Abstract

The light-to-electricity conversion efficiency of the non-steady-state photoelectromotive force effect and its threshold sensitivity for the detection of phase-modulated optical signals and space-charge electric fields are evaluated. It is shown that for the optimal conditions of operation (the carrier spatial frequency is equal to the inverse diffusion length of the photocarriers, the detected frequency is higher than the cutoff frequency of the electromotive force signal, and the load resistance is higher than the resistance of the sample), the generation–recombination noise is approximately equal to the thermal noise of the sample resistance. In this case the threshold sensitivity of the adaptive photodetector without an external dc bias is independent of the parameters of the crystal used and can be only 42 times lower than that caused by the generation–recombination noise in a conventional photoresistor. Unlike in photodiodes and photoresistors, the output noise caused by laser intensity fluctuations is of the multiplicative type in the adaptive photodetectors.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. G. S. Trofimov, S. I. Stepanov, “Non-steady-state holographic currents in photorefractive crystals,” Fiz. Tverd. Tela 28, 2785–2789 (1986)[Sov. Phys. Solid State 28, 1559–1562 (1986)];M. P. Petrov, S. I. Stepanov, G. S. Trofimov, “Non-steady-state EMF in nonuniformly illuminated photoconductor,” Pis'maZh. Tekh. Fiz. 12, 916–921 (1986)[Sov. Tech. Phys. Lett. 12, 379–381 (1986)].
  2. M. P. Petrov, I. A. Sokolov, S. I. Stepanov, G. S. Trofimov, “Non-steady-state photo-EMF induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
    [CrossRef]
  3. S. I. Stepanov, G. S. Trofimov, I. A. Sokolov, V. I. Vlad, I. Apostol, D. Popa, “Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr,” Opt. Lett. 15, 1239–1241 (1990).
    [CrossRef] [PubMed]
  4. I. A. Sokolov, S. I. Stepanov, G. S. Trofimov, “Detection of small vibrations of diffusely scattering objects with GaAs:Cr adaptive photodetectors,” Akust. Zh. 37, 998–1005 (1991).
  5. N. A. Korneev, S. I. Stepanov, “Measurement of small lateral vibrations of speckle patterns using a non-steady-state photo-EMF in GaAs:Cr,” J. Mod. Opt. 38, 2153–2158 (1991).
    [CrossRef]
  6. I. A. Sokolov, S. I. Stepanov, “Non-steady-state photo-EMF in crystals with long relaxation time of photoconductivity,” Electron. Lett. 26, 1275–1277 (1990).
    [CrossRef]
  7. S. I. Stepanov, G. S. Trofimov, “Non-steady-state photo-EMF in crystals with bipolar photoconductivity,” Fiz. Tverd. Tela 31, 89–92 (1989)[Sov. Phys. Solid State 31, 49–50 (1989)].
  8. S. I. Stepanov, “Adaptive interferometry—a new area of application of photorefractive crystals,” in International Trends in Optics, J. Goodman, ed. (Academic, Boston, Mass., 1991), pp. 125–140.
  9. M. P. Petrov, S. I. Stepanov, A. V. Khomenko, Photorefractive Crystals in Coherent Optics (Springer-Verlag, Berlin, 1991).
  10. A. Van der Ziel, Noise in Measurements (Wiley, New York, 1976).
  11. R. L. Forward, “Wideband laser-interferometer gravitational-radiation experiment,” Phys. Rev. D 17, 379–390 (1978).
    [CrossRef]

1991 (2)

I. A. Sokolov, S. I. Stepanov, G. S. Trofimov, “Detection of small vibrations of diffusely scattering objects with GaAs:Cr adaptive photodetectors,” Akust. Zh. 37, 998–1005 (1991).

N. A. Korneev, S. I. Stepanov, “Measurement of small lateral vibrations of speckle patterns using a non-steady-state photo-EMF in GaAs:Cr,” J. Mod. Opt. 38, 2153–2158 (1991).
[CrossRef]

1990 (3)

I. A. Sokolov, S. I. Stepanov, “Non-steady-state photo-EMF in crystals with long relaxation time of photoconductivity,” Electron. Lett. 26, 1275–1277 (1990).
[CrossRef]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, G. S. Trofimov, “Non-steady-state photo-EMF induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

S. I. Stepanov, G. S. Trofimov, I. A. Sokolov, V. I. Vlad, I. Apostol, D. Popa, “Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr,” Opt. Lett. 15, 1239–1241 (1990).
[CrossRef] [PubMed]

1989 (1)

S. I. Stepanov, G. S. Trofimov, “Non-steady-state photo-EMF in crystals with bipolar photoconductivity,” Fiz. Tverd. Tela 31, 89–92 (1989)[Sov. Phys. Solid State 31, 49–50 (1989)].

1986 (1)

G. S. Trofimov, S. I. Stepanov, “Non-steady-state holographic currents in photorefractive crystals,” Fiz. Tverd. Tela 28, 2785–2789 (1986)[Sov. Phys. Solid State 28, 1559–1562 (1986)];M. P. Petrov, S. I. Stepanov, G. S. Trofimov, “Non-steady-state EMF in nonuniformly illuminated photoconductor,” Pis'maZh. Tekh. Fiz. 12, 916–921 (1986)[Sov. Tech. Phys. Lett. 12, 379–381 (1986)].

1978 (1)

R. L. Forward, “Wideband laser-interferometer gravitational-radiation experiment,” Phys. Rev. D 17, 379–390 (1978).
[CrossRef]

Apostol, I.

Forward, R. L.

R. L. Forward, “Wideband laser-interferometer gravitational-radiation experiment,” Phys. Rev. D 17, 379–390 (1978).
[CrossRef]

Khomenko, A. V.

M. P. Petrov, S. I. Stepanov, A. V. Khomenko, Photorefractive Crystals in Coherent Optics (Springer-Verlag, Berlin, 1991).

Korneev, N. A.

N. A. Korneev, S. I. Stepanov, “Measurement of small lateral vibrations of speckle patterns using a non-steady-state photo-EMF in GaAs:Cr,” J. Mod. Opt. 38, 2153–2158 (1991).
[CrossRef]

Petrov, M. P.

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, G. S. Trofimov, “Non-steady-state photo-EMF induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

M. P. Petrov, S. I. Stepanov, A. V. Khomenko, Photorefractive Crystals in Coherent Optics (Springer-Verlag, Berlin, 1991).

Popa, D.

Sokolov, I. A.

I. A. Sokolov, S. I. Stepanov, G. S. Trofimov, “Detection of small vibrations of diffusely scattering objects with GaAs:Cr adaptive photodetectors,” Akust. Zh. 37, 998–1005 (1991).

S. I. Stepanov, G. S. Trofimov, I. A. Sokolov, V. I. Vlad, I. Apostol, D. Popa, “Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr,” Opt. Lett. 15, 1239–1241 (1990).
[CrossRef] [PubMed]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, G. S. Trofimov, “Non-steady-state photo-EMF induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

I. A. Sokolov, S. I. Stepanov, “Non-steady-state photo-EMF in crystals with long relaxation time of photoconductivity,” Electron. Lett. 26, 1275–1277 (1990).
[CrossRef]

Stepanov, S. I.

N. A. Korneev, S. I. Stepanov, “Measurement of small lateral vibrations of speckle patterns using a non-steady-state photo-EMF in GaAs:Cr,” J. Mod. Opt. 38, 2153–2158 (1991).
[CrossRef]

I. A. Sokolov, S. I. Stepanov, G. S. Trofimov, “Detection of small vibrations of diffusely scattering objects with GaAs:Cr adaptive photodetectors,” Akust. Zh. 37, 998–1005 (1991).

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, G. S. Trofimov, “Non-steady-state photo-EMF induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

S. I. Stepanov, G. S. Trofimov, I. A. Sokolov, V. I. Vlad, I. Apostol, D. Popa, “Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr,” Opt. Lett. 15, 1239–1241 (1990).
[CrossRef] [PubMed]

I. A. Sokolov, S. I. Stepanov, “Non-steady-state photo-EMF in crystals with long relaxation time of photoconductivity,” Electron. Lett. 26, 1275–1277 (1990).
[CrossRef]

S. I. Stepanov, G. S. Trofimov, “Non-steady-state photo-EMF in crystals with bipolar photoconductivity,” Fiz. Tverd. Tela 31, 89–92 (1989)[Sov. Phys. Solid State 31, 49–50 (1989)].

G. S. Trofimov, S. I. Stepanov, “Non-steady-state holographic currents in photorefractive crystals,” Fiz. Tverd. Tela 28, 2785–2789 (1986)[Sov. Phys. Solid State 28, 1559–1562 (1986)];M. P. Petrov, S. I. Stepanov, G. S. Trofimov, “Non-steady-state EMF in nonuniformly illuminated photoconductor,” Pis'maZh. Tekh. Fiz. 12, 916–921 (1986)[Sov. Tech. Phys. Lett. 12, 379–381 (1986)].

M. P. Petrov, S. I. Stepanov, A. V. Khomenko, Photorefractive Crystals in Coherent Optics (Springer-Verlag, Berlin, 1991).

S. I. Stepanov, “Adaptive interferometry—a new area of application of photorefractive crystals,” in International Trends in Optics, J. Goodman, ed. (Academic, Boston, Mass., 1991), pp. 125–140.

Trofimov, G. S.

I. A. Sokolov, S. I. Stepanov, G. S. Trofimov, “Detection of small vibrations of diffusely scattering objects with GaAs:Cr adaptive photodetectors,” Akust. Zh. 37, 998–1005 (1991).

S. I. Stepanov, G. S. Trofimov, I. A. Sokolov, V. I. Vlad, I. Apostol, D. Popa, “Measuring vibration amplitudes in the picometer range using moving light gratings in photoconductive GaAs:Cr,” Opt. Lett. 15, 1239–1241 (1990).
[CrossRef] [PubMed]

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, G. S. Trofimov, “Non-steady-state photo-EMF induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

S. I. Stepanov, G. S. Trofimov, “Non-steady-state photo-EMF in crystals with bipolar photoconductivity,” Fiz. Tverd. Tela 31, 89–92 (1989)[Sov. Phys. Solid State 31, 49–50 (1989)].

G. S. Trofimov, S. I. Stepanov, “Non-steady-state holographic currents in photorefractive crystals,” Fiz. Tverd. Tela 28, 2785–2789 (1986)[Sov. Phys. Solid State 28, 1559–1562 (1986)];M. P. Petrov, S. I. Stepanov, G. S. Trofimov, “Non-steady-state EMF in nonuniformly illuminated photoconductor,” Pis'maZh. Tekh. Fiz. 12, 916–921 (1986)[Sov. Tech. Phys. Lett. 12, 379–381 (1986)].

Van der Ziel, A.

A. Van der Ziel, Noise in Measurements (Wiley, New York, 1976).

Vlad, V. I.

Akust. Zh. (1)

I. A. Sokolov, S. I. Stepanov, G. S. Trofimov, “Detection of small vibrations of diffusely scattering objects with GaAs:Cr adaptive photodetectors,” Akust. Zh. 37, 998–1005 (1991).

Electron. Lett. (1)

I. A. Sokolov, S. I. Stepanov, “Non-steady-state photo-EMF in crystals with long relaxation time of photoconductivity,” Electron. Lett. 26, 1275–1277 (1990).
[CrossRef]

Fiz. Tverd. Tela (2)

S. I. Stepanov, G. S. Trofimov, “Non-steady-state photo-EMF in crystals with bipolar photoconductivity,” Fiz. Tverd. Tela 31, 89–92 (1989)[Sov. Phys. Solid State 31, 49–50 (1989)].

G. S. Trofimov, S. I. Stepanov, “Non-steady-state holographic currents in photorefractive crystals,” Fiz. Tverd. Tela 28, 2785–2789 (1986)[Sov. Phys. Solid State 28, 1559–1562 (1986)];M. P. Petrov, S. I. Stepanov, G. S. Trofimov, “Non-steady-state EMF in nonuniformly illuminated photoconductor,” Pis'maZh. Tekh. Fiz. 12, 916–921 (1986)[Sov. Tech. Phys. Lett. 12, 379–381 (1986)].

J. Appl. Phys. (1)

M. P. Petrov, I. A. Sokolov, S. I. Stepanov, G. S. Trofimov, “Non-steady-state photo-EMF induced by dynamic gratings in partially compensated photoconductors,” J. Appl. Phys. 68, 2216–2225 (1990).
[CrossRef]

J. Mod. Opt. (1)

N. A. Korneev, S. I. Stepanov, “Measurement of small lateral vibrations of speckle patterns using a non-steady-state photo-EMF in GaAs:Cr,” J. Mod. Opt. 38, 2153–2158 (1991).
[CrossRef]

Opt. Lett. (1)

Phys. Rev. D (1)

R. L. Forward, “Wideband laser-interferometer gravitational-radiation experiment,” Phys. Rev. D 17, 379–390 (1978).
[CrossRef]

Other (3)

S. I. Stepanov, “Adaptive interferometry—a new area of application of photorefractive crystals,” in International Trends in Optics, J. Goodman, ed. (Academic, Boston, Mass., 1991), pp. 125–140.

M. P. Petrov, S. I. Stepanov, A. V. Khomenko, Photorefractive Crystals in Coherent Optics (Springer-Verlag, Berlin, 1991).

A. Van der Ziel, Noise in Measurements (Wiley, New York, 1976).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Simplified energy band model of a wide-gap partly compensated impurity photoconductor used in the theoretical consideration of a non-steady-state PEMF.1,2

Fig. 2
Fig. 2

Simplified experimental arrangement for the observation of the non-steady-state PEMF effect.

Fig. 3
Fig. 3

Equivalent electrical scheme of a non-steady-state PEMF-based adaptive photodetector with the input impedance of a preamplifier.

Fig. 4
Fig. 4

Spatial distribution of the space-charge electric field E sc(x), and corresponding potential barriers in the volume of a photoconductor illuminated by a sinusoidal interference pattern I(x).

Equations (17)

Equations on this page are rendered with MathJax. Learn more.

j Ω = 1 2 Δ m 2 σ 0 E D 1 ( 1 + K 2 L D 2 ) i Ω / Ω 0 ( 1 + i Ω / Ω 0 ) .
j max Ω = 1 4 Δ m 2 σ 0 k B T L D e ,
J max Ω 1 4 S σ 0 k B T L D e ,
J max Ω L x 4 L D 1 R k B T e .
Z = R / ( 1 + i Ω τ M ) ,
P e = 1 4 ( J Ω ) 2 R 2 ,
σ 0 = e μ τ P l d S L x α ω = e μ τ P l V 1 ω .
P e / P l = 1 32 k B T ω .
φ = E D 0 Λ / 2 sin ( K x ) d x = 2 k B T e ,
J g / r N = [ 4 e 2 g 0 V ( μ τ E D L x ) 2 Δ f ] 1 / 2 = ( 4 k B T R Δ f ) 1 / 2 .
J th N = ( 4 k B T R L + R R L R Δ f ) 1 / 2 .
( S / N ) max = 1 8 2 L x L D 1 e ( k B T R Δ f ) 1 / 2 ,
( S / N ) max = 1 8 2 ( g 0 S L x Δ f ) 1 / 2 = 1 8 2 ( g 0 V Δ f ) 1 / 2 .
( S / N ) g / r = 1 2 ( g 0 V Δ f ) 1 / 2 .
R = L x σ 0 S = 1 σ 0 d = 2 ω L x 2 e μ τ P l = 2 ( 2 π N ) 2 P l ( ω e ) ( k B T e ) .
Ω 0 = σ 0 2 0 = e μ τ P l α 2 0 ω L x 2 = P l α 2 0 ( 2 π N ) 2 ( e ω ) ( e k B T ) = α 0 R .
E sc , min = 2 R L x R L ( 4 k B T R L Δ f ) 1 / 2 = 2 τ sc L x 2 0 ( 4 k B T Δ f / R L ) 1 / 2 .

Metrics