Abstract

The aim of this paper is to review almost a decade of direct-bonding activities at Philips Research including the diversity and feasibility of direct bonding. The bondability of a material is determined by its geometrical shape and mechanical, physical, and chemical surface states. Physically direct bonding provides a vacuumtight bond, which is jointless and glueless, and it permits engineering of the interfaces to be bonded. Layers can be buried, and reflective–lossless bonds between optical elements can be created. A variety of materials are investigated: (refractory) metals, a semimetal, boron, diamond, a carbide, fluorides, nitrides, oxides, and a chalcogenide. The applications that we describe relate to interface engineering, waveguiding, and the direct bonding of a fiber plate.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

You do not have subscription access to this journal. Citation lists with outbound citation links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Cited By

You do not have subscription access to this journal. Cited by links are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Figures (19)

You do not have subscription access to this journal. Figure files are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Tables (3)

You do not have subscription access to this journal. Article tables are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Equations (2)

You do not have subscription access to this journal. Equations are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription

Metrics

You do not have subscription access to this journal. Article level metrics are available to subscribers only. You may subscribe either as an OSA member, or as an authorized user of your institution.

Contact your librarian or system administrator
or
Login to access OSA Member Subscription