Abstract

A passively mode-locked, flash-lamp-pumped long-cavity Nd:YAG laser was developed with a cavity length that was variable in discrete increments from approximately 11 to 60 m, permitting adjustment of the mode-locked pulse repetition frequency over a range from 13 to 2.5 MHz. Multiple-pulse acoustic signals were generated with this laser in an aluminum sample and remotely detected by a path-stabilized Michelson interferometer. The energy in the multiple-pulse acoustic signal was confined to a considerably reduced spectral range compared with that in a single pulse. Successful laser generation of spectrally selective narrow-band ultrasound presents new opportunities to integrate advanced signal-processing strategies with interferometric detection to enhance the sensitivity of laser ultrasonics for industrial applications.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. C. B. Scruby, L. E. Drain, Laser Ultrasonics: Techniques and Applications (Hilger, Bristol, UK, 1990), Chap. 6.
  2. C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, S. B. Palmer, “Laser generation of ultrasound in metals,” in Research Techniques in Non-Destructive Testing, R. S. Sharpe, ed. (Academic, New York, 1982), Vol. V, pp. 281–327.
  3. J. P. Monchalin, “Optical detection of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 485–499 (1986).
    [CrossRef]
  4. J. W. Wagner, “Optical detection of ultrasound,” in Physical Acoustics,W. P. Mason, ed. (Academic, New York, 1990), Vol. XIX, pp. 201–266.
  5. J. W. Wagner, J. B. Spicer, “Theoretical noise-limited sensitivity of classical interferometry,” J. Opt. Soc. Am. B 4, 1316–1326 (1987).
    [CrossRef]
  6. E. Bourkoff, C. H. Palmer, “Low-energy optical generation and detection of acoustic pulses in metals and nonmetals,” Appl. Phys. Lett. 46, 143–145 (1985).
    [CrossRef]
  7. R. J. Dewhurst, S. B. Palmer, D. A. Hutchins, C. B. Scruby, “Quantitative measurements of laser-generated acoustic waveforms,” J. Appl. Phys. 53, 4064–4071 (1982).
    [CrossRef]
  8. A. D. W. McKie, R. C. Addison, “Inspection of components having complex geometries using laser-based ultrasound,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds. (Plenum, New York, 1992), Vol. 11A, pp. 577–584.
    [CrossRef]
  9. H. I. Ringermacher, F. A. Reed, J. R. Strife, “Laser ultrasonics for coating thickness evaluation at 1200 C,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds. (Plenum, New York, 1993), Vol. 12.
    [CrossRef]
  10. C. Padioleau, P. Bouchard, R. Heon, J. -P. Monchalin, F. H. Chang, T. E. Drake, “Laser ultrasonic inspection of graphite epoxy laminates,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds. (Plenum, New York, 1993), Vol. 12 (to be published).
    [CrossRef]
  11. R. J. von Gutfeld, R. L. Melcher, “MHz acoustic waves from pulsed thermoelastic expansions and their application to flaw detection,” Mater. Eval. 35, 97–99 (1977).
  12. D. L. Mensa, High Resolution Radar Cross-Section Imaging (Artech, Boston, Mass., 1991), p. 59.
  13. R. C. Addison, L. J. Graham, R. S. Linebarger, B. R. Tittman, “Laser-based ultrasonics for the inspection of solids,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds. (Plenum, New York, 1988), Vol. 7A, pp. 585–594.
  14. Y. H. Berthelot, “Thermoacoustic generation of narrow-band signals with high repetition rate pulsed lasers,” J. Acoust. Soc. Am. 85, 1173–1181 (1989).
    [CrossRef]
  15. J. W. Wagner, J. B. Deaton, J. B. Spicer, “Generation of ultrasound by repetitively Q switching a pulsed Nd:YAG laser,” Appl. Opt. 27, 4696–4700 (1988).
    [CrossRef] [PubMed]
  16. J. B. Deaton, A. D. W. McKie, J. B. Spicer, J. W. Wagner, “Generation of narrow-band ultrasound with a long cavity mode-locked Nd:YAG laser,” Appl. Phys. Lett. 56, 2390–2392 (1990).
    [CrossRef]
  17. A. D. W. McKie, J. W. Wagner, J. B. Spicer, C. M. Penney, “Laser generation of narrow-band and directed ultrasound,” Ultrasonics 27, 323–330 (1989).
    [CrossRef]
  18. K. A. Nelson, R. J. D. Miller, D. R. Lutz, M. D. Fayer, “Optical generation of tunable ultrasonic waves,” J. Appl. Phys. 53,1144–1149 (1982).
    [CrossRef]
  19. H. Nakano, S. Nagai, “Laser generation of antisymmetric Lamb waves in thin plates,” Ultrasonics 29, 230–234 (1991).
    [CrossRef]
  20. J. Huang, S. Krishnaswamy, J. D. Achenbach, “Laser generation of narrow-band surface waves,” J. Acoust. Soc. Am. 92, 2527–2531 (1992).
    [CrossRef]
  21. M. J. Brienza, A. J. DeMaria, “Laser-induced microwave sound by surface heating,” Appl. Phys. Lett. 11, 44–46 (1967).
    [CrossRef]
  22. G. Cachier, “Laser excitation of microwave sound in solids,” J. Acoust. Soc. Am. 49, 974–978 (1971).
    [CrossRef]
  23. H. K. Wickramasinghe, R. C. Bray, V. Jipson, C. F. Quate, J. R. Salcedo, “Photoacoustics on a microscopic scale,” Appl. Phys. Lett. 33, 923–925 (1978).
    [CrossRef]
  24. G. Veith, M. Kowatsch, “Optical generation of continuous 76-MHz surface acoustic waves on YZ LiNbO3,” Appl. Phys. Lett. 40, 30–32 (1982).
    [CrossRef]
  25. P. E. Dyer, J. Sidhu, B. L. Tait, “Generation and detection of 160-MHz acoustic waves using a TEA CO2 laser irradiated polymer film combination,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 2–4 (1988).
    [CrossRef] [PubMed]
  26. J. U. White, “Long optical paths of large aperture,” J. Opt. Soc. Am. 32, 285–288 (1942).
    [CrossRef]
  27. N. H. Schiller, X. M. Zhao, X. C. Liang, R. R. Alfano, “Compact picosecond Nd:glass mode-locked laser with variable cavity length from 5 to 21 m,” Appl. Opt. 28, 946–948 (1989).
    [CrossRef] [PubMed]
  28. D. J. Bradley, G. H. C. New, S. J. Caughey, “Relationship between saturable absorber cell length and pulse duration in passively mode-locked lasers,” Opt. Commun. 2, 41–44 (1970).
    [CrossRef]
  29. A. J. DeMaria, D. A. Stetser, H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett. 8, 174–176(1966).
    [CrossRef]
  30. H. Weichel, “Improving the reliability of Nd:glass mode-locked lasers,” J. Appl. Phys. 44, 3635–3637 (1973).
    [CrossRef]
  31. R. Harrach, G. Kachen, “Pulse trains from mode-locked lasers,” J. Appl. Phys. 39, 2482–2483 (1968).
    [CrossRef]
  32. W. Koechner, Solid-State Laser Engineering, 2nd ed. (Springer-Verlag, Berlin, 1988), p. 463.
  33. J. B. Spicer, “Laser ultrasonics in finite structures: comprehensive modelling with supporting experiment,” Ph.D. dissertation (Johns Hopkins University, Baltimore, Md., 1991), pp. 182–198.
  34. R. J. Dewhurst, C. E. Edwards, A. D. W. McKie, S. B. Palmer, “Comparative study of wide-band ultrasonic transducers,” Ultrasonics 25, 315–321 (1987).
    [CrossRef]

1992 (1)

J. Huang, S. Krishnaswamy, J. D. Achenbach, “Laser generation of narrow-band surface waves,” J. Acoust. Soc. Am. 92, 2527–2531 (1992).
[CrossRef]

1991 (1)

H. Nakano, S. Nagai, “Laser generation of antisymmetric Lamb waves in thin plates,” Ultrasonics 29, 230–234 (1991).
[CrossRef]

1990 (1)

J. B. Deaton, A. D. W. McKie, J. B. Spicer, J. W. Wagner, “Generation of narrow-band ultrasound with a long cavity mode-locked Nd:YAG laser,” Appl. Phys. Lett. 56, 2390–2392 (1990).
[CrossRef]

1989 (3)

A. D. W. McKie, J. W. Wagner, J. B. Spicer, C. M. Penney, “Laser generation of narrow-band and directed ultrasound,” Ultrasonics 27, 323–330 (1989).
[CrossRef]

Y. H. Berthelot, “Thermoacoustic generation of narrow-band signals with high repetition rate pulsed lasers,” J. Acoust. Soc. Am. 85, 1173–1181 (1989).
[CrossRef]

N. H. Schiller, X. M. Zhao, X. C. Liang, R. R. Alfano, “Compact picosecond Nd:glass mode-locked laser with variable cavity length from 5 to 21 m,” Appl. Opt. 28, 946–948 (1989).
[CrossRef] [PubMed]

1988 (2)

J. W. Wagner, J. B. Deaton, J. B. Spicer, “Generation of ultrasound by repetitively Q switching a pulsed Nd:YAG laser,” Appl. Opt. 27, 4696–4700 (1988).
[CrossRef] [PubMed]

P. E. Dyer, J. Sidhu, B. L. Tait, “Generation and detection of 160-MHz acoustic waves using a TEA CO2 laser irradiated polymer film combination,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 2–4 (1988).
[CrossRef] [PubMed]

1987 (2)

J. W. Wagner, J. B. Spicer, “Theoretical noise-limited sensitivity of classical interferometry,” J. Opt. Soc. Am. B 4, 1316–1326 (1987).
[CrossRef]

R. J. Dewhurst, C. E. Edwards, A. D. W. McKie, S. B. Palmer, “Comparative study of wide-band ultrasonic transducers,” Ultrasonics 25, 315–321 (1987).
[CrossRef]

1986 (1)

J. P. Monchalin, “Optical detection of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 485–499 (1986).
[CrossRef]

1985 (1)

E. Bourkoff, C. H. Palmer, “Low-energy optical generation and detection of acoustic pulses in metals and nonmetals,” Appl. Phys. Lett. 46, 143–145 (1985).
[CrossRef]

1982 (3)

R. J. Dewhurst, S. B. Palmer, D. A. Hutchins, C. B. Scruby, “Quantitative measurements of laser-generated acoustic waveforms,” J. Appl. Phys. 53, 4064–4071 (1982).
[CrossRef]

K. A. Nelson, R. J. D. Miller, D. R. Lutz, M. D. Fayer, “Optical generation of tunable ultrasonic waves,” J. Appl. Phys. 53,1144–1149 (1982).
[CrossRef]

G. Veith, M. Kowatsch, “Optical generation of continuous 76-MHz surface acoustic waves on YZ LiNbO3,” Appl. Phys. Lett. 40, 30–32 (1982).
[CrossRef]

1978 (1)

H. K. Wickramasinghe, R. C. Bray, V. Jipson, C. F. Quate, J. R. Salcedo, “Photoacoustics on a microscopic scale,” Appl. Phys. Lett. 33, 923–925 (1978).
[CrossRef]

1977 (1)

R. J. von Gutfeld, R. L. Melcher, “MHz acoustic waves from pulsed thermoelastic expansions and their application to flaw detection,” Mater. Eval. 35, 97–99 (1977).

1973 (1)

H. Weichel, “Improving the reliability of Nd:glass mode-locked lasers,” J. Appl. Phys. 44, 3635–3637 (1973).
[CrossRef]

1971 (1)

G. Cachier, “Laser excitation of microwave sound in solids,” J. Acoust. Soc. Am. 49, 974–978 (1971).
[CrossRef]

1970 (1)

D. J. Bradley, G. H. C. New, S. J. Caughey, “Relationship between saturable absorber cell length and pulse duration in passively mode-locked lasers,” Opt. Commun. 2, 41–44 (1970).
[CrossRef]

1968 (1)

R. Harrach, G. Kachen, “Pulse trains from mode-locked lasers,” J. Appl. Phys. 39, 2482–2483 (1968).
[CrossRef]

1967 (1)

M. J. Brienza, A. J. DeMaria, “Laser-induced microwave sound by surface heating,” Appl. Phys. Lett. 11, 44–46 (1967).
[CrossRef]

1966 (1)

A. J. DeMaria, D. A. Stetser, H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett. 8, 174–176(1966).
[CrossRef]

1942 (1)

Achenbach, J. D.

J. Huang, S. Krishnaswamy, J. D. Achenbach, “Laser generation of narrow-band surface waves,” J. Acoust. Soc. Am. 92, 2527–2531 (1992).
[CrossRef]

Addison, R. C.

A. D. W. McKie, R. C. Addison, “Inspection of components having complex geometries using laser-based ultrasound,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds. (Plenum, New York, 1992), Vol. 11A, pp. 577–584.
[CrossRef]

R. C. Addison, L. J. Graham, R. S. Linebarger, B. R. Tittman, “Laser-based ultrasonics for the inspection of solids,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds. (Plenum, New York, 1988), Vol. 7A, pp. 585–594.

Alfano, R. R.

Berthelot, Y. H.

Y. H. Berthelot, “Thermoacoustic generation of narrow-band signals with high repetition rate pulsed lasers,” J. Acoust. Soc. Am. 85, 1173–1181 (1989).
[CrossRef]

Bouchard, P.

C. Padioleau, P. Bouchard, R. Heon, J. -P. Monchalin, F. H. Chang, T. E. Drake, “Laser ultrasonic inspection of graphite epoxy laminates,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds. (Plenum, New York, 1993), Vol. 12 (to be published).
[CrossRef]

Bourkoff, E.

E. Bourkoff, C. H. Palmer, “Low-energy optical generation and detection of acoustic pulses in metals and nonmetals,” Appl. Phys. Lett. 46, 143–145 (1985).
[CrossRef]

Bradley, D. J.

D. J. Bradley, G. H. C. New, S. J. Caughey, “Relationship between saturable absorber cell length and pulse duration in passively mode-locked lasers,” Opt. Commun. 2, 41–44 (1970).
[CrossRef]

Bray, R. C.

H. K. Wickramasinghe, R. C. Bray, V. Jipson, C. F. Quate, J. R. Salcedo, “Photoacoustics on a microscopic scale,” Appl. Phys. Lett. 33, 923–925 (1978).
[CrossRef]

Brienza, M. J.

M. J. Brienza, A. J. DeMaria, “Laser-induced microwave sound by surface heating,” Appl. Phys. Lett. 11, 44–46 (1967).
[CrossRef]

Cachier, G.

G. Cachier, “Laser excitation of microwave sound in solids,” J. Acoust. Soc. Am. 49, 974–978 (1971).
[CrossRef]

Caughey, S. J.

D. J. Bradley, G. H. C. New, S. J. Caughey, “Relationship between saturable absorber cell length and pulse duration in passively mode-locked lasers,” Opt. Commun. 2, 41–44 (1970).
[CrossRef]

Chang, F. H.

C. Padioleau, P. Bouchard, R. Heon, J. -P. Monchalin, F. H. Chang, T. E. Drake, “Laser ultrasonic inspection of graphite epoxy laminates,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds. (Plenum, New York, 1993), Vol. 12 (to be published).
[CrossRef]

Deaton, J. B.

J. B. Deaton, A. D. W. McKie, J. B. Spicer, J. W. Wagner, “Generation of narrow-band ultrasound with a long cavity mode-locked Nd:YAG laser,” Appl. Phys. Lett. 56, 2390–2392 (1990).
[CrossRef]

J. W. Wagner, J. B. Deaton, J. B. Spicer, “Generation of ultrasound by repetitively Q switching a pulsed Nd:YAG laser,” Appl. Opt. 27, 4696–4700 (1988).
[CrossRef] [PubMed]

DeMaria, A. J.

M. J. Brienza, A. J. DeMaria, “Laser-induced microwave sound by surface heating,” Appl. Phys. Lett. 11, 44–46 (1967).
[CrossRef]

A. J. DeMaria, D. A. Stetser, H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett. 8, 174–176(1966).
[CrossRef]

Dewhurst, R. J.

R. J. Dewhurst, C. E. Edwards, A. D. W. McKie, S. B. Palmer, “Comparative study of wide-band ultrasonic transducers,” Ultrasonics 25, 315–321 (1987).
[CrossRef]

R. J. Dewhurst, S. B. Palmer, D. A. Hutchins, C. B. Scruby, “Quantitative measurements of laser-generated acoustic waveforms,” J. Appl. Phys. 53, 4064–4071 (1982).
[CrossRef]

C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, S. B. Palmer, “Laser generation of ultrasound in metals,” in Research Techniques in Non-Destructive Testing, R. S. Sharpe, ed. (Academic, New York, 1982), Vol. V, pp. 281–327.

Drain, L. E.

C. B. Scruby, L. E. Drain, Laser Ultrasonics: Techniques and Applications (Hilger, Bristol, UK, 1990), Chap. 6.

Drake, T. E.

C. Padioleau, P. Bouchard, R. Heon, J. -P. Monchalin, F. H. Chang, T. E. Drake, “Laser ultrasonic inspection of graphite epoxy laminates,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds. (Plenum, New York, 1993), Vol. 12 (to be published).
[CrossRef]

Dyer, P. E.

P. E. Dyer, J. Sidhu, B. L. Tait, “Generation and detection of 160-MHz acoustic waves using a TEA CO2 laser irradiated polymer film combination,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 2–4 (1988).
[CrossRef] [PubMed]

Edwards, C. E.

R. J. Dewhurst, C. E. Edwards, A. D. W. McKie, S. B. Palmer, “Comparative study of wide-band ultrasonic transducers,” Ultrasonics 25, 315–321 (1987).
[CrossRef]

Fayer, M. D.

K. A. Nelson, R. J. D. Miller, D. R. Lutz, M. D. Fayer, “Optical generation of tunable ultrasonic waves,” J. Appl. Phys. 53,1144–1149 (1982).
[CrossRef]

Graham, L. J.

R. C. Addison, L. J. Graham, R. S. Linebarger, B. R. Tittman, “Laser-based ultrasonics for the inspection of solids,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds. (Plenum, New York, 1988), Vol. 7A, pp. 585–594.

Harrach, R.

R. Harrach, G. Kachen, “Pulse trains from mode-locked lasers,” J. Appl. Phys. 39, 2482–2483 (1968).
[CrossRef]

Heon, R.

C. Padioleau, P. Bouchard, R. Heon, J. -P. Monchalin, F. H. Chang, T. E. Drake, “Laser ultrasonic inspection of graphite epoxy laminates,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds. (Plenum, New York, 1993), Vol. 12 (to be published).
[CrossRef]

Heynau, H.

A. J. DeMaria, D. A. Stetser, H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett. 8, 174–176(1966).
[CrossRef]

Huang, J.

J. Huang, S. Krishnaswamy, J. D. Achenbach, “Laser generation of narrow-band surface waves,” J. Acoust. Soc. Am. 92, 2527–2531 (1992).
[CrossRef]

Hutchins, D. A.

R. J. Dewhurst, S. B. Palmer, D. A. Hutchins, C. B. Scruby, “Quantitative measurements of laser-generated acoustic waveforms,” J. Appl. Phys. 53, 4064–4071 (1982).
[CrossRef]

C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, S. B. Palmer, “Laser generation of ultrasound in metals,” in Research Techniques in Non-Destructive Testing, R. S. Sharpe, ed. (Academic, New York, 1982), Vol. V, pp. 281–327.

Jipson, V.

H. K. Wickramasinghe, R. C. Bray, V. Jipson, C. F. Quate, J. R. Salcedo, “Photoacoustics on a microscopic scale,” Appl. Phys. Lett. 33, 923–925 (1978).
[CrossRef]

Kachen, G.

R. Harrach, G. Kachen, “Pulse trains from mode-locked lasers,” J. Appl. Phys. 39, 2482–2483 (1968).
[CrossRef]

Koechner, W.

W. Koechner, Solid-State Laser Engineering, 2nd ed. (Springer-Verlag, Berlin, 1988), p. 463.

Kowatsch, M.

G. Veith, M. Kowatsch, “Optical generation of continuous 76-MHz surface acoustic waves on YZ LiNbO3,” Appl. Phys. Lett. 40, 30–32 (1982).
[CrossRef]

Krishnaswamy, S.

J. Huang, S. Krishnaswamy, J. D. Achenbach, “Laser generation of narrow-band surface waves,” J. Acoust. Soc. Am. 92, 2527–2531 (1992).
[CrossRef]

Liang, X. C.

Linebarger, R. S.

R. C. Addison, L. J. Graham, R. S. Linebarger, B. R. Tittman, “Laser-based ultrasonics for the inspection of solids,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds. (Plenum, New York, 1988), Vol. 7A, pp. 585–594.

Lutz, D. R.

K. A. Nelson, R. J. D. Miller, D. R. Lutz, M. D. Fayer, “Optical generation of tunable ultrasonic waves,” J. Appl. Phys. 53,1144–1149 (1982).
[CrossRef]

McKie, A. D. W.

J. B. Deaton, A. D. W. McKie, J. B. Spicer, J. W. Wagner, “Generation of narrow-band ultrasound with a long cavity mode-locked Nd:YAG laser,” Appl. Phys. Lett. 56, 2390–2392 (1990).
[CrossRef]

A. D. W. McKie, J. W. Wagner, J. B. Spicer, C. M. Penney, “Laser generation of narrow-band and directed ultrasound,” Ultrasonics 27, 323–330 (1989).
[CrossRef]

R. J. Dewhurst, C. E. Edwards, A. D. W. McKie, S. B. Palmer, “Comparative study of wide-band ultrasonic transducers,” Ultrasonics 25, 315–321 (1987).
[CrossRef]

A. D. W. McKie, R. C. Addison, “Inspection of components having complex geometries using laser-based ultrasound,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds. (Plenum, New York, 1992), Vol. 11A, pp. 577–584.
[CrossRef]

Melcher, R. L.

R. J. von Gutfeld, R. L. Melcher, “MHz acoustic waves from pulsed thermoelastic expansions and their application to flaw detection,” Mater. Eval. 35, 97–99 (1977).

Mensa, D. L.

D. L. Mensa, High Resolution Radar Cross-Section Imaging (Artech, Boston, Mass., 1991), p. 59.

Miller, R. J. D.

K. A. Nelson, R. J. D. Miller, D. R. Lutz, M. D. Fayer, “Optical generation of tunable ultrasonic waves,” J. Appl. Phys. 53,1144–1149 (1982).
[CrossRef]

Monchalin, J. P.

J. P. Monchalin, “Optical detection of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 485–499 (1986).
[CrossRef]

Monchalin, J. -P.

C. Padioleau, P. Bouchard, R. Heon, J. -P. Monchalin, F. H. Chang, T. E. Drake, “Laser ultrasonic inspection of graphite epoxy laminates,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds. (Plenum, New York, 1993), Vol. 12 (to be published).
[CrossRef]

Nagai, S.

H. Nakano, S. Nagai, “Laser generation of antisymmetric Lamb waves in thin plates,” Ultrasonics 29, 230–234 (1991).
[CrossRef]

Nakano, H.

H. Nakano, S. Nagai, “Laser generation of antisymmetric Lamb waves in thin plates,” Ultrasonics 29, 230–234 (1991).
[CrossRef]

Nelson, K. A.

K. A. Nelson, R. J. D. Miller, D. R. Lutz, M. D. Fayer, “Optical generation of tunable ultrasonic waves,” J. Appl. Phys. 53,1144–1149 (1982).
[CrossRef]

New, G. H. C.

D. J. Bradley, G. H. C. New, S. J. Caughey, “Relationship between saturable absorber cell length and pulse duration in passively mode-locked lasers,” Opt. Commun. 2, 41–44 (1970).
[CrossRef]

Padioleau, C.

C. Padioleau, P. Bouchard, R. Heon, J. -P. Monchalin, F. H. Chang, T. E. Drake, “Laser ultrasonic inspection of graphite epoxy laminates,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds. (Plenum, New York, 1993), Vol. 12 (to be published).
[CrossRef]

Palmer, C. H.

E. Bourkoff, C. H. Palmer, “Low-energy optical generation and detection of acoustic pulses in metals and nonmetals,” Appl. Phys. Lett. 46, 143–145 (1985).
[CrossRef]

Palmer, S. B.

R. J. Dewhurst, C. E. Edwards, A. D. W. McKie, S. B. Palmer, “Comparative study of wide-band ultrasonic transducers,” Ultrasonics 25, 315–321 (1987).
[CrossRef]

R. J. Dewhurst, S. B. Palmer, D. A. Hutchins, C. B. Scruby, “Quantitative measurements of laser-generated acoustic waveforms,” J. Appl. Phys. 53, 4064–4071 (1982).
[CrossRef]

C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, S. B. Palmer, “Laser generation of ultrasound in metals,” in Research Techniques in Non-Destructive Testing, R. S. Sharpe, ed. (Academic, New York, 1982), Vol. V, pp. 281–327.

Penney, C. M.

A. D. W. McKie, J. W. Wagner, J. B. Spicer, C. M. Penney, “Laser generation of narrow-band and directed ultrasound,” Ultrasonics 27, 323–330 (1989).
[CrossRef]

Quate, C. F.

H. K. Wickramasinghe, R. C. Bray, V. Jipson, C. F. Quate, J. R. Salcedo, “Photoacoustics on a microscopic scale,” Appl. Phys. Lett. 33, 923–925 (1978).
[CrossRef]

Reed, F. A.

H. I. Ringermacher, F. A. Reed, J. R. Strife, “Laser ultrasonics for coating thickness evaluation at 1200 C,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds. (Plenum, New York, 1993), Vol. 12.
[CrossRef]

Ringermacher, H. I.

H. I. Ringermacher, F. A. Reed, J. R. Strife, “Laser ultrasonics for coating thickness evaluation at 1200 C,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds. (Plenum, New York, 1993), Vol. 12.
[CrossRef]

Salcedo, J. R.

H. K. Wickramasinghe, R. C. Bray, V. Jipson, C. F. Quate, J. R. Salcedo, “Photoacoustics on a microscopic scale,” Appl. Phys. Lett. 33, 923–925 (1978).
[CrossRef]

Schiller, N. H.

Scruby, C. B.

R. J. Dewhurst, S. B. Palmer, D. A. Hutchins, C. B. Scruby, “Quantitative measurements of laser-generated acoustic waveforms,” J. Appl. Phys. 53, 4064–4071 (1982).
[CrossRef]

C. B. Scruby, L. E. Drain, Laser Ultrasonics: Techniques and Applications (Hilger, Bristol, UK, 1990), Chap. 6.

C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, S. B. Palmer, “Laser generation of ultrasound in metals,” in Research Techniques in Non-Destructive Testing, R. S. Sharpe, ed. (Academic, New York, 1982), Vol. V, pp. 281–327.

Sidhu, J.

P. E. Dyer, J. Sidhu, B. L. Tait, “Generation and detection of 160-MHz acoustic waves using a TEA CO2 laser irradiated polymer film combination,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 2–4 (1988).
[CrossRef] [PubMed]

Spicer, J. B.

J. B. Deaton, A. D. W. McKie, J. B. Spicer, J. W. Wagner, “Generation of narrow-band ultrasound with a long cavity mode-locked Nd:YAG laser,” Appl. Phys. Lett. 56, 2390–2392 (1990).
[CrossRef]

A. D. W. McKie, J. W. Wagner, J. B. Spicer, C. M. Penney, “Laser generation of narrow-band and directed ultrasound,” Ultrasonics 27, 323–330 (1989).
[CrossRef]

J. W. Wagner, J. B. Deaton, J. B. Spicer, “Generation of ultrasound by repetitively Q switching a pulsed Nd:YAG laser,” Appl. Opt. 27, 4696–4700 (1988).
[CrossRef] [PubMed]

J. W. Wagner, J. B. Spicer, “Theoretical noise-limited sensitivity of classical interferometry,” J. Opt. Soc. Am. B 4, 1316–1326 (1987).
[CrossRef]

J. B. Spicer, “Laser ultrasonics in finite structures: comprehensive modelling with supporting experiment,” Ph.D. dissertation (Johns Hopkins University, Baltimore, Md., 1991), pp. 182–198.

Stetser, D. A.

A. J. DeMaria, D. A. Stetser, H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett. 8, 174–176(1966).
[CrossRef]

Strife, J. R.

H. I. Ringermacher, F. A. Reed, J. R. Strife, “Laser ultrasonics for coating thickness evaluation at 1200 C,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds. (Plenum, New York, 1993), Vol. 12.
[CrossRef]

Tait, B. L.

P. E. Dyer, J. Sidhu, B. L. Tait, “Generation and detection of 160-MHz acoustic waves using a TEA CO2 laser irradiated polymer film combination,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 2–4 (1988).
[CrossRef] [PubMed]

Tittman, B. R.

R. C. Addison, L. J. Graham, R. S. Linebarger, B. R. Tittman, “Laser-based ultrasonics for the inspection of solids,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds. (Plenum, New York, 1988), Vol. 7A, pp. 585–594.

Veith, G.

G. Veith, M. Kowatsch, “Optical generation of continuous 76-MHz surface acoustic waves on YZ LiNbO3,” Appl. Phys. Lett. 40, 30–32 (1982).
[CrossRef]

von Gutfeld, R. J.

R. J. von Gutfeld, R. L. Melcher, “MHz acoustic waves from pulsed thermoelastic expansions and their application to flaw detection,” Mater. Eval. 35, 97–99 (1977).

Wagner, J. W.

J. B. Deaton, A. D. W. McKie, J. B. Spicer, J. W. Wagner, “Generation of narrow-band ultrasound with a long cavity mode-locked Nd:YAG laser,” Appl. Phys. Lett. 56, 2390–2392 (1990).
[CrossRef]

A. D. W. McKie, J. W. Wagner, J. B. Spicer, C. M. Penney, “Laser generation of narrow-band and directed ultrasound,” Ultrasonics 27, 323–330 (1989).
[CrossRef]

J. W. Wagner, J. B. Deaton, J. B. Spicer, “Generation of ultrasound by repetitively Q switching a pulsed Nd:YAG laser,” Appl. Opt. 27, 4696–4700 (1988).
[CrossRef] [PubMed]

J. W. Wagner, J. B. Spicer, “Theoretical noise-limited sensitivity of classical interferometry,” J. Opt. Soc. Am. B 4, 1316–1326 (1987).
[CrossRef]

J. W. Wagner, “Optical detection of ultrasound,” in Physical Acoustics,W. P. Mason, ed. (Academic, New York, 1990), Vol. XIX, pp. 201–266.

Weichel, H.

H. Weichel, “Improving the reliability of Nd:glass mode-locked lasers,” J. Appl. Phys. 44, 3635–3637 (1973).
[CrossRef]

White, J. U.

Wickramasinghe, H. K.

H. K. Wickramasinghe, R. C. Bray, V. Jipson, C. F. Quate, J. R. Salcedo, “Photoacoustics on a microscopic scale,” Appl. Phys. Lett. 33, 923–925 (1978).
[CrossRef]

Zhao, X. M.

Appl. Opt. (2)

Appl. Phys. Lett. (6)

M. J. Brienza, A. J. DeMaria, “Laser-induced microwave sound by surface heating,” Appl. Phys. Lett. 11, 44–46 (1967).
[CrossRef]

H. K. Wickramasinghe, R. C. Bray, V. Jipson, C. F. Quate, J. R. Salcedo, “Photoacoustics on a microscopic scale,” Appl. Phys. Lett. 33, 923–925 (1978).
[CrossRef]

G. Veith, M. Kowatsch, “Optical generation of continuous 76-MHz surface acoustic waves on YZ LiNbO3,” Appl. Phys. Lett. 40, 30–32 (1982).
[CrossRef]

A. J. DeMaria, D. A. Stetser, H. Heynau, “Self mode-locking of lasers with saturable absorbers,” Appl. Phys. Lett. 8, 174–176(1966).
[CrossRef]

J. B. Deaton, A. D. W. McKie, J. B. Spicer, J. W. Wagner, “Generation of narrow-band ultrasound with a long cavity mode-locked Nd:YAG laser,” Appl. Phys. Lett. 56, 2390–2392 (1990).
[CrossRef]

E. Bourkoff, C. H. Palmer, “Low-energy optical generation and detection of acoustic pulses in metals and nonmetals,” Appl. Phys. Lett. 46, 143–145 (1985).
[CrossRef]

IEEE Trans. Ultrason. Ferroelectr. Freq. Control (2)

J. P. Monchalin, “Optical detection of ultrasound,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control UFFC-33, 485–499 (1986).
[CrossRef]

P. E. Dyer, J. Sidhu, B. L. Tait, “Generation and detection of 160-MHz acoustic waves using a TEA CO2 laser irradiated polymer film combination,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 35, 2–4 (1988).
[CrossRef] [PubMed]

J. Acoust. Soc. Am. (3)

G. Cachier, “Laser excitation of microwave sound in solids,” J. Acoust. Soc. Am. 49, 974–978 (1971).
[CrossRef]

J. Huang, S. Krishnaswamy, J. D. Achenbach, “Laser generation of narrow-band surface waves,” J. Acoust. Soc. Am. 92, 2527–2531 (1992).
[CrossRef]

Y. H. Berthelot, “Thermoacoustic generation of narrow-band signals with high repetition rate pulsed lasers,” J. Acoust. Soc. Am. 85, 1173–1181 (1989).
[CrossRef]

J. Appl. Phys. (4)

K. A. Nelson, R. J. D. Miller, D. R. Lutz, M. D. Fayer, “Optical generation of tunable ultrasonic waves,” J. Appl. Phys. 53,1144–1149 (1982).
[CrossRef]

R. J. Dewhurst, S. B. Palmer, D. A. Hutchins, C. B. Scruby, “Quantitative measurements of laser-generated acoustic waveforms,” J. Appl. Phys. 53, 4064–4071 (1982).
[CrossRef]

H. Weichel, “Improving the reliability of Nd:glass mode-locked lasers,” J. Appl. Phys. 44, 3635–3637 (1973).
[CrossRef]

R. Harrach, G. Kachen, “Pulse trains from mode-locked lasers,” J. Appl. Phys. 39, 2482–2483 (1968).
[CrossRef]

J. Opt. Soc. Am. (1)

J. Opt. Soc. Am. B (1)

Mater. Eval. (1)

R. J. von Gutfeld, R. L. Melcher, “MHz acoustic waves from pulsed thermoelastic expansions and their application to flaw detection,” Mater. Eval. 35, 97–99 (1977).

Opt. Commun. (1)

D. J. Bradley, G. H. C. New, S. J. Caughey, “Relationship between saturable absorber cell length and pulse duration in passively mode-locked lasers,” Opt. Commun. 2, 41–44 (1970).
[CrossRef]

Ultrasonics (3)

R. J. Dewhurst, C. E. Edwards, A. D. W. McKie, S. B. Palmer, “Comparative study of wide-band ultrasonic transducers,” Ultrasonics 25, 315–321 (1987).
[CrossRef]

H. Nakano, S. Nagai, “Laser generation of antisymmetric Lamb waves in thin plates,” Ultrasonics 29, 230–234 (1991).
[CrossRef]

A. D. W. McKie, J. W. Wagner, J. B. Spicer, C. M. Penney, “Laser generation of narrow-band and directed ultrasound,” Ultrasonics 27, 323–330 (1989).
[CrossRef]

Other (10)

D. L. Mensa, High Resolution Radar Cross-Section Imaging (Artech, Boston, Mass., 1991), p. 59.

R. C. Addison, L. J. Graham, R. S. Linebarger, B. R. Tittman, “Laser-based ultrasonics for the inspection of solids,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds. (Plenum, New York, 1988), Vol. 7A, pp. 585–594.

A. D. W. McKie, R. C. Addison, “Inspection of components having complex geometries using laser-based ultrasound,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds. (Plenum, New York, 1992), Vol. 11A, pp. 577–584.
[CrossRef]

H. I. Ringermacher, F. A. Reed, J. R. Strife, “Laser ultrasonics for coating thickness evaluation at 1200 C,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds. (Plenum, New York, 1993), Vol. 12.
[CrossRef]

C. Padioleau, P. Bouchard, R. Heon, J. -P. Monchalin, F. H. Chang, T. E. Drake, “Laser ultrasonic inspection of graphite epoxy laminates,” in Review of Progress in Quantitative Nondestructive Evaluation, D. O. Thompson, D. E. Chimenti, eds. (Plenum, New York, 1993), Vol. 12 (to be published).
[CrossRef]

J. W. Wagner, “Optical detection of ultrasound,” in Physical Acoustics,W. P. Mason, ed. (Academic, New York, 1990), Vol. XIX, pp. 201–266.

C. B. Scruby, L. E. Drain, Laser Ultrasonics: Techniques and Applications (Hilger, Bristol, UK, 1990), Chap. 6.

C. B. Scruby, R. J. Dewhurst, D. A. Hutchins, S. B. Palmer, “Laser generation of ultrasound in metals,” in Research Techniques in Non-Destructive Testing, R. S. Sharpe, ed. (Academic, New York, 1982), Vol. V, pp. 281–327.

W. Koechner, Solid-State Laser Engineering, 2nd ed. (Springer-Verlag, Berlin, 1988), p. 463.

J. B. Spicer, “Laser ultrasonics in finite structures: comprehensive modelling with supporting experiment,” Ph.D. dissertation (Johns Hopkins University, Baltimore, Md., 1991), pp. 182–198.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of a White cell with the ray path traced for the case of three spots on the field mirror. The three mirrors have equal radii of curvature.

Fig. 2
Fig. 2

Schematic diagram of the variable-cavity-length mode-locked Nd:YAG laser. The intracavity White cell is formed by mirrors M4, M5, and M6. The numbered paths trace the course of the beam through the White cell for three field mirror spots.

Fig. 3
Fig. 3

Variation in PRF and cavity length of the variable-cavity-length mode-locked laser as a function of the number of spots on the field mirror in the White cell.

Fig. 4
Fig. 4

Mode-locked laser output at PRF's of 13.4, 5, and 2.5 MHz, detected with an avalanche photodiode and fast transient recorder.

Fig. 5
Fig. 5

Epicentral displacement waveforms generated with the variable-cavity-length mode-locked laser at a pulse repetition rate of 5 MHz and detected with a path-stabilized Michelson interferometer. The power density of the laser source was adjusted to change the generation regime from ablative (A) to thermoelastic (C).

Fig. 6
Fig. 6

Power spectral density of the first longitudinal arrival (P) in the upper trace of Fig. 5. For the multiple-pulse signal, the energy is concentrated at the fundamental and subsequent harmonics of the laser PRF, 5 MHz.

Equations (4)

Equations on this page are rendered with MathJax. Learn more.

SNR δ 2 P B .
d en ex = ( N sp + 1 ) d sp .
N sp = d en ex d sp 1 ,
L wc = 2 N sp R c .

Metrics