Abstract

Passive ocean-color data at 32 wavelengths in the visible domain and laser-induced fluorescence line heights of chlorophyll and phycoerythrin, measured simultaneously from an aircraft in the New York Bight area, are used to examine the problem of developing algorithms for pigment retrieval from ocean-color data that would be capable of distinguishing between chlorophyll and phycoerythrin. Using factor analysis, it is shown that it is indeed possible to develop such algorithms. Furthermore, the wavelengths used in the algorithms can be reduced from 32 to 6 (similar to the SeaWiFS channels) without much loss in information. These multiwavelength algorithms yield significantly higher correlation coefficients for chlorophyll compared with the conventional blue–green ratio used for retrieval of this pigment. The Coastal Zone Color Scanner wavelengths appear to be inadequate for quantitative retrieval of the phycoerythrin signal.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. K. L. Carder, R. G. Steward, “A remote-sensing reflectance model of a red-tide dinoflagellate off west Florida,” Limnol. Oceanogr. 30, 286–298 (1985).
    [Crossref]
  2. F. E. Hoge, R. N. Swift, “Chlorophyll pigment concentration using spectral curvature algorithms: an evaluation of present and proposed satellite ocean color senor bands,” Appl. Opt. 25, 3677–3682 (1986).
    [Crossref] [PubMed]
  3. F. E. Hoge, R. N. Swift, “Active–passive correlation spectroscopy: a new technique for identifying ocean color algorithm spectral regions,” Appl. Opt. 25, 2571–2583 (1986).
    [Crossref] [PubMed]
  4. W. M. Balch, R. W. Eppley, M. R. Abbott, F. M. H. Reid, “Bias in satellite-derived pigment measurements due to coccolithophores and dinoflagellates,” J. Plankton Res. 11, 575–581 (1989).
    [Crossref]
  5. F. E. Hoge, C. W. Wright, R. N. Swift, J. K. Yungel, “Airborne discrimination between ice and water: application to the laser measurement of chlorophyll-in-water in a marginal ice zone,” Remote Sensing Environ. 30, 67–76 (1989).
    [Crossref]
  6. H. R. Gordon, A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery. A Review (Springer-Verlag, New York, 1983).
  7. C. S. Yentsch, D. A. Phinney, “The use of the attenuation of light by particulate matter for the estimate of phytoplankton chlorophyll with reference to the Coastal Zone Color Scanner,” J. Plankton Res. 4, 93–102 (1982).
    [Crossref]
  8. N. Hoepffner, S. Sathyendranath, “Bio-optical characteristics of coastal waters: absorption spectra of phytoplankton and pigment distribution in the western North Atlantic,” Limnol. Oceanogr. 37, 1660–1679 (1992).
    [Crossref]
  9. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983).
    [Crossref] [PubMed]
  10. P. M. Holligan, M. Viollier, C. Dupouy, J. Aiken, “Satellite studies on the distributions of chlorophyll and dinoflagellate blooms in the western English Channel,” Cont. Shelf Res. 2, 81–96 (1983).
    [Crossref]
  11. G. A. Borstad, J. F. R. Gower, E. J. Carpenter, J. G. Reuter, “Development of algorithms for remote sensing of marine Trichodesmium,” in Marine pelagic cyanobacteria (Trichodesmium and other Diazotrophs), E. J. Carpenter, D. G. Capone, J. G. Reuter, eds. (Kluwer, Dordrecht, The Netherlands, 1991), pp. 193–210.
  12. A. Subramaniam, E. J. Carpenter, “An algorithm for detection of blooms of the marine cyanobacterium Trichodesmium using CZCS imagery,” Int. J. Remote Sensing (to be published).
  13. A. Morel, “In-water and remote measurement of ocean color,” Boundary-Layer Meteorol. 18, 177–201 (1980).
    [Crossref]
  14. T. Platt, W. K. W. Li, eds., Photosynthetic Picoplankton, Vol. 214 of Canadian Bulletins of Fisheries and Aquatic Science (Department of Supply and Services, Ottawa, 1986).
  15. E. J. Carpenter, D. G. Capone, Nitrogen in the Marine Environment (Academic, San Diego, Calif., 1983).
  16. F. E. Hoge, R. N. Swift, J. K. Yungel, “Active–passive airborne ocean color measurement. 2: Applications,” Appl. Opt. 25, 48–57 (1986).
    [Crossref] [PubMed]
  17. C. R. McClain, W. E. Esaias, W. Barnes, B. Guenther, D. Endres, S. Hooker, G. Mitchell, R. Barnes, “SeaWiFS calibration and validation plan,” NASA Tech. Memo. 3, 1–41 (1992).
  18. F. E. Hoge, R. E. Berry, R. N. Swift, “Active–passive airborne ocean color measurement. 1: Instrumentation,” Appl. Opt. 25, 39–47 (1986).
    [Crossref] [PubMed]
  19. M. Bristow, D. Nielsen, D. Bundy, R. Furtek, “Use of water Raman emission to correct airborne laser fluorosensor data for effects of water optical attenuation,” Appl. Opt. 20, 2889–2906 (1981).
    [Crossref] [PubMed]
  20. F. E. Hoge, R. N. Swift, “Airborne dual laser excitation and mapping of phytoplankton photopigments in a Gulf Stream Warm Core Ring,” Appl. Opt. 22, 2272–2281 (1983).
    [Crossref] [PubMed]
  21. J. J. Walsh, C. D. Wirick, L. J. Pietrafesa, T. E. Whitledge, F. E. Hoge, R. N. Swift, “High-frequency sampling of the 1984 spring bloom within the Mid-Atlantic Bight: synoptic shipboard, aircraft and in situ perspectives of the SEEP-I experiment,” Cont. Shelf Res. 8, 529–563 (1988).
    [Crossref]
  22. S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sensing 10, 1373–1394 (1989).
    [Crossref]
  23. S. Sathyendranath, “Influence des substances en solution et en suspension dans les eaux de mer sur l'absorption et la réflectance. Modélisation et applications à la télédétection,” Ph.D. dissertation (Université de Paris VI, Pierre et Marie, Paris, France, 1981).
  24. H. H. Harman, Modern Factor Analysis (U. Chicago Press, Chicago, Ill., 1960).
  25. S. Sathyendranath, A. Morel, “Light emerging from the sea—interpretation and uses in remote sensing,” in Remote Sensing Applications in Marine Science and Technology, A. P. Cracknell, ed. (Reidel, Dordrecht, The Netherlands, 1983) pp. 323–357.
    [Crossref]
  26. S. Shimura, Y. Fujita, “Changes in the activity of fucoxan-thin-excited photosynthesis in the marine diatom Phaeodacty-lum tricornutum grown under different culture conditions,” Mar. Biol. 33,185–194 (1975).
    [Crossref]
  27. N. Murata, K. Satoh, “Absorption and fluorescence emission by intact cells, chloroplasts and chlorophyll-protein complexes,” in Light Emission by Plants and Bacteria, Govindjee, J. Amesz, D. C. Fork, ed. (Academic, New York, 1986) pp. 137–159.
  28. H. R. Gordon, “Diffuse reflectance of the ocean: influence of nonuniform phytoplankton pigment profile,” Appl. Opt. 31, 2116–2129 (1992).
    [Crossref] [PubMed]

1992 (3)

N. Hoepffner, S. Sathyendranath, “Bio-optical characteristics of coastal waters: absorption spectra of phytoplankton and pigment distribution in the western North Atlantic,” Limnol. Oceanogr. 37, 1660–1679 (1992).
[Crossref]

C. R. McClain, W. E. Esaias, W. Barnes, B. Guenther, D. Endres, S. Hooker, G. Mitchell, R. Barnes, “SeaWiFS calibration and validation plan,” NASA Tech. Memo. 3, 1–41 (1992).

H. R. Gordon, “Diffuse reflectance of the ocean: influence of nonuniform phytoplankton pigment profile,” Appl. Opt. 31, 2116–2129 (1992).
[Crossref] [PubMed]

1989 (3)

W. M. Balch, R. W. Eppley, M. R. Abbott, F. M. H. Reid, “Bias in satellite-derived pigment measurements due to coccolithophores and dinoflagellates,” J. Plankton Res. 11, 575–581 (1989).
[Crossref]

F. E. Hoge, C. W. Wright, R. N. Swift, J. K. Yungel, “Airborne discrimination between ice and water: application to the laser measurement of chlorophyll-in-water in a marginal ice zone,” Remote Sensing Environ. 30, 67–76 (1989).
[Crossref]

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sensing 10, 1373–1394 (1989).
[Crossref]

1988 (1)

J. J. Walsh, C. D. Wirick, L. J. Pietrafesa, T. E. Whitledge, F. E. Hoge, R. N. Swift, “High-frequency sampling of the 1984 spring bloom within the Mid-Atlantic Bight: synoptic shipboard, aircraft and in situ perspectives of the SEEP-I experiment,” Cont. Shelf Res. 8, 529–563 (1988).
[Crossref]

1986 (4)

1985 (1)

K. L. Carder, R. G. Steward, “A remote-sensing reflectance model of a red-tide dinoflagellate off west Florida,” Limnol. Oceanogr. 30, 286–298 (1985).
[Crossref]

1983 (3)

1982 (1)

C. S. Yentsch, D. A. Phinney, “The use of the attenuation of light by particulate matter for the estimate of phytoplankton chlorophyll with reference to the Coastal Zone Color Scanner,” J. Plankton Res. 4, 93–102 (1982).
[Crossref]

1981 (1)

1980 (1)

A. Morel, “In-water and remote measurement of ocean color,” Boundary-Layer Meteorol. 18, 177–201 (1980).
[Crossref]

1975 (1)

S. Shimura, Y. Fujita, “Changes in the activity of fucoxan-thin-excited photosynthesis in the marine diatom Phaeodacty-lum tricornutum grown under different culture conditions,” Mar. Biol. 33,185–194 (1975).
[Crossref]

Abbott, M. R.

W. M. Balch, R. W. Eppley, M. R. Abbott, F. M. H. Reid, “Bias in satellite-derived pigment measurements due to coccolithophores and dinoflagellates,” J. Plankton Res. 11, 575–581 (1989).
[Crossref]

Aiken, J.

P. M. Holligan, M. Viollier, C. Dupouy, J. Aiken, “Satellite studies on the distributions of chlorophyll and dinoflagellate blooms in the western English Channel,” Cont. Shelf Res. 2, 81–96 (1983).
[Crossref]

Balch, W. M.

W. M. Balch, R. W. Eppley, M. R. Abbott, F. M. H. Reid, “Bias in satellite-derived pigment measurements due to coccolithophores and dinoflagellates,” J. Plankton Res. 11, 575–581 (1989).
[Crossref]

Barnes, R.

C. R. McClain, W. E. Esaias, W. Barnes, B. Guenther, D. Endres, S. Hooker, G. Mitchell, R. Barnes, “SeaWiFS calibration and validation plan,” NASA Tech. Memo. 3, 1–41 (1992).

Barnes, W.

C. R. McClain, W. E. Esaias, W. Barnes, B. Guenther, D. Endres, S. Hooker, G. Mitchell, R. Barnes, “SeaWiFS calibration and validation plan,” NASA Tech. Memo. 3, 1–41 (1992).

Berry, R. E.

Borstad, G. A.

G. A. Borstad, J. F. R. Gower, E. J. Carpenter, J. G. Reuter, “Development of algorithms for remote sensing of marine Trichodesmium,” in Marine pelagic cyanobacteria (Trichodesmium and other Diazotrophs), E. J. Carpenter, D. G. Capone, J. G. Reuter, eds. (Kluwer, Dordrecht, The Netherlands, 1991), pp. 193–210.

Bristow, M.

Broenkow, W. W.

Brown, J. W.

Brown, O. B.

Bundy, D.

Capone, D. G.

E. J. Carpenter, D. G. Capone, Nitrogen in the Marine Environment (Academic, San Diego, Calif., 1983).

Carder, K. L.

K. L. Carder, R. G. Steward, “A remote-sensing reflectance model of a red-tide dinoflagellate off west Florida,” Limnol. Oceanogr. 30, 286–298 (1985).
[Crossref]

Carpenter, E. J.

E. J. Carpenter, D. G. Capone, Nitrogen in the Marine Environment (Academic, San Diego, Calif., 1983).

A. Subramaniam, E. J. Carpenter, “An algorithm for detection of blooms of the marine cyanobacterium Trichodesmium using CZCS imagery,” Int. J. Remote Sensing (to be published).

G. A. Borstad, J. F. R. Gower, E. J. Carpenter, J. G. Reuter, “Development of algorithms for remote sensing of marine Trichodesmium,” in Marine pelagic cyanobacteria (Trichodesmium and other Diazotrophs), E. J. Carpenter, D. G. Capone, J. G. Reuter, eds. (Kluwer, Dordrecht, The Netherlands, 1991), pp. 193–210.

Clark, D. K.

Dupouy, C.

P. M. Holligan, M. Viollier, C. Dupouy, J. Aiken, “Satellite studies on the distributions of chlorophyll and dinoflagellate blooms in the western English Channel,” Cont. Shelf Res. 2, 81–96 (1983).
[Crossref]

Endres, D.

C. R. McClain, W. E. Esaias, W. Barnes, B. Guenther, D. Endres, S. Hooker, G. Mitchell, R. Barnes, “SeaWiFS calibration and validation plan,” NASA Tech. Memo. 3, 1–41 (1992).

Eppley, R. W.

W. M. Balch, R. W. Eppley, M. R. Abbott, F. M. H. Reid, “Bias in satellite-derived pigment measurements due to coccolithophores and dinoflagellates,” J. Plankton Res. 11, 575–581 (1989).
[Crossref]

Esaias, W. E.

C. R. McClain, W. E. Esaias, W. Barnes, B. Guenther, D. Endres, S. Hooker, G. Mitchell, R. Barnes, “SeaWiFS calibration and validation plan,” NASA Tech. Memo. 3, 1–41 (1992).

Evans, R. H.

Fujita, Y.

S. Shimura, Y. Fujita, “Changes in the activity of fucoxan-thin-excited photosynthesis in the marine diatom Phaeodacty-lum tricornutum grown under different culture conditions,” Mar. Biol. 33,185–194 (1975).
[Crossref]

Furtek, R.

Gordon, H. R.

Gower, J. F. R.

G. A. Borstad, J. F. R. Gower, E. J. Carpenter, J. G. Reuter, “Development of algorithms for remote sensing of marine Trichodesmium,” in Marine pelagic cyanobacteria (Trichodesmium and other Diazotrophs), E. J. Carpenter, D. G. Capone, J. G. Reuter, eds. (Kluwer, Dordrecht, The Netherlands, 1991), pp. 193–210.

Guenther, B.

C. R. McClain, W. E. Esaias, W. Barnes, B. Guenther, D. Endres, S. Hooker, G. Mitchell, R. Barnes, “SeaWiFS calibration and validation plan,” NASA Tech. Memo. 3, 1–41 (1992).

Harman, H. H.

H. H. Harman, Modern Factor Analysis (U. Chicago Press, Chicago, Ill., 1960).

Hoepffner, N.

N. Hoepffner, S. Sathyendranath, “Bio-optical characteristics of coastal waters: absorption spectra of phytoplankton and pigment distribution in the western North Atlantic,” Limnol. Oceanogr. 37, 1660–1679 (1992).
[Crossref]

Hoge, F. E.

F. E. Hoge, C. W. Wright, R. N. Swift, J. K. Yungel, “Airborne discrimination between ice and water: application to the laser measurement of chlorophyll-in-water in a marginal ice zone,” Remote Sensing Environ. 30, 67–76 (1989).
[Crossref]

J. J. Walsh, C. D. Wirick, L. J. Pietrafesa, T. E. Whitledge, F. E. Hoge, R. N. Swift, “High-frequency sampling of the 1984 spring bloom within the Mid-Atlantic Bight: synoptic shipboard, aircraft and in situ perspectives of the SEEP-I experiment,” Cont. Shelf Res. 8, 529–563 (1988).
[Crossref]

F. E. Hoge, R. E. Berry, R. N. Swift, “Active–passive airborne ocean color measurement. 1: Instrumentation,” Appl. Opt. 25, 39–47 (1986).
[Crossref] [PubMed]

F. E. Hoge, R. N. Swift, J. K. Yungel, “Active–passive airborne ocean color measurement. 2: Applications,” Appl. Opt. 25, 48–57 (1986).
[Crossref] [PubMed]

F. E. Hoge, R. N. Swift, “Active–passive correlation spectroscopy: a new technique for identifying ocean color algorithm spectral regions,” Appl. Opt. 25, 2571–2583 (1986).
[Crossref] [PubMed]

F. E. Hoge, R. N. Swift, “Chlorophyll pigment concentration using spectral curvature algorithms: an evaluation of present and proposed satellite ocean color senor bands,” Appl. Opt. 25, 3677–3682 (1986).
[Crossref] [PubMed]

F. E. Hoge, R. N. Swift, “Airborne dual laser excitation and mapping of phytoplankton photopigments in a Gulf Stream Warm Core Ring,” Appl. Opt. 22, 2272–2281 (1983).
[Crossref] [PubMed]

Holligan, P. M.

P. M. Holligan, M. Viollier, C. Dupouy, J. Aiken, “Satellite studies on the distributions of chlorophyll and dinoflagellate blooms in the western English Channel,” Cont. Shelf Res. 2, 81–96 (1983).
[Crossref]

Hooker, S.

C. R. McClain, W. E. Esaias, W. Barnes, B. Guenther, D. Endres, S. Hooker, G. Mitchell, R. Barnes, “SeaWiFS calibration and validation plan,” NASA Tech. Memo. 3, 1–41 (1992).

McClain, C. R.

C. R. McClain, W. E. Esaias, W. Barnes, B. Guenther, D. Endres, S. Hooker, G. Mitchell, R. Barnes, “SeaWiFS calibration and validation plan,” NASA Tech. Memo. 3, 1–41 (1992).

Mitchell, G.

C. R. McClain, W. E. Esaias, W. Barnes, B. Guenther, D. Endres, S. Hooker, G. Mitchell, R. Barnes, “SeaWiFS calibration and validation plan,” NASA Tech. Memo. 3, 1–41 (1992).

Morel, A.

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sensing 10, 1373–1394 (1989).
[Crossref]

A. Morel, “In-water and remote measurement of ocean color,” Boundary-Layer Meteorol. 18, 177–201 (1980).
[Crossref]

H. R. Gordon, A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery. A Review (Springer-Verlag, New York, 1983).

S. Sathyendranath, A. Morel, “Light emerging from the sea—interpretation and uses in remote sensing,” in Remote Sensing Applications in Marine Science and Technology, A. P. Cracknell, ed. (Reidel, Dordrecht, The Netherlands, 1983) pp. 323–357.
[Crossref]

Murata, N.

N. Murata, K. Satoh, “Absorption and fluorescence emission by intact cells, chloroplasts and chlorophyll-protein complexes,” in Light Emission by Plants and Bacteria, Govindjee, J. Amesz, D. C. Fork, ed. (Academic, New York, 1986) pp. 137–159.

Nielsen, D.

Phinney, D. A.

C. S. Yentsch, D. A. Phinney, “The use of the attenuation of light by particulate matter for the estimate of phytoplankton chlorophyll with reference to the Coastal Zone Color Scanner,” J. Plankton Res. 4, 93–102 (1982).
[Crossref]

Pietrafesa, L. J.

J. J. Walsh, C. D. Wirick, L. J. Pietrafesa, T. E. Whitledge, F. E. Hoge, R. N. Swift, “High-frequency sampling of the 1984 spring bloom within the Mid-Atlantic Bight: synoptic shipboard, aircraft and in situ perspectives of the SEEP-I experiment,” Cont. Shelf Res. 8, 529–563 (1988).
[Crossref]

Prieur, L.

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sensing 10, 1373–1394 (1989).
[Crossref]

Reid, F. M. H.

W. M. Balch, R. W. Eppley, M. R. Abbott, F. M. H. Reid, “Bias in satellite-derived pigment measurements due to coccolithophores and dinoflagellates,” J. Plankton Res. 11, 575–581 (1989).
[Crossref]

Reuter, J. G.

G. A. Borstad, J. F. R. Gower, E. J. Carpenter, J. G. Reuter, “Development of algorithms for remote sensing of marine Trichodesmium,” in Marine pelagic cyanobacteria (Trichodesmium and other Diazotrophs), E. J. Carpenter, D. G. Capone, J. G. Reuter, eds. (Kluwer, Dordrecht, The Netherlands, 1991), pp. 193–210.

Sathyendranath, S.

N. Hoepffner, S. Sathyendranath, “Bio-optical characteristics of coastal waters: absorption spectra of phytoplankton and pigment distribution in the western North Atlantic,” Limnol. Oceanogr. 37, 1660–1679 (1992).
[Crossref]

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sensing 10, 1373–1394 (1989).
[Crossref]

S. Sathyendranath, “Influence des substances en solution et en suspension dans les eaux de mer sur l'absorption et la réflectance. Modélisation et applications à la télédétection,” Ph.D. dissertation (Université de Paris VI, Pierre et Marie, Paris, France, 1981).

S. Sathyendranath, A. Morel, “Light emerging from the sea—interpretation and uses in remote sensing,” in Remote Sensing Applications in Marine Science and Technology, A. P. Cracknell, ed. (Reidel, Dordrecht, The Netherlands, 1983) pp. 323–357.
[Crossref]

Satoh, K.

N. Murata, K. Satoh, “Absorption and fluorescence emission by intact cells, chloroplasts and chlorophyll-protein complexes,” in Light Emission by Plants and Bacteria, Govindjee, J. Amesz, D. C. Fork, ed. (Academic, New York, 1986) pp. 137–159.

Shimura, S.

S. Shimura, Y. Fujita, “Changes in the activity of fucoxan-thin-excited photosynthesis in the marine diatom Phaeodacty-lum tricornutum grown under different culture conditions,” Mar. Biol. 33,185–194 (1975).
[Crossref]

Steward, R. G.

K. L. Carder, R. G. Steward, “A remote-sensing reflectance model of a red-tide dinoflagellate off west Florida,” Limnol. Oceanogr. 30, 286–298 (1985).
[Crossref]

Subramaniam, A.

A. Subramaniam, E. J. Carpenter, “An algorithm for detection of blooms of the marine cyanobacterium Trichodesmium using CZCS imagery,” Int. J. Remote Sensing (to be published).

Swift, R. N.

F. E. Hoge, C. W. Wright, R. N. Swift, J. K. Yungel, “Airborne discrimination between ice and water: application to the laser measurement of chlorophyll-in-water in a marginal ice zone,” Remote Sensing Environ. 30, 67–76 (1989).
[Crossref]

J. J. Walsh, C. D. Wirick, L. J. Pietrafesa, T. E. Whitledge, F. E. Hoge, R. N. Swift, “High-frequency sampling of the 1984 spring bloom within the Mid-Atlantic Bight: synoptic shipboard, aircraft and in situ perspectives of the SEEP-I experiment,” Cont. Shelf Res. 8, 529–563 (1988).
[Crossref]

F. E. Hoge, R. N. Swift, “Active–passive correlation spectroscopy: a new technique for identifying ocean color algorithm spectral regions,” Appl. Opt. 25, 2571–2583 (1986).
[Crossref] [PubMed]

F. E. Hoge, R. N. Swift, J. K. Yungel, “Active–passive airborne ocean color measurement. 2: Applications,” Appl. Opt. 25, 48–57 (1986).
[Crossref] [PubMed]

F. E. Hoge, R. E. Berry, R. N. Swift, “Active–passive airborne ocean color measurement. 1: Instrumentation,” Appl. Opt. 25, 39–47 (1986).
[Crossref] [PubMed]

F. E. Hoge, R. N. Swift, “Chlorophyll pigment concentration using spectral curvature algorithms: an evaluation of present and proposed satellite ocean color senor bands,” Appl. Opt. 25, 3677–3682 (1986).
[Crossref] [PubMed]

F. E. Hoge, R. N. Swift, “Airborne dual laser excitation and mapping of phytoplankton photopigments in a Gulf Stream Warm Core Ring,” Appl. Opt. 22, 2272–2281 (1983).
[Crossref] [PubMed]

Viollier, M.

P. M. Holligan, M. Viollier, C. Dupouy, J. Aiken, “Satellite studies on the distributions of chlorophyll and dinoflagellate blooms in the western English Channel,” Cont. Shelf Res. 2, 81–96 (1983).
[Crossref]

Walsh, J. J.

J. J. Walsh, C. D. Wirick, L. J. Pietrafesa, T. E. Whitledge, F. E. Hoge, R. N. Swift, “High-frequency sampling of the 1984 spring bloom within the Mid-Atlantic Bight: synoptic shipboard, aircraft and in situ perspectives of the SEEP-I experiment,” Cont. Shelf Res. 8, 529–563 (1988).
[Crossref]

Whitledge, T. E.

J. J. Walsh, C. D. Wirick, L. J. Pietrafesa, T. E. Whitledge, F. E. Hoge, R. N. Swift, “High-frequency sampling of the 1984 spring bloom within the Mid-Atlantic Bight: synoptic shipboard, aircraft and in situ perspectives of the SEEP-I experiment,” Cont. Shelf Res. 8, 529–563 (1988).
[Crossref]

Wirick, C. D.

J. J. Walsh, C. D. Wirick, L. J. Pietrafesa, T. E. Whitledge, F. E. Hoge, R. N. Swift, “High-frequency sampling of the 1984 spring bloom within the Mid-Atlantic Bight: synoptic shipboard, aircraft and in situ perspectives of the SEEP-I experiment,” Cont. Shelf Res. 8, 529–563 (1988).
[Crossref]

Wright, C. W.

F. E. Hoge, C. W. Wright, R. N. Swift, J. K. Yungel, “Airborne discrimination between ice and water: application to the laser measurement of chlorophyll-in-water in a marginal ice zone,” Remote Sensing Environ. 30, 67–76 (1989).
[Crossref]

Yentsch, C. S.

C. S. Yentsch, D. A. Phinney, “The use of the attenuation of light by particulate matter for the estimate of phytoplankton chlorophyll with reference to the Coastal Zone Color Scanner,” J. Plankton Res. 4, 93–102 (1982).
[Crossref]

Yungel, J. K.

F. E. Hoge, C. W. Wright, R. N. Swift, J. K. Yungel, “Airborne discrimination between ice and water: application to the laser measurement of chlorophyll-in-water in a marginal ice zone,” Remote Sensing Environ. 30, 67–76 (1989).
[Crossref]

F. E. Hoge, R. N. Swift, J. K. Yungel, “Active–passive airborne ocean color measurement. 2: Applications,” Appl. Opt. 25, 48–57 (1986).
[Crossref] [PubMed]

Appl. Opt. (8)

F. E. Hoge, R. N. Swift, “Chlorophyll pigment concentration using spectral curvature algorithms: an evaluation of present and proposed satellite ocean color senor bands,” Appl. Opt. 25, 3677–3682 (1986).
[Crossref] [PubMed]

F. E. Hoge, R. N. Swift, “Active–passive correlation spectroscopy: a new technique for identifying ocean color algorithm spectral regions,” Appl. Opt. 25, 2571–2583 (1986).
[Crossref] [PubMed]

H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22, 20–36 (1983).
[Crossref] [PubMed]

F. E. Hoge, R. E. Berry, R. N. Swift, “Active–passive airborne ocean color measurement. 1: Instrumentation,” Appl. Opt. 25, 39–47 (1986).
[Crossref] [PubMed]

M. Bristow, D. Nielsen, D. Bundy, R. Furtek, “Use of water Raman emission to correct airborne laser fluorosensor data for effects of water optical attenuation,” Appl. Opt. 20, 2889–2906 (1981).
[Crossref] [PubMed]

F. E. Hoge, R. N. Swift, “Airborne dual laser excitation and mapping of phytoplankton photopigments in a Gulf Stream Warm Core Ring,” Appl. Opt. 22, 2272–2281 (1983).
[Crossref] [PubMed]

F. E. Hoge, R. N. Swift, J. K. Yungel, “Active–passive airborne ocean color measurement. 2: Applications,” Appl. Opt. 25, 48–57 (1986).
[Crossref] [PubMed]

H. R. Gordon, “Diffuse reflectance of the ocean: influence of nonuniform phytoplankton pigment profile,” Appl. Opt. 31, 2116–2129 (1992).
[Crossref] [PubMed]

Boundary-Layer Meteorol. (1)

A. Morel, “In-water and remote measurement of ocean color,” Boundary-Layer Meteorol. 18, 177–201 (1980).
[Crossref]

Cont. Shelf Res. (2)

J. J. Walsh, C. D. Wirick, L. J. Pietrafesa, T. E. Whitledge, F. E. Hoge, R. N. Swift, “High-frequency sampling of the 1984 spring bloom within the Mid-Atlantic Bight: synoptic shipboard, aircraft and in situ perspectives of the SEEP-I experiment,” Cont. Shelf Res. 8, 529–563 (1988).
[Crossref]

P. M. Holligan, M. Viollier, C. Dupouy, J. Aiken, “Satellite studies on the distributions of chlorophyll and dinoflagellate blooms in the western English Channel,” Cont. Shelf Res. 2, 81–96 (1983).
[Crossref]

Int. J. Remote Sensing (1)

S. Sathyendranath, L. Prieur, A. Morel, “A three-component model of ocean colour and its application to remote sensing of phytoplankton pigments in coastal waters,” Int. J. Remote Sensing 10, 1373–1394 (1989).
[Crossref]

J. Plankton Res. (2)

W. M. Balch, R. W. Eppley, M. R. Abbott, F. M. H. Reid, “Bias in satellite-derived pigment measurements due to coccolithophores and dinoflagellates,” J. Plankton Res. 11, 575–581 (1989).
[Crossref]

C. S. Yentsch, D. A. Phinney, “The use of the attenuation of light by particulate matter for the estimate of phytoplankton chlorophyll with reference to the Coastal Zone Color Scanner,” J. Plankton Res. 4, 93–102 (1982).
[Crossref]

Limnol. Oceanogr. (2)

N. Hoepffner, S. Sathyendranath, “Bio-optical characteristics of coastal waters: absorption spectra of phytoplankton and pigment distribution in the western North Atlantic,” Limnol. Oceanogr. 37, 1660–1679 (1992).
[Crossref]

K. L. Carder, R. G. Steward, “A remote-sensing reflectance model of a red-tide dinoflagellate off west Florida,” Limnol. Oceanogr. 30, 286–298 (1985).
[Crossref]

Mar. Biol. (1)

S. Shimura, Y. Fujita, “Changes in the activity of fucoxan-thin-excited photosynthesis in the marine diatom Phaeodacty-lum tricornutum grown under different culture conditions,” Mar. Biol. 33,185–194 (1975).
[Crossref]

NASA Tech. Memo. (1)

C. R. McClain, W. E. Esaias, W. Barnes, B. Guenther, D. Endres, S. Hooker, G. Mitchell, R. Barnes, “SeaWiFS calibration and validation plan,” NASA Tech. Memo. 3, 1–41 (1992).

Remote Sensing Environ. (1)

F. E. Hoge, C. W. Wright, R. N. Swift, J. K. Yungel, “Airborne discrimination between ice and water: application to the laser measurement of chlorophyll-in-water in a marginal ice zone,” Remote Sensing Environ. 30, 67–76 (1989).
[Crossref]

Other (9)

H. R. Gordon, A. Morel, Remote Assessment of Ocean Color for Interpretation of Satellite Visible Imagery. A Review (Springer-Verlag, New York, 1983).

G. A. Borstad, J. F. R. Gower, E. J. Carpenter, J. G. Reuter, “Development of algorithms for remote sensing of marine Trichodesmium,” in Marine pelagic cyanobacteria (Trichodesmium and other Diazotrophs), E. J. Carpenter, D. G. Capone, J. G. Reuter, eds. (Kluwer, Dordrecht, The Netherlands, 1991), pp. 193–210.

A. Subramaniam, E. J. Carpenter, “An algorithm for detection of blooms of the marine cyanobacterium Trichodesmium using CZCS imagery,” Int. J. Remote Sensing (to be published).

S. Sathyendranath, “Influence des substances en solution et en suspension dans les eaux de mer sur l'absorption et la réflectance. Modélisation et applications à la télédétection,” Ph.D. dissertation (Université de Paris VI, Pierre et Marie, Paris, France, 1981).

H. H. Harman, Modern Factor Analysis (U. Chicago Press, Chicago, Ill., 1960).

S. Sathyendranath, A. Morel, “Light emerging from the sea—interpretation and uses in remote sensing,” in Remote Sensing Applications in Marine Science and Technology, A. P. Cracknell, ed. (Reidel, Dordrecht, The Netherlands, 1983) pp. 323–357.
[Crossref]

N. Murata, K. Satoh, “Absorption and fluorescence emission by intact cells, chloroplasts and chlorophyll-protein complexes,” in Light Emission by Plants and Bacteria, Govindjee, J. Amesz, D. C. Fork, ed. (Academic, New York, 1986) pp. 137–159.

T. Platt, W. K. W. Li, eds., Photosynthetic Picoplankton, Vol. 214 of Canadian Bulletins of Fisheries and Aquatic Science (Department of Supply and Services, Ottawa, 1986).

E. J. Carpenter, D. G. Capone, Nitrogen in the Marine Environment (Academic, San Diego, Calif., 1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

Plot of the chlorophyll line height versus the phycoerythrin line height for the whole data set. The triangles represent data points with chlorophyll line height greater than 0.4 and phycoerythrin line height less than 0.4. The unfilled circles represent data points with phycoerythrin line height greater than 1.2. The solid circles represent the rest of the data.

Fig. 2
Fig. 2

Five spectra from the POCS. Continuous curve, spectra from two pixels with phycoerythrin line height (P) of 1.48; dashed curve, spectra from three pixels with phycoerythrin line height of 0.52. All five pixels had similar chlorophyll line heights (∼ 0.99). Also shown is a dotted–dashed theoretical curve, computed using the model of Sathyendranath et al,22 with a chlorophyll concentration of 4.1 mg/m−3 and b(550) = 1 m−1.

Fig. 3
Fig. 3

Spectra of mean and standard deviation, for the POCS data.

Fig. 4
Fig. 4

Correlation matrix for POCS data.

Fig. 5
Fig. 5

First five orthogonal vectors obtained from factor analysis with all 27 wavebands.

Fig. 6
Fig. 6

Logarithm of the blue–green ratio [log L(447)/L(549)] as a function of the logarithm of the chlorophyll line height. The symbol used are the same as in Fig. 1.

Fig. 7
Fig. 7

Logarithm of the blue–green ratio [log L(447)/L(549)] as a function of the ratio of chlorophyll line height (C) to phycoerythrin line height (P). The symbols used are the same as in Fig. 1.

Fig. 8
Fig. 8

Computed values of the (a) (log-transformed) chlorophyll and (b) phycoerythrin line heights and (c) Raman signal as a function of the corresponding measured values.

Tables (1)

Tables Icon

Table 1 Results of Multiple Regression of Factor Loadings on Chlorophyll (C), Phycoerythrin (P), or Raman Signal (R) a

Equations (2)

Equations on this page are rendered with MathJax. Learn more.

R ( λ ) = X Q m 2 L ( λ ) ( 1 ρ ) E d ( λ ) ,
log L ( λ ) = M ( λ ) + i = 1 p S i F i ( λ ) ,

Metrics