Abstract

Here we report the operation of an optical synthetic aperture radar employing, for the first time to our knowledge, a solid-state laser as the source. The experimental data-acquisition and digital processing techniques are described, by which spatial resolution superior to that limited by diffraction is demonstrated.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. R. O. Harger, Synthetic Aperture Radar Systems: Theory and Design (Academic, New York, 1970), Chap. 2, pp. 18–58.
  2. J. C. Curlander, R. N. McDonough, Synthetic Aperture Radar: Systems and Signal Processing (Wiley, New York, 1991) Chap. 1, pp. 1–66.
  3. T. S. Lewis, H. S. Hutchins, “A synthetic aperture at 10.6 microns,” Proc. IEEE 58, 1781–1782 (1970).
    [CrossRef]
  4. C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klossler, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. Soc. Photo-Opt. Instrum. Eng.783, 29–40 (1987).
  5. J. J. Zayhowski, “Microchip lasers,” Lincoln Lab. J. 3, 427–446 (1990).
  6. C. D. Nabors, “Coherent coupling of microchip arrays,” in LEOS '92 (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 497–498.
    [CrossRef]
  7. D. Park, J. Shapiro, “Performance analysis of optical synthetic aperture radars,” in Laser Radar III, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.999, 100–116 (1988).
  8. M. Skolnik, Radar Handbook, 2nd ed. (McGraw-Hill, New York, 1990), Chap. 21, pp. 20–21.
  9. A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989), Chap. 7, p. 447.

1990 (1)

J. J. Zayhowski, “Microchip lasers,” Lincoln Lab. J. 3, 427–446 (1990).

1970 (1)

T. S. Lewis, H. S. Hutchins, “A synthetic aperture at 10.6 microns,” Proc. IEEE 58, 1781–1782 (1970).
[CrossRef]

Abshier, J. O.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klossler, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. Soc. Photo-Opt. Instrum. Eng.783, 29–40 (1987).

Accetta, J. S.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klossler, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. Soc. Photo-Opt. Instrum. Eng.783, 29–40 (1987).

Aleksoff, C. C.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klossler, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. Soc. Photo-Opt. Instrum. Eng.783, 29–40 (1987).

Curlander, J. C.

J. C. Curlander, R. N. McDonough, Synthetic Aperture Radar: Systems and Signal Processing (Wiley, New York, 1991) Chap. 1, pp. 1–66.

Fee, M.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klossler, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. Soc. Photo-Opt. Instrum. Eng.783, 29–40 (1987).

Harger, R. O.

R. O. Harger, Synthetic Aperture Radar Systems: Theory and Design (Academic, New York, 1970), Chap. 2, pp. 18–58.

Hutchins, H. S.

T. S. Lewis, H. S. Hutchins, “A synthetic aperture at 10.6 microns,” Proc. IEEE 58, 1781–1782 (1970).
[CrossRef]

Klossler, A.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klossler, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. Soc. Photo-Opt. Instrum. Eng.783, 29–40 (1987).

Lewis, T. S.

T. S. Lewis, H. S. Hutchins, “A synthetic aperture at 10.6 microns,” Proc. IEEE 58, 1781–1782 (1970).
[CrossRef]

Majewski, R. M.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klossler, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. Soc. Photo-Opt. Instrum. Eng.783, 29–40 (1987).

McDonough, R. N.

J. C. Curlander, R. N. McDonough, Synthetic Aperture Radar: Systems and Signal Processing (Wiley, New York, 1991) Chap. 1, pp. 1–66.

Nabors, C. D.

C. D. Nabors, “Coherent coupling of microchip arrays,” in LEOS '92 (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 497–498.
[CrossRef]

Oppenheim, A. V.

A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989), Chap. 7, p. 447.

Park, D.

D. Park, J. Shapiro, “Performance analysis of optical synthetic aperture radars,” in Laser Radar III, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.999, 100–116 (1988).

Peterson, L. M.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klossler, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. Soc. Photo-Opt. Instrum. Eng.783, 29–40 (1987).

Schafer, R. W.

A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989), Chap. 7, p. 447.

Schroeder, K. S.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klossler, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. Soc. Photo-Opt. Instrum. Eng.783, 29–40 (1987).

Shapiro, J.

D. Park, J. Shapiro, “Performance analysis of optical synthetic aperture radars,” in Laser Radar III, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.999, 100–116 (1988).

Skolnik, M.

M. Skolnik, Radar Handbook, 2nd ed. (McGraw-Hill, New York, 1990), Chap. 21, pp. 20–21.

Tai, A. M.

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klossler, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. Soc. Photo-Opt. Instrum. Eng.783, 29–40 (1987).

Zayhowski, J. J.

J. J. Zayhowski, “Microchip lasers,” Lincoln Lab. J. 3, 427–446 (1990).

Lincoln Lab. J. (1)

J. J. Zayhowski, “Microchip lasers,” Lincoln Lab. J. 3, 427–446 (1990).

Proc. IEEE (1)

T. S. Lewis, H. S. Hutchins, “A synthetic aperture at 10.6 microns,” Proc. IEEE 58, 1781–1782 (1970).
[CrossRef]

Other (7)

C. C. Aleksoff, J. S. Accetta, L. M. Peterson, A. M. Tai, A. Klossler, K. S. Schroeder, R. M. Majewski, J. O. Abshier, M. Fee, “Synthetic aperture imaging with a pulsed CO2 TEA laser,” in Laser Radar II, R. J. Becherer, R. C. Harney, eds., Proc. Soc. Photo-Opt. Instrum. Eng.783, 29–40 (1987).

R. O. Harger, Synthetic Aperture Radar Systems: Theory and Design (Academic, New York, 1970), Chap. 2, pp. 18–58.

J. C. Curlander, R. N. McDonough, Synthetic Aperture Radar: Systems and Signal Processing (Wiley, New York, 1991) Chap. 1, pp. 1–66.

C. D. Nabors, “Coherent coupling of microchip arrays,” in LEOS '92 (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 497–498.
[CrossRef]

D. Park, J. Shapiro, “Performance analysis of optical synthetic aperture radars,” in Laser Radar III, R. J. Becherer, ed., Proc. Soc. Photo-Opt. Instrum. Eng.999, 100–116 (1988).

M. Skolnik, Radar Handbook, 2nd ed. (McGraw-Hill, New York, 1990), Chap. 21, pp. 20–21.

A. V. Oppenheim, R. W. Schafer, Discrete-Time Signal Processing (Prentice-Hall, Englewood Cliffs, N.J., 1989), Chap. 7, p. 447.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Geometry of a SAR measurement.

Fig. 2
Fig. 2

Heterodyne laser radar block diagram.

Fig. 3
Fig. 3

Laboratory one-dimensional SAR experiment.

Fig. 4
Fig. 4

Measured signal before processing produced by two targets separated by Δ R ≈ 600 μm, having linear velocity υ = 0.9m/s, and generating a chirp with rate ν ˙ ̂ D = 1.6 MHz / s .

Fig. 5
Fig. 5

Real part of the complex impulse response of the SAR matched filter synthesized by using ν ˙ ̂ D = 1.6 MHz / s , T ̂ = 3.2 ms , and ν ̂ IF = 5 kHz .

Fig. 6
Fig. 6

SAR-processed output signal r(t), which results from passing the measured signal through the matched-filter, square-law video detector cascade shown in Fig. 2.

Fig. 7
Fig. 7

Resolution improvement achieved by SAR processing over the envelope of the measured signal.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

T λ L D υ .
ν D ( t , x ) = 2 υ 2 λ L ( x / υ t ) , for | x / υ t | T / 2 .
h ( t ) = 1 T exp [ j 2 π ( ν ˙ D 2 t + ν IF ) t ] , for | t | T / 2 ,
ν ˙ D = 2 υ 2 λ L
W D | ν ˙ D | T .
x SAR υ W D D 2 .
T ̂ Ŵ D ν ˙ ̂ D .
x W F υ W F for W F W D .

Metrics