opt. Commun. 19, 232–235 (1976).
[CrossRef]

1975 (2)

R. P. Kenan, “Theory of diffraction of guided optical waves by thick holograms,” J. Appl. Phys. 46, 4545–4551 (1975).
[CrossRef]

V. E. Wood, N. F. Hartman, C. M. Verber, R. P. Kenan, “Holographic formation of gratings in optical waveguiding layers,” J. Appl. Phys. 46, 1214–1215 (1975).
[CrossRef]

1974 (1)

W. Lukosz, A. Wurthrich, “Holography with evanescent waves, I. Theory of diffraction efficiency for s-polarized light,” Optik, 41, 191–211 (1974).

Amitai, Y.

Carrier, G. F.

G. F. Carrier, C. E. Pearson, Partial Differential Equations (Academic, London, 1976), p. 152.

Caulfield, H. J.

H. J. Caulfield, Q. Huang, J. Shamir, “Wide field of view transmission holography,” Opt. Commun. 86, 487–490 (1991).
[CrossRef]

Chang, W. S. C.

Z. Q. Lin, S. T. Zhou, W. S. C. Chang, S. Forouhar, J. M. Delavaux, “A generalized two-dimensional coupled-mode analysis of curved and chirped periodic structures in open dielectric waveguides,” IEEE Trans. Microwave Theory Tech. MTT-29, 881–890 (1981).

Clements, S. J.

M. Gibbon, G. H. B. Thompson, S. J. Clements, D. J. Moule, C. B. Rogers, C. G. Cureton, “Optical performance of integrated 1.5 μm grating wavelength-demultiplexer on InP-based waveguide,” Electron. Lett. 25, 1441–1442 (1989).
[CrossRef]

Cronkite, P. J.

Croston, I. R.

I. R. Croston, T. P. Young, “Design of an InGaAlAs/InP ‘3mi’ wavelength division demultiplexer employing a novel mode transformer,” Electron. Lett. 26, 336–337 (1990).
[CrossRef]

Cureton, C. G.

M. Gibbon, G. H. B. Thompson, S. J. Clements, D. J. Moule, C. B. Rogers, C. G. Cureton, “Optical performance of integrated 1.5 μm grating wavelength-demultiplexer on InP-based waveguide,” Electron. Lett. 25, 1441–1442 (1989).
[CrossRef]

De Bernardi, C.

C. De Bernardi, S. Morasca, C. Rigo, B. Sordo, A. Stano, “Wavelength demultiplexer integrated on AlGaInAs/InP for 1.5 μm operation,” Electron. Lett. 25, 1488–1489 (1989).
[CrossRef]

Delavaux, J. M.

Z. Q. Lin, S. T. Zhou, W. S. C. Chang, S. Forouhar, J. M. Delavaux, “A generalized two-dimensional coupled-mode analysis of curved and chirped periodic structures in open dielectric waveguides,” IEEE Trans. Microwave Theory Tech. MTT-29, 881–890 (1981).

Duguay, M. A.

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Erteza, I. A.

Forouhar, S.

Z. Q. Lin, S. T. Zhou, W. S. C. Chang, S. Forouhar, J. M. Delavaux, “A generalized two-dimensional coupled-mode analysis of curved and chirped periodic structures in open dielectric waveguides,” IEEE Trans. Microwave Theory Tech. MTT-29, 881–890 (1981).

Gibbon, M.

M. Gibbon, G. H. B. Thompson, S. J. Clements, D. J. Moule, C. B. Rogers, C. G. Cureton, “Optical performance of integrated 1.5 μm grating wavelength-demultiplexer on InP-based waveguide,” Electron. Lett. 25, 1441–1442 (1989).
[CrossRef]

Goodman, J. W.

Gradshteyn, I. S.

I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, London, 1980), p. 955.

Grange, R.

Hall, D. G.

D. G. Hall, “Optical waveguide diffraction gratings: coupling between guided modes,” Prog. Opt. 29, 3–63 (1991).

Handa, Y.

T. Suhara, Y. Handa, H. Nishihara, J. Koyama, “Monolithic integrated microgratings and photodiodes for wavelength demultiplexing,” Appl. Phys. Lett. 40, 120–122 (1982).
[CrossRef]

Hartman, N. F.

V. E. Wood, N. F. Hartman, C. M. Verber, R. P. Kenan, “Holographic formation of gratings in optical waveguiding layers,” J. Appl. Phys. 46, 1214–1215 (1975).
[CrossRef]

Harvey, P.

Hori, Y.

Huang, Q.

H. J. Caulfield, Q. Huang, J. Shamir, “Wide field of view transmission holography,” Opt. Commun. 86, 487–490 (1991).
[CrossRef]

Jannson, T.

Kato, M.

Kenan, R. P.

R. P. Kenan, “Theory of diffraction of guided optical waves by thick holograms,” J. Appl. Phys. 46, 4545–4551 (1975).
[CrossRef]

V. E. Wood, N. F. Hartman, C. M. Verber, R. P. Kenan, “Holographic formation of gratings in optical waveguiding layers,” J. Appl. Phys. 46, 1214–1215 (1975).
[CrossRef]

Koch, T. L.

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Kokubun, Y.

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Koyama, J.

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. LT-4, 913–918 (1986).
[CrossRef]

T. Suhara, Y. Handa, H. Nishihara, J. Koyama, “Monolithic integrated microgratings and photodiodes for wavelength demultiplexing,” Appl. Phys. Lett. 40, 120–122 (1982).
[CrossRef]

Laget, M.

Lawrence, G. N.

Lin, J. P.

Lin, Z. Q.

Z. Q. Lin, S. T. Zhou, W. S. C. Chang, S. Forouhar, J. M. Delavaux, “A generalized two-dimensional coupled-mode analysis of curved and chirped periodic structures in open dielectric waveguides,” IEEE Trans. Microwave Theory Tech. MTT-29, 881–890 (1981).

Lukosz, W.

A. Wüthrich, W. Lukosz, “Holography with guided optical waves I,” Appl. Phys. 21, 55–64 (1980).
[CrossRef]

A. Wüthrich, W. Lukosz, “Holography with guided optical waves II,” Appl. Phys. 22, 161–170 (1980).
[CrossRef]

W. Lukosz, A. Wurthrich, “Hologram recording and readout with evanescent field of guided waves,” Opt. Commun. 19, 232–235 (1976).
[CrossRef]

W. Lukosz, A. Wurthrich, “Holography with evanescent waves, I. Theory of diffraction efficiency for s-polarized light,” Optik, 41, 191–211 (1974).

Morasca, S.

C. De Bernardi, S. Morasca, C. Rigo, B. Sordo, A. Stano, “Wavelength demultiplexer integrated on AlGaInAs/InP for 1.5 μm operation,” Electron. Lett. 25, 1488–1489 (1989).
[CrossRef]

Morisawa, M.

Moslehi, B.

Moule, D. J.

M. Gibbon, G. H. B. Thompson, S. J. Clements, D. J. Moule, C. B. Rogers, C. G. Cureton, “Optical performance of integrated 1.5 μm grating wavelength-demultiplexer on InP-based waveguide,” Electron. Lett. 25, 1441–1442 (1989).
[CrossRef]

Ng, J.

Nishihara, H.

S. Ura, M. Morisawa, T. Suhara, H. Nishihara, “Integrated optic wavelength demultiplexer using a coplanar grating lens,” Appl. Opt. 29, 1369–1373 (1990).
[CrossRef] [PubMed]

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. LT-4, 913–918 (1986).
[CrossRef]

T. Suhara, Y. Handa, H. Nishihara, J. Koyama, “Monolithic integrated microgratings and photodiodes for wavelength demultiplexing,” Appl. Phys. Lett. 40, 120–122 (1982).
[CrossRef]

Pearson, C. E.

G. F. Carrier, C. E. Pearson, Partial Differential Equations (Academic, London, 1976), p. 152.

Pfeiffer, L.

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

Rigo, C.

C. De Bernardi, S. Morasca, C. Rigo, B. Sordo, A. Stano, “Wavelength demultiplexer integrated on AlGaInAs/InP for 1.5 μm operation,” Electron. Lett. 25, 1488–1489 (1989).
[CrossRef]

Rogers, C. B.

M. Gibbon, G. H. B. Thompson, S. J. Clements, D. J. Moule, C. B. Rogers, C. G. Cureton, “Optical performance of integrated 1.5 μm grating wavelength-demultiplexer on InP-based waveguide,” Electron. Lett. 25, 1441–1442 (1989).
[CrossRef]

Ryzhik, I. M.

I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, London, 1980), p. 955.

Saito, S.

K. Wagatsuma, H. Sakaki, S. Saito, “Mode conversion and optical filtering of obliquely incident waves in corrugated waveguide filters,” IEEE J. Quantum Electron. QE-15, 632–637 (1979).
[CrossRef]

Sakaki, H.

K. Wagatsuma, H. Sakaki, S. Saito, “Mode conversion and optical filtering of obliquely incident waves in corrugated waveguide filters,” IEEE J. Quantum Electron. QE-15, 632–637 (1979).
[CrossRef]

Shamir, J.

H. J. Caulfield, Q. Huang, J. Shamir, “Wide field of view transmission holography,” Opt. Commun. 86, 487–490 (1991).
[CrossRef]

Sogawa, F.

Sordo, B.

C. De Bernardi, S. Morasca, C. Rigo, B. Sordo, A. Stano, “Wavelength demultiplexer integrated on AlGaInAs/InP for 1.5 μm operation,” Electron. Lett. 25, 1488–1489 (1989).
[CrossRef]

Stano, A.

C. De Bernardi, S. Morasca, C. Rigo, B. Sordo, A. Stano, “Wavelength demultiplexer integrated on AlGaInAs/InP for 1.5 μm operation,” Electron. Lett. 25, 1488–1489 (1989).
[CrossRef]

Suhara, T.

S. Ura, M. Morisawa, T. Suhara, H. Nishihara, “Integrated optic wavelength demultiplexer using a coplanar grating lens,” Appl. Opt. 29, 1369–1373 (1990).
[CrossRef] [PubMed]

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. LT-4, 913–918 (1986).
[CrossRef]

T. Suhara, Y. Handa, H. Nishihara, J. Koyama, “Monolithic integrated microgratings and photodiodes for wavelength demultiplexing,” Appl. Phys. Lett. 40, 120–122 (1982).
[CrossRef]

Thaniyavarn, S.

Thompson, G. H. B.

M. Gibbon, G. H. B. Thompson, S. J. Clements, D. J. Moule, C. B. Rogers, C. G. Cureton, “Optical performance of integrated 1.5 μm grating wavelength-demultiplexer on InP-based waveguide,” Electron. Lett. 25, 1441–1442 (1989).
[CrossRef]

Tomlinson, W. J.

Ura, S.

S. Ura, M. Morisawa, T. Suhara, H. Nishihara, “Integrated optic wavelength demultiplexer using a coplanar grating lens,” Appl. Opt. 29, 1369–1373 (1990).
[CrossRef] [PubMed]

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. LT-4, 913–918 (1986).
[CrossRef]

Verber, C. M.

V. E. Wood, N. F. Hartman, C. M. Verber, R. P. Kenan, “Holographic formation of gratings in optical waveguiding layers,” J. Appl. Phys. 46, 1214–1215 (1975).
[CrossRef]

Wagatsuma, K.

K. Wagatsuma, H. Sakaki, S. Saito, “Mode conversion and optical filtering of obliquely incident waves in corrugated waveguide filters,” IEEE J. Quantum Electron. QE-15, 632–637 (1979).
[CrossRef]

Wood, V. E.

V. E. Wood, N. F. Hartman, C. M. Verber, R. P. Kenan, “Holographic formation of gratings in optical waveguiding layers,” J. Appl. Phys. 46, 1214–1215 (1975).
[CrossRef]

Wurthrich, A.

W. Lukosz, A. Wurthrich, “Hologram recording and readout with evanescent field of guided waves,” Opt. Commun. 19, 232–235 (1976).
[CrossRef]

W. Lukosz, A. Wurthrich, “Holography with evanescent waves, I. Theory of diffraction efficiency for s-polarized light,” Optik, 41, 191–211 (1974).

Wüthrich, A.

A. Wüthrich, W. Lukosz, “Holography with guided optical waves I,” Appl. Phys. 21, 55–64 (1980).
[CrossRef]

A. Wüthrich, W. Lukosz, “Holography with guided optical waves II,” Appl. Phys. 22, 161–170 (1980).
[CrossRef]

Yariv, A.

A. Yariv, Optical Electronics, 4th ed. (Saunders, Philadelphia, Pa., 1991).

Young, T. P.

I. R. Croston, T. P. Young, “Design of an InGaAlAs/InP ‘3mi’ wavelength division demultiplexer employing a novel mode transformer,” Electron. Lett. 26, 336–337 (1990).
[CrossRef]

Zhou, S. T.

Z. Q. Lin, S. T. Zhou, W. S. C. Chang, S. Forouhar, J. M. Delavaux, “A generalized two-dimensional coupled-mode analysis of curved and chirped periodic structures in open dielectric waveguides,” IEEE Trans. Microwave Theory Tech. MTT-29, 881–890 (1981).

Appl. Opt. (6)

Appl. Phys. (2)

A. Wüthrich, W. Lukosz, “Holography with guided optical waves I,” Appl. Phys. 21, 55–64 (1980).
[CrossRef]

A. Wüthrich, W. Lukosz, “Holography with guided optical waves II,” Appl. Phys. 22, 161–170 (1980).
[CrossRef]

Appl. Phys. Lett. (2)

M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49, 13–15 (1986).
[CrossRef]

T. Suhara, Y. Handa, H. Nishihara, J. Koyama, “Monolithic integrated microgratings and photodiodes for wavelength demultiplexing,” Appl. Phys. Lett. 40, 120–122 (1982).
[CrossRef]

Electron. Lett. (3)

I. R. Croston, T. P. Young, “Design of an InGaAlAs/InP ‘3mi’ wavelength division demultiplexer employing a novel mode transformer,” Electron. Lett. 26, 336–337 (1990).
[CrossRef]

C. De Bernardi, S. Morasca, C. Rigo, B. Sordo, A. Stano, “Wavelength demultiplexer integrated on AlGaInAs/InP for 1.5 μm operation,” Electron. Lett. 25, 1488–1489 (1989).
[CrossRef]

M. Gibbon, G. H. B. Thompson, S. J. Clements, D. J. Moule, C. B. Rogers, C. G. Cureton, “Optical performance of integrated 1.5 μm grating wavelength-demultiplexer on InP-based waveguide,” Electron. Lett. 25, 1441–1442 (1989).
[CrossRef]

IEEE J. Quantum Electron. (1)

K. Wagatsuma, H. Sakaki, S. Saito, “Mode conversion and optical filtering of obliquely incident waves in corrugated waveguide filters,” IEEE J. Quantum Electron. QE-15, 632–637 (1979).
[CrossRef]

IEEE Trans. Microwave Theory Tech. (1)

Z. Q. Lin, S. T. Zhou, W. S. C. Chang, S. Forouhar, J. M. Delavaux, “A generalized two-dimensional coupled-mode analysis of curved and chirped periodic structures in open dielectric waveguides,” IEEE Trans. Microwave Theory Tech. MTT-29, 881–890 (1981).

J. Appl. Phys. (2)

V. E. Wood, N. F. Hartman, C. M. Verber, R. P. Kenan, “Holographic formation of gratings in optical waveguiding layers,” J. Appl. Phys. 46, 1214–1215 (1975).
[CrossRef]

R. P. Kenan, “Theory of diffraction of guided optical waves by thick holograms,” J. Appl. Phys. 46, 4545–4551 (1975).
[CrossRef]

J. Lightwave Technol. (1)

S. Ura, T. Suhara, H. Nishihara, J. Koyama, “An integrated-optic disk pickup device,” J. Lightwave Technol. LT-4, 913–918 (1986).
[CrossRef]

Opt. Commun. (2)

H. J. Caulfield, Q. Huang, J. Shamir, “Wide field of view transmission holography,” Opt. Commun. 86, 487–490 (1991).
[CrossRef]

W. Lukosz, A. Wurthrich, “Hologram recording and readout with evanescent field of guided waves,” Opt. Commun. 19, 232–235 (1976).
[CrossRef]

Opt. Lett. (2)

Optik (1)

W. Lukosz, A. Wurthrich, “Holography with evanescent waves, I. Theory of diffraction efficiency for s-polarized light,” Optik, 41, 191–211 (1974).

Prog. Opt. (1)

D. G. Hall, “Optical waveguide diffraction gratings: coupling between guided modes,” Prog. Opt. 29, 3–63 (1991).

Other (5)

A. Yariv, Optical Electronics, 4th ed. (Saunders, Philadelphia, Pa., 1991).

G. F. Carrier, C. E. Pearson, Partial Differential Equations (Academic, London, 1976), p. 152.

I. S. Gradshteyn, I. M. Ryzhik, Table of Integrals, Series, and Products (Academic, London, 1980), p. 955.

T. Tamir, ed., Integrated Optics, Vol. 7 of Topics in Applied Physics (Springer-Verlag, Berlin, 1979), p. 47.

ISOPOLY K-747 is a negative photoresist manufactured by Kodak and refined and distributed by Micro-Image Technology.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Configuration view of the GMH.

Fig. 2
Fig. 2

WDM configuration.

Fig. 3
Fig. 3

Incident and diffracted power along the GMH region in arbitrary units. Note that the diffracted wave is reflected.

Fig. 4
Fig. 4

Diffraction efficiency η versus the waveguide thickness for the three lowest-mode orders. The mode is the same for both waves: n w = 1.6 μm, n s , = 1.55 μm, λ = 0.488 μm.

Fig. 5
Fig. 5

Normalized η as calculated for the wavelength changing around λ0 chosen for constructing the hologram.

Fig. 6
Fig. 6

Structure of the waveguide coated by the photoresist (top layer) used in the experiments. Numbers on the x axis indicate micrometers.

Fig. 7
Fig. 7

Intensity distribution in the coated waveguide structure for (a) the fundamental mode, (b) the second mode. The plots were calculated for an identical integrated power in each mode.

Fig. 8
Fig. 8

Photograph of a cylindrical wave used as an object for recording a WDM as it appears on the face of the waveguide.

Fig. 9
Fig. 9

Reconstructed wave by illumination of the WDM with a guided reference wave. The actual similarity to the original wave of Fig. 8 is better than it appears. The difference is mainly in the intensity and the corresponding exposure of the photograph.

Equations (22)

Equations on this page are rendered with MathJax. Learn more.

E i ( ρ , x ) = u i ( ρ i ) exp ( i k ρ i ρ i ) exp ( - k x i x ) exp ( - ½ α ρ i ) ,
ρ i = ρ - ρ i 0
I ( ρ , x ) = E 1 + E 2 2 = u 1 2 ( ρ 1 ) exp ( - 2 k x 1 x ) exp ( - α ρ 1 ) + u 2 2 ( ρ 2 ) exp ( - 2 k x 2 x ) exp ( - α ρ 2 ) + 2 R { u 1 ( ρ 1 ) u 2 ( ρ 2 ) exp [ i ( k ρ 1 ρ 1 - k ρ 2 ρ 2 ) ] } × exp [ - x ( k x 1 + k x 2 ) ] exp [ - ½ α ( ρ 1 + ρ 2 ) ] .
k ρ 1 ρ 1 - k ρ 2 ρ 2 = const .
ϕ 2 = ϕ 1 - k 0 d n e ,
E ( ρ , x ) = E r ( ρ , x ) + E d ( ρ , x ) .
[ 2 ρ 2 + 2 x 2 + ( k 0 r ) 2 n e 2 ( ρ , x ) ] E ( ρ , x ) = 0 ,
n e 2 ( ρ , x ) = n w 2 + δ n 2 ( ρ , x ) .
δ n 2 ( ρ , x ) u 1 ( ρ 1 ) u 2 ( ρ 2 ) cos [ ( k p 1 ρ 1 - k p 2 ρ 2 ) ] × exp [ - x ( k x 1 + k x 2 ) ] × exp [ - ½ α ( ρ 1 + ρ 2 ) ] .
[ 2 ρ 2 + 2 x 2 + ( k r ) 2 ] E d ( ρ , x ) = - ( k 0 r ) 2 δ n 2 E r .
Δ g + ( k r ) 2 g = δ ( ρ - ξ 1 ) δ ( x - ξ 2 ) ,
g Δ E d - E d Δ g = f g - E d δ ( ρ - ξ 1 ) δ ( x - ξ 2 ) .
E d ( ρ , x ) = R f g d A .
E d ( ρ , x ) = - i 4 ( k 0 r ) 2 0 ρ 0 0 x 0 δ n 2 E r ( ρ , x ) × H 0 ( 2 ) [ k r ( ρ - ρ , x - x ) ] d ρ d x ,
κ = ( k r ) 4 ( k x r , W ) 2 ( k x d , R + k x 2 , R + k x r , R + k x 1 , R ) - 2 16 k ρ r k x d , R k x r , R + k x r , W 2 h eff .
E r ( ρ , x ) = u r ( ρ ) exp ( i k ρ r ρ ) exp ( - k x r x ) × exp { κ α [ exp ( - α ρ ) - 1 ] } .
E r ( ρ , x ) = u r ( ρ ) exp ( i k ρ r ρ ) exp ( - k x r x ) exp ( - κ ρ / 2 ) .
E d ( ρ , x ) = ( k 0 r ) 2 4 π 0 ρ 0 u 1 ( ρ ) u 2 ( ρ ) u r ( ρ ) cos [ ( k ρ 1 - k ρ 2 ) ρ ] × exp ( - α ρ ) exp [ ( - κ 2 + i k ρ r ) ρ ] × 0 x 0 exp [ - x ( k x 1 + k x 2 + k x r ) - ( x - x ) k x d ] d x × - exp [ i k ρ d ( ρ - ρ ) ] d k p d d ρ .
E d ( ρ , x ) = K exp ( i k ρ d ρ ) exp ( - x k x d ) 0 u 1 ( ρ ) u 2 ( ρ ) × u r ( ρ ) cos ( b ρ ) exp ( i a ρ ) d ρ ,
K ( k 0 r ) 2 4 π exp ( - β x 0 ) - 1 β , β k x 1 + k x 2 + k x r + k x d , α k ρ r - k ρ d + i ( α + κ / 2 ) , b k ρ 1 - k ρ 2 .
E d ( ρ , x ) = u 1 2 ( ρ ) u 2 ( ρ ) ( k 0 1 ) 2 4 π { exp ( ζ ρ ) [ ζ cos ( b ρ ) + b sin ( b ρ ) ] } [ 1 - exp ( - 2 k x 2 x 0 ) ] 2 k ρ 2 k x 2 ( b 2 + ζ 2 ) exp ( - i k ρ 2 ρ ) exp ( - k x 2 x ) ,
η = [ P d ( L ) ] / [ P r ( L ) ] .

Metrics