Abstract

The aim of this paper is to review almost a decade of direct-bonding activities at Philips Research including the diversity and feasibility of direct bonding. The bondability of a material is determined by its geometrical shape and mechanical, physical, and chemical surface states. Physically direct bonding provides a vacuumtight bond, which is jointless and glueless, and it permits engineering of the interfaces to be bonded. Layers can be buried, and reflective–lossless bonds between optical elements can be created. A variety of materials are investigated: (refractory) metals, a semimetal, boron, diamond, a carbide, fluorides, nitrides, oxides, and a chalcogenide. The applications that we describe relate to interface engineering, waveguiding, and the direct bonding of a fiber plate.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. U. Gösele, T. Abe, J. Haisma, M. A. Schmidt, eds., Proceedings of the First International Symposium on Semiconductor Wafer Bonding: Science, Technology and Applications (Electrochemical Society, Pennington, N.J., 1992).
  2. H. C. Hamaker, “The London–van der Waals attraction between spherical particles,” Physica 4, 1058–1071 (1937).
    [CrossRef]
  3. M. J. Sparnaay, “Four notes on van der Waals forces,” J. Colloid Interface Sci. 91, 307–319 (1983).
    [CrossRef]
  4. E. M. Lifshitz, “The theory of molecular attractive forces between solids,” Sov. Phys. JETP 2, 73–83 (1956).
  5. J. Haisma, G. A. C. M. Spierings, U. K. P. Biermann, J. A. Pals, “Silicon-on-insulator wafer bonding–wafer thining; technological evaluations,” Jpn. J. Appl. Phys. 28, 1426–1443 (1989).
    [CrossRef]
  6. H. G. van Bueren, J. Haisma, H. de Lang, “A small and stable continuous gas laser,” Phys. Lett. 2, 340–341 (1962).
    [CrossRef]
  7. J. Haisma, C. L. Adema, J. M. M. Pasmans, J. H. Walters, “Tunable Fabry–Perot interferometer and x-ray display having such an interferometer,” U.S. patent4,547,801 (15October1985).
  8. J. Haisma, C. L. Adema, C. L. Alting, R. Brehm, “Methods of bonding two parts together,” U.S. patent4,810,318 (7March1989).
  9. J. A. G. Slatter, H. E. Brockman, J. Haisma, “Method of manufacturing a semiconductor device including a static induction transistor,” U.S. patent5,089,431 (18February1992).
  10. M. Shimbo, K. Fukuda, Y. Ohwada, “Method of manufacturing semiconductor substrate,” European patent application0,161,740 (13February1985).
  11. L. Cristel, K. Petersen, P. Barth, F. Pourahmadi, J. Mallon, J. Bryzek, “Single-crystal silicon pressure sensors with 500× overpressure protection,” Sensors Actuators A21–A23, 84–88 (1990).
    [CrossRef]
  12. For a state of the art see Digest of Technical Papers, Transducers ’91: 1991 International Conference on Solid-State Sensors and Actuators (Institute of Electrical and Electronics Engineers, New York, 1991), pp. 177–180, 452–455, 672–675, 832–835, 931–934.
  13. H.-J. Quenzer, W. Benecke, “Low temperature silicon wafer bonding for micromechanical applications,” in Ref. 1, pp. 92–101.
  14. R. W. Bower, M. S. Ismael, S. N. Farrens, “Aligned wafer bonding: a key to three dimensional microstructures,” J. Electrochem. Mater. 20, 383–387 (1991).
    [CrossRef]
  15. W. P. Maszara, “Semiconductor wafer bonding,” in Ref. 1, pp. 3–17.
  16. J. Haisma, T. M. Michielsen, J. A. Pals, “Method of manufacturing semiconductor devices,” U.S. patent4,983,251 (8January1991).
  17. M. Horiuchi, S. Aoki, “A mechanism of silicon wafer bonding,” in Ref. 1, pp. 48–62.
  18. C. Harendt, C. E. Hunt, W. Appel, H.-G. Graf, B. Höfflinger, E. Penteker, “Silicon on insulator material by wafer bonding,” J. Electron. Mater. 20, 267–277 (1991).
    [CrossRef]
  19. L. M. Sheppard, “Advances of processing of ferroelectric thin films,” Am. Ceram. Soc. Bull. 71, 85–95 (1992).
  20. Y. S. Kim, R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637–4641 (1969).
    [CrossRef]
  21. P. A. M. v. d. Heide, M. J. Baan-Hofman, H. J. Ronde, “Etching of thin SiO2 layers using wet HF gas,” J. Vac. Sci. Technol. A 7, 1719–1723 (1989).
    [CrossRef]
  22. E. V. Golikova, V. I. Kuchuk, L. L. Molchanova, Yu. M. Chernoberezhskii, “Electrophoretic behavior of dispersions of natural diamond and their stability against aggregation,” Colloid J. (USSR) 45, 771–775 (1983).
  23. Yu. M. Chernoberezhskii, O. V. Klochkova, V. I. Kuchuk, E. V. Golikova, “Electrophoretic behaviour of an aqueous dispersion of natural diamond in AlCl3 solutions,” Colloid J. (USSR) 48, 516–519 (1986).
  24. J. Haisma, F. J. H. M. van der Kruis, G. A. C. M. Spierings, J. M. Oomen, A. M. J. G. Fey, “Damage-free tribochemical polishing of diamond at room temperature: a finishing technology,” Precis. Eng. 14, 20–27 (1992).
    [CrossRef]
  25. J. M. M. Pasmans, J. Haisma, “An environmental-nonpolluting antireflective coating for ZnSe optics at CO2-laser wavelengths,” Philips J. Res. 41, 385–390 (1986).
  26. J. Haisma, G. A. C. M. Spierings, J. G. van Lierop, H. F. van den Berg, “Method of bonding together two bodies with silicon oxide and practically pure boron,” U.S. patent5,054,683 (8October1991).
  27. J. Israelachvili, P. McGuiggan, R. Horn, “Basic physics of interactions between surfaces in dry, humid and aqueous environments,” in Ref. 1, pp. 33–47.
  28. O. Engström, S. Bengtsson, “Electrical characterization of bonding interfaces,” in Ref. 1, pp. 295–310.
  29. C. Parkes, E. Murray, H. S. Gamble, B. M. Armstrong, S. T. N. Mitchell, G. A. Armstrong, “Characterization of electronic devices employing silicon bonding technology,” in Ref. 1, pp. 321–330.
  30. F. A. Stevie, E. P. Martin, P. M. Kahora, J. T. Cargo, A. K. Nanda, A. S. Harrus, A. J. Muller, H. W. Krautter, “Boron contamination of surfaces in silicon microelectronics processing: characterization and causes,” J. Vac. Sci. Technol. A 9, 2813–2816 (1991).
    [CrossRef]
  31. T. Abe, K. Ohki, M. Pawlik, J. M. Heddleson, R. T. Hilard, P. Rai-Choudury, “Silicon wafer bonding process characterization by the spreading resistance and point contact I–V techniques,” in Ref. 1, pp. 311–320.
  32. F. P. Widdershoven, J. Haisma, J. P. M. Naus, “Boron contamination and antimony segregation at the interface of directly bonded wafers,” J. Appl. Phys. 68, 6253–6258 (1990).
    [CrossRef]
  33. M. A. Huff, A. D. Nikolich, M. A. Schmidt, “Fabrication issues in the design of sealed cavity microstructures using silicon wafer bonding,” in Ref. 1, pp. 239–248.
  34. G. Cha, W.-S. Yang, D. Feijóo, W. J. Taylor, R. Stengle, U. Gösele, “Silicon wafers with cavities bonded in different atmospheres,” in Ref. 1, pp. 249–259.
  35. J. Haisma, C. L. Alting, T. M. Michielsen, “Laser welding of wringed surfaces,” U.S. patent5,009,689 (23April1991).
  36. M. L. Geyselaers, J. Haisma, F. P. Widdershoven, T. M. Michielsen, A. H. Reader, “Defect structures in laser-fused Si–SiO2 wafers,” Appl. Phys. Lett. 54, 1311–1313 (1989).
    [CrossRef]
  37. U. K. P. Biermann, G. A. C. M. Spierings, F. J. H. M. van der Kruis, J. Haisma, “Method of manufacturing a light-conducting device,” U.S. patent4,994,139 (19February1991).
  38. H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1987).
  39. A. Katzir, ed., Optical Fibers in Medicine, Proc. Soc. Photo-Opt. Instrum. Eng. 1067 (1989).
  40. K. J. Budde, W. J. Holtzapfel, “Detection of volatile organic surface contaminations arising from wafer boxes and cleaning processes,” in Ref. 1, pp. 271–286.
  41. T. Abe, T. Takei, A. Uchiyama, K. Yoshizawa, Y. Nakazato, “Silicon wafer bonding mechanism for silicon-on-insulator,” Jpn. J. Appl. Phys. 29, L2311–L2314 (1990).
    [CrossRef]
  42. G. G. Goetz, “Generalized reaction bonding,” in Ref. 1, pp. 65–72.

1992

L. M. Sheppard, “Advances of processing of ferroelectric thin films,” Am. Ceram. Soc. Bull. 71, 85–95 (1992).

J. Haisma, F. J. H. M. van der Kruis, G. A. C. M. Spierings, J. M. Oomen, A. M. J. G. Fey, “Damage-free tribochemical polishing of diamond at room temperature: a finishing technology,” Precis. Eng. 14, 20–27 (1992).
[CrossRef]

1991

F. A. Stevie, E. P. Martin, P. M. Kahora, J. T. Cargo, A. K. Nanda, A. S. Harrus, A. J. Muller, H. W. Krautter, “Boron contamination of surfaces in silicon microelectronics processing: characterization and causes,” J. Vac. Sci. Technol. A 9, 2813–2816 (1991).
[CrossRef]

R. W. Bower, M. S. Ismael, S. N. Farrens, “Aligned wafer bonding: a key to three dimensional microstructures,” J. Electrochem. Mater. 20, 383–387 (1991).
[CrossRef]

C. Harendt, C. E. Hunt, W. Appel, H.-G. Graf, B. Höfflinger, E. Penteker, “Silicon on insulator material by wafer bonding,” J. Electron. Mater. 20, 267–277 (1991).
[CrossRef]

1990

L. Cristel, K. Petersen, P. Barth, F. Pourahmadi, J. Mallon, J. Bryzek, “Single-crystal silicon pressure sensors with 500× overpressure protection,” Sensors Actuators A21–A23, 84–88 (1990).
[CrossRef]

F. P. Widdershoven, J. Haisma, J. P. M. Naus, “Boron contamination and antimony segregation at the interface of directly bonded wafers,” J. Appl. Phys. 68, 6253–6258 (1990).
[CrossRef]

T. Abe, T. Takei, A. Uchiyama, K. Yoshizawa, Y. Nakazato, “Silicon wafer bonding mechanism for silicon-on-insulator,” Jpn. J. Appl. Phys. 29, L2311–L2314 (1990).
[CrossRef]

1989

M. L. Geyselaers, J. Haisma, F. P. Widdershoven, T. M. Michielsen, A. H. Reader, “Defect structures in laser-fused Si–SiO2 wafers,” Appl. Phys. Lett. 54, 1311–1313 (1989).
[CrossRef]

P. A. M. v. d. Heide, M. J. Baan-Hofman, H. J. Ronde, “Etching of thin SiO2 layers using wet HF gas,” J. Vac. Sci. Technol. A 7, 1719–1723 (1989).
[CrossRef]

J. Haisma, G. A. C. M. Spierings, U. K. P. Biermann, J. A. Pals, “Silicon-on-insulator wafer bonding–wafer thining; technological evaluations,” Jpn. J. Appl. Phys. 28, 1426–1443 (1989).
[CrossRef]

1986

J. M. M. Pasmans, J. Haisma, “An environmental-nonpolluting antireflective coating for ZnSe optics at CO2-laser wavelengths,” Philips J. Res. 41, 385–390 (1986).

Yu. M. Chernoberezhskii, O. V. Klochkova, V. I. Kuchuk, E. V. Golikova, “Electrophoretic behaviour of an aqueous dispersion of natural diamond in AlCl3 solutions,” Colloid J. (USSR) 48, 516–519 (1986).

1983

E. V. Golikova, V. I. Kuchuk, L. L. Molchanova, Yu. M. Chernoberezhskii, “Electrophoretic behavior of dispersions of natural diamond and their stability against aggregation,” Colloid J. (USSR) 45, 771–775 (1983).

M. J. Sparnaay, “Four notes on van der Waals forces,” J. Colloid Interface Sci. 91, 307–319 (1983).
[CrossRef]

1969

Y. S. Kim, R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637–4641 (1969).
[CrossRef]

1962

H. G. van Bueren, J. Haisma, H. de Lang, “A small and stable continuous gas laser,” Phys. Lett. 2, 340–341 (1962).
[CrossRef]

1956

E. M. Lifshitz, “The theory of molecular attractive forces between solids,” Sov. Phys. JETP 2, 73–83 (1956).

1937

H. C. Hamaker, “The London–van der Waals attraction between spherical particles,” Physica 4, 1058–1071 (1937).
[CrossRef]

Abe, T.

T. Abe, T. Takei, A. Uchiyama, K. Yoshizawa, Y. Nakazato, “Silicon wafer bonding mechanism for silicon-on-insulator,” Jpn. J. Appl. Phys. 29, L2311–L2314 (1990).
[CrossRef]

T. Abe, K. Ohki, M. Pawlik, J. M. Heddleson, R. T. Hilard, P. Rai-Choudury, “Silicon wafer bonding process characterization by the spreading resistance and point contact I–V techniques,” in Ref. 1, pp. 311–320.

Adema, C. L.

J. Haisma, C. L. Adema, J. M. M. Pasmans, J. H. Walters, “Tunable Fabry–Perot interferometer and x-ray display having such an interferometer,” U.S. patent4,547,801 (15October1985).

J. Haisma, C. L. Adema, C. L. Alting, R. Brehm, “Methods of bonding two parts together,” U.S. patent4,810,318 (7March1989).

Alting, C. L.

J. Haisma, C. L. Adema, C. L. Alting, R. Brehm, “Methods of bonding two parts together,” U.S. patent4,810,318 (7March1989).

J. Haisma, C. L. Alting, T. M. Michielsen, “Laser welding of wringed surfaces,” U.S. patent5,009,689 (23April1991).

Aoki, S.

M. Horiuchi, S. Aoki, “A mechanism of silicon wafer bonding,” in Ref. 1, pp. 48–62.

Appel, W.

C. Harendt, C. E. Hunt, W. Appel, H.-G. Graf, B. Höfflinger, E. Penteker, “Silicon on insulator material by wafer bonding,” J. Electron. Mater. 20, 267–277 (1991).
[CrossRef]

Armstrong, B. M.

C. Parkes, E. Murray, H. S. Gamble, B. M. Armstrong, S. T. N. Mitchell, G. A. Armstrong, “Characterization of electronic devices employing silicon bonding technology,” in Ref. 1, pp. 321–330.

Armstrong, G. A.

C. Parkes, E. Murray, H. S. Gamble, B. M. Armstrong, S. T. N. Mitchell, G. A. Armstrong, “Characterization of electronic devices employing silicon bonding technology,” in Ref. 1, pp. 321–330.

Baan-Hofman, M. J.

P. A. M. v. d. Heide, M. J. Baan-Hofman, H. J. Ronde, “Etching of thin SiO2 layers using wet HF gas,” J. Vac. Sci. Technol. A 7, 1719–1723 (1989).
[CrossRef]

Barth, P.

L. Cristel, K. Petersen, P. Barth, F. Pourahmadi, J. Mallon, J. Bryzek, “Single-crystal silicon pressure sensors with 500× overpressure protection,” Sensors Actuators A21–A23, 84–88 (1990).
[CrossRef]

Benecke, W.

H.-J. Quenzer, W. Benecke, “Low temperature silicon wafer bonding for micromechanical applications,” in Ref. 1, pp. 92–101.

Bengtsson, S.

O. Engström, S. Bengtsson, “Electrical characterization of bonding interfaces,” in Ref. 1, pp. 295–310.

Biermann, U. K. P.

J. Haisma, G. A. C. M. Spierings, U. K. P. Biermann, J. A. Pals, “Silicon-on-insulator wafer bonding–wafer thining; technological evaluations,” Jpn. J. Appl. Phys. 28, 1426–1443 (1989).
[CrossRef]

U. K. P. Biermann, G. A. C. M. Spierings, F. J. H. M. van der Kruis, J. Haisma, “Method of manufacturing a light-conducting device,” U.S. patent4,994,139 (19February1991).

Bower, R. W.

R. W. Bower, M. S. Ismael, S. N. Farrens, “Aligned wafer bonding: a key to three dimensional microstructures,” J. Electrochem. Mater. 20, 383–387 (1991).
[CrossRef]

Brehm, R.

J. Haisma, C. L. Adema, C. L. Alting, R. Brehm, “Methods of bonding two parts together,” U.S. patent4,810,318 (7March1989).

Brockman, H. E.

J. A. G. Slatter, H. E. Brockman, J. Haisma, “Method of manufacturing a semiconductor device including a static induction transistor,” U.S. patent5,089,431 (18February1992).

Bryzek, J.

L. Cristel, K. Petersen, P. Barth, F. Pourahmadi, J. Mallon, J. Bryzek, “Single-crystal silicon pressure sensors with 500× overpressure protection,” Sensors Actuators A21–A23, 84–88 (1990).
[CrossRef]

Budde, K. J.

K. J. Budde, W. J. Holtzapfel, “Detection of volatile organic surface contaminations arising from wafer boxes and cleaning processes,” in Ref. 1, pp. 271–286.

Cargo, J. T.

F. A. Stevie, E. P. Martin, P. M. Kahora, J. T. Cargo, A. K. Nanda, A. S. Harrus, A. J. Muller, H. W. Krautter, “Boron contamination of surfaces in silicon microelectronics processing: characterization and causes,” J. Vac. Sci. Technol. A 9, 2813–2816 (1991).
[CrossRef]

Cha, G.

G. Cha, W.-S. Yang, D. Feijóo, W. J. Taylor, R. Stengle, U. Gösele, “Silicon wafers with cavities bonded in different atmospheres,” in Ref. 1, pp. 249–259.

Chernoberezhskii, Yu. M.

Yu. M. Chernoberezhskii, O. V. Klochkova, V. I. Kuchuk, E. V. Golikova, “Electrophoretic behaviour of an aqueous dispersion of natural diamond in AlCl3 solutions,” Colloid J. (USSR) 48, 516–519 (1986).

E. V. Golikova, V. I. Kuchuk, L. L. Molchanova, Yu. M. Chernoberezhskii, “Electrophoretic behavior of dispersions of natural diamond and their stability against aggregation,” Colloid J. (USSR) 45, 771–775 (1983).

Cristel, L.

L. Cristel, K. Petersen, P. Barth, F. Pourahmadi, J. Mallon, J. Bryzek, “Single-crystal silicon pressure sensors with 500× overpressure protection,” Sensors Actuators A21–A23, 84–88 (1990).
[CrossRef]

de Lang, H.

H. G. van Bueren, J. Haisma, H. de Lang, “A small and stable continuous gas laser,” Phys. Lett. 2, 340–341 (1962).
[CrossRef]

Engström, O.

O. Engström, S. Bengtsson, “Electrical characterization of bonding interfaces,” in Ref. 1, pp. 295–310.

Farrens, S. N.

R. W. Bower, M. S. Ismael, S. N. Farrens, “Aligned wafer bonding: a key to three dimensional microstructures,” J. Electrochem. Mater. 20, 383–387 (1991).
[CrossRef]

Feijóo, D.

G. Cha, W.-S. Yang, D. Feijóo, W. J. Taylor, R. Stengle, U. Gösele, “Silicon wafers with cavities bonded in different atmospheres,” in Ref. 1, pp. 249–259.

Fey, A. M. J. G.

J. Haisma, F. J. H. M. van der Kruis, G. A. C. M. Spierings, J. M. Oomen, A. M. J. G. Fey, “Damage-free tribochemical polishing of diamond at room temperature: a finishing technology,” Precis. Eng. 14, 20–27 (1992).
[CrossRef]

Fukuda, K.

M. Shimbo, K. Fukuda, Y. Ohwada, “Method of manufacturing semiconductor substrate,” European patent application0,161,740 (13February1985).

Gamble, H. S.

C. Parkes, E. Murray, H. S. Gamble, B. M. Armstrong, S. T. N. Mitchell, G. A. Armstrong, “Characterization of electronic devices employing silicon bonding technology,” in Ref. 1, pp. 321–330.

Geyselaers, M. L.

M. L. Geyselaers, J. Haisma, F. P. Widdershoven, T. M. Michielsen, A. H. Reader, “Defect structures in laser-fused Si–SiO2 wafers,” Appl. Phys. Lett. 54, 1311–1313 (1989).
[CrossRef]

Goetz, G. G.

G. G. Goetz, “Generalized reaction bonding,” in Ref. 1, pp. 65–72.

Golikova, E. V.

Yu. M. Chernoberezhskii, O. V. Klochkova, V. I. Kuchuk, E. V. Golikova, “Electrophoretic behaviour of an aqueous dispersion of natural diamond in AlCl3 solutions,” Colloid J. (USSR) 48, 516–519 (1986).

E. V. Golikova, V. I. Kuchuk, L. L. Molchanova, Yu. M. Chernoberezhskii, “Electrophoretic behavior of dispersions of natural diamond and their stability against aggregation,” Colloid J. (USSR) 45, 771–775 (1983).

Gösele, U.

G. Cha, W.-S. Yang, D. Feijóo, W. J. Taylor, R. Stengle, U. Gösele, “Silicon wafers with cavities bonded in different atmospheres,” in Ref. 1, pp. 249–259.

Graf, H.-G.

C. Harendt, C. E. Hunt, W. Appel, H.-G. Graf, B. Höfflinger, E. Penteker, “Silicon on insulator material by wafer bonding,” J. Electron. Mater. 20, 267–277 (1991).
[CrossRef]

Haisma, J.

J. Haisma, F. J. H. M. van der Kruis, G. A. C. M. Spierings, J. M. Oomen, A. M. J. G. Fey, “Damage-free tribochemical polishing of diamond at room temperature: a finishing technology,” Precis. Eng. 14, 20–27 (1992).
[CrossRef]

F. P. Widdershoven, J. Haisma, J. P. M. Naus, “Boron contamination and antimony segregation at the interface of directly bonded wafers,” J. Appl. Phys. 68, 6253–6258 (1990).
[CrossRef]

M. L. Geyselaers, J. Haisma, F. P. Widdershoven, T. M. Michielsen, A. H. Reader, “Defect structures in laser-fused Si–SiO2 wafers,” Appl. Phys. Lett. 54, 1311–1313 (1989).
[CrossRef]

J. Haisma, G. A. C. M. Spierings, U. K. P. Biermann, J. A. Pals, “Silicon-on-insulator wafer bonding–wafer thining; technological evaluations,” Jpn. J. Appl. Phys. 28, 1426–1443 (1989).
[CrossRef]

J. M. M. Pasmans, J. Haisma, “An environmental-nonpolluting antireflective coating for ZnSe optics at CO2-laser wavelengths,” Philips J. Res. 41, 385–390 (1986).

H. G. van Bueren, J. Haisma, H. de Lang, “A small and stable continuous gas laser,” Phys. Lett. 2, 340–341 (1962).
[CrossRef]

J. Haisma, C. L. Adema, C. L. Alting, R. Brehm, “Methods of bonding two parts together,” U.S. patent4,810,318 (7March1989).

U. K. P. Biermann, G. A. C. M. Spierings, F. J. H. M. van der Kruis, J. Haisma, “Method of manufacturing a light-conducting device,” U.S. patent4,994,139 (19February1991).

J. Haisma, C. L. Adema, J. M. M. Pasmans, J. H. Walters, “Tunable Fabry–Perot interferometer and x-ray display having such an interferometer,” U.S. patent4,547,801 (15October1985).

J. Haisma, G. A. C. M. Spierings, J. G. van Lierop, H. F. van den Berg, “Method of bonding together two bodies with silicon oxide and practically pure boron,” U.S. patent5,054,683 (8October1991).

J. Haisma, C. L. Alting, T. M. Michielsen, “Laser welding of wringed surfaces,” U.S. patent5,009,689 (23April1991).

J. A. G. Slatter, H. E. Brockman, J. Haisma, “Method of manufacturing a semiconductor device including a static induction transistor,” U.S. patent5,089,431 (18February1992).

J. Haisma, T. M. Michielsen, J. A. Pals, “Method of manufacturing semiconductor devices,” U.S. patent4,983,251 (8January1991).

Hamaker, H. C.

H. C. Hamaker, “The London–van der Waals attraction between spherical particles,” Physica 4, 1058–1071 (1937).
[CrossRef]

Harendt, C.

C. Harendt, C. E. Hunt, W. Appel, H.-G. Graf, B. Höfflinger, E. Penteker, “Silicon on insulator material by wafer bonding,” J. Electron. Mater. 20, 267–277 (1991).
[CrossRef]

Harrus, A. S.

F. A. Stevie, E. P. Martin, P. M. Kahora, J. T. Cargo, A. K. Nanda, A. S. Harrus, A. J. Muller, H. W. Krautter, “Boron contamination of surfaces in silicon microelectronics processing: characterization and causes,” J. Vac. Sci. Technol. A 9, 2813–2816 (1991).
[CrossRef]

Haruna, M.

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1987).

Heddleson, J. M.

T. Abe, K. Ohki, M. Pawlik, J. M. Heddleson, R. T. Hilard, P. Rai-Choudury, “Silicon wafer bonding process characterization by the spreading resistance and point contact I–V techniques,” in Ref. 1, pp. 311–320.

Heide, P. A. M. v. d.

P. A. M. v. d. Heide, M. J. Baan-Hofman, H. J. Ronde, “Etching of thin SiO2 layers using wet HF gas,” J. Vac. Sci. Technol. A 7, 1719–1723 (1989).
[CrossRef]

Hilard, R. T.

T. Abe, K. Ohki, M. Pawlik, J. M. Heddleson, R. T. Hilard, P. Rai-Choudury, “Silicon wafer bonding process characterization by the spreading resistance and point contact I–V techniques,” in Ref. 1, pp. 311–320.

Höfflinger, B.

C. Harendt, C. E. Hunt, W. Appel, H.-G. Graf, B. Höfflinger, E. Penteker, “Silicon on insulator material by wafer bonding,” J. Electron. Mater. 20, 267–277 (1991).
[CrossRef]

Holtzapfel, W. J.

K. J. Budde, W. J. Holtzapfel, “Detection of volatile organic surface contaminations arising from wafer boxes and cleaning processes,” in Ref. 1, pp. 271–286.

Horiuchi, M.

M. Horiuchi, S. Aoki, “A mechanism of silicon wafer bonding,” in Ref. 1, pp. 48–62.

Horn, R.

J. Israelachvili, P. McGuiggan, R. Horn, “Basic physics of interactions between surfaces in dry, humid and aqueous environments,” in Ref. 1, pp. 33–47.

Huff, M. A.

M. A. Huff, A. D. Nikolich, M. A. Schmidt, “Fabrication issues in the design of sealed cavity microstructures using silicon wafer bonding,” in Ref. 1, pp. 239–248.

Hunt, C. E.

C. Harendt, C. E. Hunt, W. Appel, H.-G. Graf, B. Höfflinger, E. Penteker, “Silicon on insulator material by wafer bonding,” J. Electron. Mater. 20, 267–277 (1991).
[CrossRef]

Ismael, M. S.

R. W. Bower, M. S. Ismael, S. N. Farrens, “Aligned wafer bonding: a key to three dimensional microstructures,” J. Electrochem. Mater. 20, 383–387 (1991).
[CrossRef]

Israelachvili, J.

J. Israelachvili, P. McGuiggan, R. Horn, “Basic physics of interactions between surfaces in dry, humid and aqueous environments,” in Ref. 1, pp. 33–47.

Kahora, P. M.

F. A. Stevie, E. P. Martin, P. M. Kahora, J. T. Cargo, A. K. Nanda, A. S. Harrus, A. J. Muller, H. W. Krautter, “Boron contamination of surfaces in silicon microelectronics processing: characterization and causes,” J. Vac. Sci. Technol. A 9, 2813–2816 (1991).
[CrossRef]

Kim, Y. S.

Y. S. Kim, R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637–4641 (1969).
[CrossRef]

Klochkova, O. V.

Yu. M. Chernoberezhskii, O. V. Klochkova, V. I. Kuchuk, E. V. Golikova, “Electrophoretic behaviour of an aqueous dispersion of natural diamond in AlCl3 solutions,” Colloid J. (USSR) 48, 516–519 (1986).

Krautter, H. W.

F. A. Stevie, E. P. Martin, P. M. Kahora, J. T. Cargo, A. K. Nanda, A. S. Harrus, A. J. Muller, H. W. Krautter, “Boron contamination of surfaces in silicon microelectronics processing: characterization and causes,” J. Vac. Sci. Technol. A 9, 2813–2816 (1991).
[CrossRef]

Kuchuk, V. I.

Yu. M. Chernoberezhskii, O. V. Klochkova, V. I. Kuchuk, E. V. Golikova, “Electrophoretic behaviour of an aqueous dispersion of natural diamond in AlCl3 solutions,” Colloid J. (USSR) 48, 516–519 (1986).

E. V. Golikova, V. I. Kuchuk, L. L. Molchanova, Yu. M. Chernoberezhskii, “Electrophoretic behavior of dispersions of natural diamond and their stability against aggregation,” Colloid J. (USSR) 45, 771–775 (1983).

Lifshitz, E. M.

E. M. Lifshitz, “The theory of molecular attractive forces between solids,” Sov. Phys. JETP 2, 73–83 (1956).

Mallon, J.

L. Cristel, K. Petersen, P. Barth, F. Pourahmadi, J. Mallon, J. Bryzek, “Single-crystal silicon pressure sensors with 500× overpressure protection,” Sensors Actuators A21–A23, 84–88 (1990).
[CrossRef]

Martin, E. P.

F. A. Stevie, E. P. Martin, P. M. Kahora, J. T. Cargo, A. K. Nanda, A. S. Harrus, A. J. Muller, H. W. Krautter, “Boron contamination of surfaces in silicon microelectronics processing: characterization and causes,” J. Vac. Sci. Technol. A 9, 2813–2816 (1991).
[CrossRef]

Maszara, W. P.

W. P. Maszara, “Semiconductor wafer bonding,” in Ref. 1, pp. 3–17.

McGuiggan, P.

J. Israelachvili, P. McGuiggan, R. Horn, “Basic physics of interactions between surfaces in dry, humid and aqueous environments,” in Ref. 1, pp. 33–47.

Michielsen, T. M.

M. L. Geyselaers, J. Haisma, F. P. Widdershoven, T. M. Michielsen, A. H. Reader, “Defect structures in laser-fused Si–SiO2 wafers,” Appl. Phys. Lett. 54, 1311–1313 (1989).
[CrossRef]

J. Haisma, T. M. Michielsen, J. A. Pals, “Method of manufacturing semiconductor devices,” U.S. patent4,983,251 (8January1991).

J. Haisma, C. L. Alting, T. M. Michielsen, “Laser welding of wringed surfaces,” U.S. patent5,009,689 (23April1991).

Mitchell, S. T. N.

C. Parkes, E. Murray, H. S. Gamble, B. M. Armstrong, S. T. N. Mitchell, G. A. Armstrong, “Characterization of electronic devices employing silicon bonding technology,” in Ref. 1, pp. 321–330.

Molchanova, L. L.

E. V. Golikova, V. I. Kuchuk, L. L. Molchanova, Yu. M. Chernoberezhskii, “Electrophoretic behavior of dispersions of natural diamond and their stability against aggregation,” Colloid J. (USSR) 45, 771–775 (1983).

Muller, A. J.

F. A. Stevie, E. P. Martin, P. M. Kahora, J. T. Cargo, A. K. Nanda, A. S. Harrus, A. J. Muller, H. W. Krautter, “Boron contamination of surfaces in silicon microelectronics processing: characterization and causes,” J. Vac. Sci. Technol. A 9, 2813–2816 (1991).
[CrossRef]

Murray, E.

C. Parkes, E. Murray, H. S. Gamble, B. M. Armstrong, S. T. N. Mitchell, G. A. Armstrong, “Characterization of electronic devices employing silicon bonding technology,” in Ref. 1, pp. 321–330.

Nakazato, Y.

T. Abe, T. Takei, A. Uchiyama, K. Yoshizawa, Y. Nakazato, “Silicon wafer bonding mechanism for silicon-on-insulator,” Jpn. J. Appl. Phys. 29, L2311–L2314 (1990).
[CrossRef]

Nanda, A. K.

F. A. Stevie, E. P. Martin, P. M. Kahora, J. T. Cargo, A. K. Nanda, A. S. Harrus, A. J. Muller, H. W. Krautter, “Boron contamination of surfaces in silicon microelectronics processing: characterization and causes,” J. Vac. Sci. Technol. A 9, 2813–2816 (1991).
[CrossRef]

Naus, J. P. M.

F. P. Widdershoven, J. Haisma, J. P. M. Naus, “Boron contamination and antimony segregation at the interface of directly bonded wafers,” J. Appl. Phys. 68, 6253–6258 (1990).
[CrossRef]

Nikolich, A. D.

M. A. Huff, A. D. Nikolich, M. A. Schmidt, “Fabrication issues in the design of sealed cavity microstructures using silicon wafer bonding,” in Ref. 1, pp. 239–248.

Nishihara, H.

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1987).

Ohki, K.

T. Abe, K. Ohki, M. Pawlik, J. M. Heddleson, R. T. Hilard, P. Rai-Choudury, “Silicon wafer bonding process characterization by the spreading resistance and point contact I–V techniques,” in Ref. 1, pp. 311–320.

Ohwada, Y.

M. Shimbo, K. Fukuda, Y. Ohwada, “Method of manufacturing semiconductor substrate,” European patent application0,161,740 (13February1985).

Oomen, J. M.

J. Haisma, F. J. H. M. van der Kruis, G. A. C. M. Spierings, J. M. Oomen, A. M. J. G. Fey, “Damage-free tribochemical polishing of diamond at room temperature: a finishing technology,” Precis. Eng. 14, 20–27 (1992).
[CrossRef]

Pals, J. A.

J. Haisma, G. A. C. M. Spierings, U. K. P. Biermann, J. A. Pals, “Silicon-on-insulator wafer bonding–wafer thining; technological evaluations,” Jpn. J. Appl. Phys. 28, 1426–1443 (1989).
[CrossRef]

J. Haisma, T. M. Michielsen, J. A. Pals, “Method of manufacturing semiconductor devices,” U.S. patent4,983,251 (8January1991).

Parkes, C.

C. Parkes, E. Murray, H. S. Gamble, B. M. Armstrong, S. T. N. Mitchell, G. A. Armstrong, “Characterization of electronic devices employing silicon bonding technology,” in Ref. 1, pp. 321–330.

Pasmans, J. M. M.

J. M. M. Pasmans, J. Haisma, “An environmental-nonpolluting antireflective coating for ZnSe optics at CO2-laser wavelengths,” Philips J. Res. 41, 385–390 (1986).

J. Haisma, C. L. Adema, J. M. M. Pasmans, J. H. Walters, “Tunable Fabry–Perot interferometer and x-ray display having such an interferometer,” U.S. patent4,547,801 (15October1985).

Pawlik, M.

T. Abe, K. Ohki, M. Pawlik, J. M. Heddleson, R. T. Hilard, P. Rai-Choudury, “Silicon wafer bonding process characterization by the spreading resistance and point contact I–V techniques,” in Ref. 1, pp. 311–320.

Penteker, E.

C. Harendt, C. E. Hunt, W. Appel, H.-G. Graf, B. Höfflinger, E. Penteker, “Silicon on insulator material by wafer bonding,” J. Electron. Mater. 20, 267–277 (1991).
[CrossRef]

Petersen, K.

L. Cristel, K. Petersen, P. Barth, F. Pourahmadi, J. Mallon, J. Bryzek, “Single-crystal silicon pressure sensors with 500× overpressure protection,” Sensors Actuators A21–A23, 84–88 (1990).
[CrossRef]

Pourahmadi, F.

L. Cristel, K. Petersen, P. Barth, F. Pourahmadi, J. Mallon, J. Bryzek, “Single-crystal silicon pressure sensors with 500× overpressure protection,” Sensors Actuators A21–A23, 84–88 (1990).
[CrossRef]

Quenzer, H.-J.

H.-J. Quenzer, W. Benecke, “Low temperature silicon wafer bonding for micromechanical applications,” in Ref. 1, pp. 92–101.

Rai-Choudury, P.

T. Abe, K. Ohki, M. Pawlik, J. M. Heddleson, R. T. Hilard, P. Rai-Choudury, “Silicon wafer bonding process characterization by the spreading resistance and point contact I–V techniques,” in Ref. 1, pp. 311–320.

Reader, A. H.

M. L. Geyselaers, J. Haisma, F. P. Widdershoven, T. M. Michielsen, A. H. Reader, “Defect structures in laser-fused Si–SiO2 wafers,” Appl. Phys. Lett. 54, 1311–1313 (1989).
[CrossRef]

Ronde, H. J.

P. A. M. v. d. Heide, M. J. Baan-Hofman, H. J. Ronde, “Etching of thin SiO2 layers using wet HF gas,” J. Vac. Sci. Technol. A 7, 1719–1723 (1989).
[CrossRef]

Schmidt, M. A.

M. A. Huff, A. D. Nikolich, M. A. Schmidt, “Fabrication issues in the design of sealed cavity microstructures using silicon wafer bonding,” in Ref. 1, pp. 239–248.

Sheppard, L. M.

L. M. Sheppard, “Advances of processing of ferroelectric thin films,” Am. Ceram. Soc. Bull. 71, 85–95 (1992).

Shimbo, M.

M. Shimbo, K. Fukuda, Y. Ohwada, “Method of manufacturing semiconductor substrate,” European patent application0,161,740 (13February1985).

Slatter, J. A. G.

J. A. G. Slatter, H. E. Brockman, J. Haisma, “Method of manufacturing a semiconductor device including a static induction transistor,” U.S. patent5,089,431 (18February1992).

Smith, R. T.

Y. S. Kim, R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637–4641 (1969).
[CrossRef]

Sparnaay, M. J.

M. J. Sparnaay, “Four notes on van der Waals forces,” J. Colloid Interface Sci. 91, 307–319 (1983).
[CrossRef]

Spierings, G. A. C. M.

J. Haisma, F. J. H. M. van der Kruis, G. A. C. M. Spierings, J. M. Oomen, A. M. J. G. Fey, “Damage-free tribochemical polishing of diamond at room temperature: a finishing technology,” Precis. Eng. 14, 20–27 (1992).
[CrossRef]

J. Haisma, G. A. C. M. Spierings, U. K. P. Biermann, J. A. Pals, “Silicon-on-insulator wafer bonding–wafer thining; technological evaluations,” Jpn. J. Appl. Phys. 28, 1426–1443 (1989).
[CrossRef]

U. K. P. Biermann, G. A. C. M. Spierings, F. J. H. M. van der Kruis, J. Haisma, “Method of manufacturing a light-conducting device,” U.S. patent4,994,139 (19February1991).

J. Haisma, G. A. C. M. Spierings, J. G. van Lierop, H. F. van den Berg, “Method of bonding together two bodies with silicon oxide and practically pure boron,” U.S. patent5,054,683 (8October1991).

Stengle, R.

G. Cha, W.-S. Yang, D. Feijóo, W. J. Taylor, R. Stengle, U. Gösele, “Silicon wafers with cavities bonded in different atmospheres,” in Ref. 1, pp. 249–259.

Stevie, F. A.

F. A. Stevie, E. P. Martin, P. M. Kahora, J. T. Cargo, A. K. Nanda, A. S. Harrus, A. J. Muller, H. W. Krautter, “Boron contamination of surfaces in silicon microelectronics processing: characterization and causes,” J. Vac. Sci. Technol. A 9, 2813–2816 (1991).
[CrossRef]

Suhara, T.

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1987).

Takei, T.

T. Abe, T. Takei, A. Uchiyama, K. Yoshizawa, Y. Nakazato, “Silicon wafer bonding mechanism for silicon-on-insulator,” Jpn. J. Appl. Phys. 29, L2311–L2314 (1990).
[CrossRef]

Taylor, W. J.

G. Cha, W.-S. Yang, D. Feijóo, W. J. Taylor, R. Stengle, U. Gösele, “Silicon wafers with cavities bonded in different atmospheres,” in Ref. 1, pp. 249–259.

Uchiyama, A.

T. Abe, T. Takei, A. Uchiyama, K. Yoshizawa, Y. Nakazato, “Silicon wafer bonding mechanism for silicon-on-insulator,” Jpn. J. Appl. Phys. 29, L2311–L2314 (1990).
[CrossRef]

van Bueren, H. G.

H. G. van Bueren, J. Haisma, H. de Lang, “A small and stable continuous gas laser,” Phys. Lett. 2, 340–341 (1962).
[CrossRef]

van den Berg, H. F.

J. Haisma, G. A. C. M. Spierings, J. G. van Lierop, H. F. van den Berg, “Method of bonding together two bodies with silicon oxide and practically pure boron,” U.S. patent5,054,683 (8October1991).

van der Kruis, F. J. H. M.

J. Haisma, F. J. H. M. van der Kruis, G. A. C. M. Spierings, J. M. Oomen, A. M. J. G. Fey, “Damage-free tribochemical polishing of diamond at room temperature: a finishing technology,” Precis. Eng. 14, 20–27 (1992).
[CrossRef]

U. K. P. Biermann, G. A. C. M. Spierings, F. J. H. M. van der Kruis, J. Haisma, “Method of manufacturing a light-conducting device,” U.S. patent4,994,139 (19February1991).

van Lierop, J. G.

J. Haisma, G. A. C. M. Spierings, J. G. van Lierop, H. F. van den Berg, “Method of bonding together two bodies with silicon oxide and practically pure boron,” U.S. patent5,054,683 (8October1991).

Walters, J. H.

J. Haisma, C. L. Adema, J. M. M. Pasmans, J. H. Walters, “Tunable Fabry–Perot interferometer and x-ray display having such an interferometer,” U.S. patent4,547,801 (15October1985).

Widdershoven, F. P.

F. P. Widdershoven, J. Haisma, J. P. M. Naus, “Boron contamination and antimony segregation at the interface of directly bonded wafers,” J. Appl. Phys. 68, 6253–6258 (1990).
[CrossRef]

M. L. Geyselaers, J. Haisma, F. P. Widdershoven, T. M. Michielsen, A. H. Reader, “Defect structures in laser-fused Si–SiO2 wafers,” Appl. Phys. Lett. 54, 1311–1313 (1989).
[CrossRef]

Yang, W.-S.

G. Cha, W.-S. Yang, D. Feijóo, W. J. Taylor, R. Stengle, U. Gösele, “Silicon wafers with cavities bonded in different atmospheres,” in Ref. 1, pp. 249–259.

Yoshizawa, K.

T. Abe, T. Takei, A. Uchiyama, K. Yoshizawa, Y. Nakazato, “Silicon wafer bonding mechanism for silicon-on-insulator,” Jpn. J. Appl. Phys. 29, L2311–L2314 (1990).
[CrossRef]

Am. Ceram. Soc. Bull.

L. M. Sheppard, “Advances of processing of ferroelectric thin films,” Am. Ceram. Soc. Bull. 71, 85–95 (1992).

Appl. Phys. Lett.

M. L. Geyselaers, J. Haisma, F. P. Widdershoven, T. M. Michielsen, A. H. Reader, “Defect structures in laser-fused Si–SiO2 wafers,” Appl. Phys. Lett. 54, 1311–1313 (1989).
[CrossRef]

Colloid J. (USSR)

E. V. Golikova, V. I. Kuchuk, L. L. Molchanova, Yu. M. Chernoberezhskii, “Electrophoretic behavior of dispersions of natural diamond and their stability against aggregation,” Colloid J. (USSR) 45, 771–775 (1983).

Yu. M. Chernoberezhskii, O. V. Klochkova, V. I. Kuchuk, E. V. Golikova, “Electrophoretic behaviour of an aqueous dispersion of natural diamond in AlCl3 solutions,” Colloid J. (USSR) 48, 516–519 (1986).

J. Appl. Phys.

F. P. Widdershoven, J. Haisma, J. P. M. Naus, “Boron contamination and antimony segregation at the interface of directly bonded wafers,” J. Appl. Phys. 68, 6253–6258 (1990).
[CrossRef]

Y. S. Kim, R. T. Smith, “Thermal expansion of lithium tantalate and lithium niobate single crystals,” J. Appl. Phys. 40, 4637–4641 (1969).
[CrossRef]

J. Colloid Interface Sci.

M. J. Sparnaay, “Four notes on van der Waals forces,” J. Colloid Interface Sci. 91, 307–319 (1983).
[CrossRef]

J. Electrochem. Mater.

R. W. Bower, M. S. Ismael, S. N. Farrens, “Aligned wafer bonding: a key to three dimensional microstructures,” J. Electrochem. Mater. 20, 383–387 (1991).
[CrossRef]

J. Electron. Mater.

C. Harendt, C. E. Hunt, W. Appel, H.-G. Graf, B. Höfflinger, E. Penteker, “Silicon on insulator material by wafer bonding,” J. Electron. Mater. 20, 267–277 (1991).
[CrossRef]

J. Vac. Sci. Technol. A

P. A. M. v. d. Heide, M. J. Baan-Hofman, H. J. Ronde, “Etching of thin SiO2 layers using wet HF gas,” J. Vac. Sci. Technol. A 7, 1719–1723 (1989).
[CrossRef]

F. A. Stevie, E. P. Martin, P. M. Kahora, J. T. Cargo, A. K. Nanda, A. S. Harrus, A. J. Muller, H. W. Krautter, “Boron contamination of surfaces in silicon microelectronics processing: characterization and causes,” J. Vac. Sci. Technol. A 9, 2813–2816 (1991).
[CrossRef]

Jpn. J. Appl. Phys.

J. Haisma, G. A. C. M. Spierings, U. K. P. Biermann, J. A. Pals, “Silicon-on-insulator wafer bonding–wafer thining; technological evaluations,” Jpn. J. Appl. Phys. 28, 1426–1443 (1989).
[CrossRef]

T. Abe, T. Takei, A. Uchiyama, K. Yoshizawa, Y. Nakazato, “Silicon wafer bonding mechanism for silicon-on-insulator,” Jpn. J. Appl. Phys. 29, L2311–L2314 (1990).
[CrossRef]

Philips J. Res.

J. M. M. Pasmans, J. Haisma, “An environmental-nonpolluting antireflective coating for ZnSe optics at CO2-laser wavelengths,” Philips J. Res. 41, 385–390 (1986).

Phys. Lett.

H. G. van Bueren, J. Haisma, H. de Lang, “A small and stable continuous gas laser,” Phys. Lett. 2, 340–341 (1962).
[CrossRef]

Physica

H. C. Hamaker, “The London–van der Waals attraction between spherical particles,” Physica 4, 1058–1071 (1937).
[CrossRef]

Precis. Eng.

J. Haisma, F. J. H. M. van der Kruis, G. A. C. M. Spierings, J. M. Oomen, A. M. J. G. Fey, “Damage-free tribochemical polishing of diamond at room temperature: a finishing technology,” Precis. Eng. 14, 20–27 (1992).
[CrossRef]

Sensors Actuators

L. Cristel, K. Petersen, P. Barth, F. Pourahmadi, J. Mallon, J. Bryzek, “Single-crystal silicon pressure sensors with 500× overpressure protection,” Sensors Actuators A21–A23, 84–88 (1990).
[CrossRef]

Sov. Phys. JETP

E. M. Lifshitz, “The theory of molecular attractive forces between solids,” Sov. Phys. JETP 2, 73–83 (1956).

Other

U. Gösele, T. Abe, J. Haisma, M. A. Schmidt, eds., Proceedings of the First International Symposium on Semiconductor Wafer Bonding: Science, Technology and Applications (Electrochemical Society, Pennington, N.J., 1992).

J. Haisma, C. L. Adema, J. M. M. Pasmans, J. H. Walters, “Tunable Fabry–Perot interferometer and x-ray display having such an interferometer,” U.S. patent4,547,801 (15October1985).

J. Haisma, C. L. Adema, C. L. Alting, R. Brehm, “Methods of bonding two parts together,” U.S. patent4,810,318 (7March1989).

J. A. G. Slatter, H. E. Brockman, J. Haisma, “Method of manufacturing a semiconductor device including a static induction transistor,” U.S. patent5,089,431 (18February1992).

M. Shimbo, K. Fukuda, Y. Ohwada, “Method of manufacturing semiconductor substrate,” European patent application0,161,740 (13February1985).

For a state of the art see Digest of Technical Papers, Transducers ’91: 1991 International Conference on Solid-State Sensors and Actuators (Institute of Electrical and Electronics Engineers, New York, 1991), pp. 177–180, 452–455, 672–675, 832–835, 931–934.

H.-J. Quenzer, W. Benecke, “Low temperature silicon wafer bonding for micromechanical applications,” in Ref. 1, pp. 92–101.

W. P. Maszara, “Semiconductor wafer bonding,” in Ref. 1, pp. 3–17.

J. Haisma, T. M. Michielsen, J. A. Pals, “Method of manufacturing semiconductor devices,” U.S. patent4,983,251 (8January1991).

M. Horiuchi, S. Aoki, “A mechanism of silicon wafer bonding,” in Ref. 1, pp. 48–62.

T. Abe, K. Ohki, M. Pawlik, J. M. Heddleson, R. T. Hilard, P. Rai-Choudury, “Silicon wafer bonding process characterization by the spreading resistance and point contact I–V techniques,” in Ref. 1, pp. 311–320.

J. Haisma, G. A. C. M. Spierings, J. G. van Lierop, H. F. van den Berg, “Method of bonding together two bodies with silicon oxide and practically pure boron,” U.S. patent5,054,683 (8October1991).

J. Israelachvili, P. McGuiggan, R. Horn, “Basic physics of interactions between surfaces in dry, humid and aqueous environments,” in Ref. 1, pp. 33–47.

O. Engström, S. Bengtsson, “Electrical characterization of bonding interfaces,” in Ref. 1, pp. 295–310.

C. Parkes, E. Murray, H. S. Gamble, B. M. Armstrong, S. T. N. Mitchell, G. A. Armstrong, “Characterization of electronic devices employing silicon bonding technology,” in Ref. 1, pp. 321–330.

M. A. Huff, A. D. Nikolich, M. A. Schmidt, “Fabrication issues in the design of sealed cavity microstructures using silicon wafer bonding,” in Ref. 1, pp. 239–248.

G. Cha, W.-S. Yang, D. Feijóo, W. J. Taylor, R. Stengle, U. Gösele, “Silicon wafers with cavities bonded in different atmospheres,” in Ref. 1, pp. 249–259.

J. Haisma, C. L. Alting, T. M. Michielsen, “Laser welding of wringed surfaces,” U.S. patent5,009,689 (23April1991).

U. K. P. Biermann, G. A. C. M. Spierings, F. J. H. M. van der Kruis, J. Haisma, “Method of manufacturing a light-conducting device,” U.S. patent4,994,139 (19February1991).

H. Nishihara, M. Haruna, T. Suhara, Optical Integrated Circuits (McGraw-Hill, New York, 1987).

A. Katzir, ed., Optical Fibers in Medicine, Proc. Soc. Photo-Opt. Instrum. Eng. 1067 (1989).

K. J. Budde, W. J. Holtzapfel, “Detection of volatile organic surface contaminations arising from wafer boxes and cleaning processes,” in Ref. 1, pp. 271–286.

G. G. Goetz, “Generalized reaction bonding,” in Ref. 1, pp. 65–72.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (19)

Fig. 1
Fig. 1

Light-microscopic image of an YBa2Cu3O7−δ-polycrystalline surface. Magnification is 500× after grinding and polishing are performed.

Fig. 2
Fig. 2

YBa2Cu3O7−δ substrate directly bonded to a fused-silica wafer: 1, Fused-silica wafer. 2, Holder for polishing YBa2Cu3O7−δ superconducting samples: a, Unbonded sample, ρ = 80%; droplets are present at the interface. b, Unbonded samples, ρ = 86%; liquid is present at the (black) interface. c, Directly bonded samples, ρ >90%; the bonded area shows a black interface.

Fig. 3
Fig. 3

Superconducting YBa2Cu3O7−δ directly bonded to fused silica. Light-microscopic images: (a) Unbonded area; density of the superconductor, 80%; liquid droplets are seen between the superconductor and a fused-silica wafer. (b) Unbonded area, density of the superconductor, 85%; the liquid layer (black) is between the superconductor and the fused-silica wafer. (c) Superconductor directly bonded to the fused-silica wafer; density of the superconductor is superior to 90%.

Fig. 4
Fig. 4

Linear thermal expansion coefficient is a function of temperature for germanium, diamond, silicon, and silicon oxide (fused silica).

Fig. 5
Fig. 5

Diamonds directly bonded to a fused-silica wafer. The diamonds are waxed onto glass substrates (to equalize thickness), which are waxed onto a holder for polishing. Some of the diamonds, with a black appearance, are directly bonded to the fused-silica wafer.

Fig. 6
Fig. 6

(a) Synthetic monocrystalline diamond directly bonded to silicon. The dimensions of the diamond are 4 mm × 4 mm × 2 mm. (b) Three diamonds directly bonded to silicon and annealed at 800–900 °C (in an H2 atmosphere): (a) 800 °C, (b) 850 °C, (c) 900 °C.

Fig. 7
Fig. 7

Atomic-force microscopic inspection of mechanically and tribochemically polished diamond surfaces: (a) mechanically polished, overview (width, 7.5 μm); (b) mechanically polished, mono-trace (width, 7.5 μm); (c) tribochemically polished, overview (width, 7.5 μm); (d) tribochemically polished, monotrace (width, 7.5 μm). The curvature of the monotraces is instrumental.

Fig. 8
Fig. 8

AIN directly bonded to fused silica. Shown are bonded areas beside recessed areas (called distributedly bonded).

Fig. 9
Fig. 9

ZnSe directly bonded to (a) fused silica, (b) silicon, (c) ZnSe.

Fig. 10
Fig. 10

Deposited layer of boron on an oxidized silicon wafer directly bonded to boron on an oxidized silicon wafer: (a) Beveled cross section as shown in (c); annealing occurs at 800 °C. There is no complete fusion of the boron layer. (b) Beveled cross section as shown in (c); annealing occurs at 900 °C. There is no complete fusion of the boron layer. In (b) the bonded layer has become transparent; in (a) it is not.

Fig. 11
Fig. 11

Fused-silica wafer directly bonded to a copper plate.

Fig. 12
Fig. 12

Dopant concentrations (secondary ion mass spectroscopy measurements) near the interface of a directly bonded and annealed wafer pair as a function of relative distance. Note the (unwanted) p-type (boron) overdoped region.

Fig. 13
Fig. 13

Dopant concentrations (secondary ion mass spectroscopy measurements) near the interface of a directly bonded and annealed pair as a function of relative distance. The highly doped n-type wafer has been overdoped by phosphorus to such an extent that the p-type boron dopant is surpassed, and the p-type buried region is eliminated.

Fig. 14
Fig. 14

Checkerboard pattern of SOI and the open silicon, alternately produced on a wafer of 10-cm diameter.

Fig. 15
Fig. 15

Interface engineering with checkerboard patterns: 1000 μm × 1000 μm, 100 μm × 100 μm, 10 μm × 10 μm, and 1 μm × 1 μm. The patterned wafer is directly bonded to a fused-silica wafer. Bonding to the nonrecessed areas is perfect.

Fig. 16
Fig. 16

Interfacially engineered cavities of silicon-on-silicon-bonded wafers, annealed at 1100 °C, for 1 h (a) light-microscopic image of the cross section of a 1000 μm × 1000 μm checkerboard pattern, (b) SEM image of a 100 μm × 100 μm cross section, (c) SEM image of a 10 μm × 10 μm2 cross section, (d) SEM image of a 1 μm × 1 μm cross section.

Fig. 17
Fig. 17

Static induction transistor with an interface-engineered grid functioning as a rectifying junction pattern.

Fig. 18
Fig. 18

Light-microscopic image of an InP laser fused to a directly bonded garnet: {Gd}2[Ga]3(Ga)3O12 substrate. The scan pitch is 1000 μm. Argon-ion laser wavelength, 514 nm; power, 2.5 W; diameter laser spot, 15 μm; scan velocity, 0.06 mm/s.

Fig. 19
Fig. 19

Details of an optical-fiber plate directly bonded to a fused-silica wafer: (a) image of the transition between the bonded and unbonded area, (b) bonded area, except for four fibers in the center. The optical-fiber dimensions are 5 μm × 5 μm.

Tables (3)

Tables Icon

Table 1 Overview of Bondable and Unbondable Combinations of Materials

Tables Icon

Table 2 Polishing Experiments on Superconductive YBa2Cu3O7–δ

Tables Icon

Table 3 Overview of Roughness and Imperfection Measurements on Synthetic Monocrystalline Diamond

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

YBa 2 Cu 3 O 7 - δ 130 × 10 - 7 / K , SiO 2 6 × 10 - 7 / K , Si 26 × 10 - 7 / K .
4 Ta + 5 SiO 2 2 Ta 2 O 5 + 5 Si ; Δ H = + 12.7 kcal / mol , perfectly bondable ; 4 B + 3 SiO 2 2 B 2 O 3 + 3 Si ; Δ H = + 3.5 kcal / mol , well bondable ; Ti + SiO 2 TiO 2 + Si ; Δ H = - 15.5 kcal / mol , bondable to some extent ; 2 Cu + SiO 2 2 CuO + Si ; Δ H = + 134 kcal / mol , bondable under pressure ; 2 W + 3 SiO 2 2 WO 3 + 3 Si ; Δ H = + 206.9 kcal / mol , hardly bondable ,

Metrics