Abstract

The light-climbing effect in a LiNbO3:Fe crystal sheet was experimentally studied, and the mechanism for light climbing proposed was proved to be correct. The relevant optical properties were investigated.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. Zhang, Y. Wu, S. Liu, J. Wang, “Light-climbing effect in thin LiNbO3:Fe wafers,” Chin. Phys. Lasers 14, 606–609 (1987).
  2. P. A. Augustov, M. J. Reinfelde, K. K. Shvarts, “Photorefraction and anisotropic light scattering in LiNbO3:Fe crystals,” Appl. Phys. A 29, 169–172 (1982).
    [CrossRef]
  3. Y. Wu, J. Xu, S. Liu, G. Zhang, “The model for the spatial distribution of light-induced scattering in LiNbO3:Fe crystal,” submitted to J. Opt. Soc. Am. B.
  4. J. Marotz, K. H. Ringhofer, R. A. Rupp, S. Treichel, “Light-induced scattering in photorefractive crystals,” IEEE J. Quantum Electron. QE-22, 1376–1382 (1986).
    [CrossRef]
  5. G. Zhang, Q.-X. Li, P.-P. Ho, S. Liu, Z. K. Wu, R. R. Alfano, “Dependence of specklon size on the laser beam size via photo-induced light scattering in LiNbO3:Fe,” Appl. Opt. 25, 2955–2959 (1986).
    [CrossRef] [PubMed]

1987 (1)

G. Zhang, Y. Wu, S. Liu, J. Wang, “Light-climbing effect in thin LiNbO3:Fe wafers,” Chin. Phys. Lasers 14, 606–609 (1987).

1986 (2)

J. Marotz, K. H. Ringhofer, R. A. Rupp, S. Treichel, “Light-induced scattering in photorefractive crystals,” IEEE J. Quantum Electron. QE-22, 1376–1382 (1986).
[CrossRef]

G. Zhang, Q.-X. Li, P.-P. Ho, S. Liu, Z. K. Wu, R. R. Alfano, “Dependence of specklon size on the laser beam size via photo-induced light scattering in LiNbO3:Fe,” Appl. Opt. 25, 2955–2959 (1986).
[CrossRef] [PubMed]

1982 (1)

P. A. Augustov, M. J. Reinfelde, K. K. Shvarts, “Photorefraction and anisotropic light scattering in LiNbO3:Fe crystals,” Appl. Phys. A 29, 169–172 (1982).
[CrossRef]

Alfano, R. R.

Augustov, P. A.

P. A. Augustov, M. J. Reinfelde, K. K. Shvarts, “Photorefraction and anisotropic light scattering in LiNbO3:Fe crystals,” Appl. Phys. A 29, 169–172 (1982).
[CrossRef]

Ho, P.-P.

Li, Q.-X.

Liu, S.

G. Zhang, Y. Wu, S. Liu, J. Wang, “Light-climbing effect in thin LiNbO3:Fe wafers,” Chin. Phys. Lasers 14, 606–609 (1987).

G. Zhang, Q.-X. Li, P.-P. Ho, S. Liu, Z. K. Wu, R. R. Alfano, “Dependence of specklon size on the laser beam size via photo-induced light scattering in LiNbO3:Fe,” Appl. Opt. 25, 2955–2959 (1986).
[CrossRef] [PubMed]

Y. Wu, J. Xu, S. Liu, G. Zhang, “The model for the spatial distribution of light-induced scattering in LiNbO3:Fe crystal,” submitted to J. Opt. Soc. Am. B.

Marotz, J.

J. Marotz, K. H. Ringhofer, R. A. Rupp, S. Treichel, “Light-induced scattering in photorefractive crystals,” IEEE J. Quantum Electron. QE-22, 1376–1382 (1986).
[CrossRef]

Reinfelde, M. J.

P. A. Augustov, M. J. Reinfelde, K. K. Shvarts, “Photorefraction and anisotropic light scattering in LiNbO3:Fe crystals,” Appl. Phys. A 29, 169–172 (1982).
[CrossRef]

Ringhofer, K. H.

J. Marotz, K. H. Ringhofer, R. A. Rupp, S. Treichel, “Light-induced scattering in photorefractive crystals,” IEEE J. Quantum Electron. QE-22, 1376–1382 (1986).
[CrossRef]

Rupp, R. A.

J. Marotz, K. H. Ringhofer, R. A. Rupp, S. Treichel, “Light-induced scattering in photorefractive crystals,” IEEE J. Quantum Electron. QE-22, 1376–1382 (1986).
[CrossRef]

Shvarts, K. K.

P. A. Augustov, M. J. Reinfelde, K. K. Shvarts, “Photorefraction and anisotropic light scattering in LiNbO3:Fe crystals,” Appl. Phys. A 29, 169–172 (1982).
[CrossRef]

Treichel, S.

J. Marotz, K. H. Ringhofer, R. A. Rupp, S. Treichel, “Light-induced scattering in photorefractive crystals,” IEEE J. Quantum Electron. QE-22, 1376–1382 (1986).
[CrossRef]

Wang, J.

G. Zhang, Y. Wu, S. Liu, J. Wang, “Light-climbing effect in thin LiNbO3:Fe wafers,” Chin. Phys. Lasers 14, 606–609 (1987).

Wu, Y.

G. Zhang, Y. Wu, S. Liu, J. Wang, “Light-climbing effect in thin LiNbO3:Fe wafers,” Chin. Phys. Lasers 14, 606–609 (1987).

Y. Wu, J. Xu, S. Liu, G. Zhang, “The model for the spatial distribution of light-induced scattering in LiNbO3:Fe crystal,” submitted to J. Opt. Soc. Am. B.

Wu, Z. K.

Xu, J.

Y. Wu, J. Xu, S. Liu, G. Zhang, “The model for the spatial distribution of light-induced scattering in LiNbO3:Fe crystal,” submitted to J. Opt. Soc. Am. B.

Zhang, G.

G. Zhang, Y. Wu, S. Liu, J. Wang, “Light-climbing effect in thin LiNbO3:Fe wafers,” Chin. Phys. Lasers 14, 606–609 (1987).

G. Zhang, Q.-X. Li, P.-P. Ho, S. Liu, Z. K. Wu, R. R. Alfano, “Dependence of specklon size on the laser beam size via photo-induced light scattering in LiNbO3:Fe,” Appl. Opt. 25, 2955–2959 (1986).
[CrossRef] [PubMed]

Y. Wu, J. Xu, S. Liu, G. Zhang, “The model for the spatial distribution of light-induced scattering in LiNbO3:Fe crystal,” submitted to J. Opt. Soc. Am. B.

Appl. Opt. (1)

Appl. Phys. A (1)

P. A. Augustov, M. J. Reinfelde, K. K. Shvarts, “Photorefraction and anisotropic light scattering in LiNbO3:Fe crystals,” Appl. Phys. A 29, 169–172 (1982).
[CrossRef]

Chin. Phys. Lasers (1)

G. Zhang, Y. Wu, S. Liu, J. Wang, “Light-climbing effect in thin LiNbO3:Fe wafers,” Chin. Phys. Lasers 14, 606–609 (1987).

IEEE J. Quantum Electron. (1)

J. Marotz, K. H. Ringhofer, R. A. Rupp, S. Treichel, “Light-induced scattering in photorefractive crystals,” IEEE J. Quantum Electron. QE-22, 1376–1382 (1986).
[CrossRef]

Other (1)

Y. Wu, J. Xu, S. Liu, G. Zhang, “The model for the spatial distribution of light-induced scattering in LiNbO3:Fe crystal,” submitted to J. Opt. Soc. Am. B.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Experimental arrangement: L, He–Ne laser beam; M, lens; S, sheet sample; P, power meter. C, C-axis.

Fig. 2
Fig. 2

(a) Light climbing in the zx plane, as shown in Fig. 1, (b) photograph of light climbing in the crystal in the yz plane when D = 2 mm and d = 2 mm.

Fig. 3
Fig. 3

Absolute value of the steady-state two-wave coupling coefficient |Γ| versus the angle θ between the weak scattered light beam and the incident light beam, which is normal to the crystal, where Ne ∼ 1016 cm−3; r 51 and r 33 are 28 and 30.8 pm/V, respectively; n 0 and ne are 2.286 and 2.196, respectively; and ∊11 and ∊33 are 44 and 29, respectively.

Fig. 4
Fig. 4

(a) Time dependence of the transmitted power, It , for different incident powers (spot diameter D = 3 mm). Curves 1, 2, 3, and 4, respectively, correspond to incident powers of 32, 22, 11, and 1 mW. (b) Time dependence of the transmitted power It for several different spot diameters (incident power is 32 mW), the curves 1–3 correspond to D = 0.8 mm, D = 1.5 mm, D = 3.0 mm, respectively.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

Γ = 2 π r eff n λ cos ( θ / 2 ) k B T e K 1 + ( K / K 0 ) 2 cos θ
r eff = n 0 2 n e 2 r 51 sin ( θ / 2 ) sin θ + n e 4 r 33 cos ( θ / 2 ) cos θ
K 0 = e ( N e / 0 k B T ) 1 / 2

Metrics