Abstract

A simple CCD-camera spectrometer was deployed at the Los Alamos Spallation Radiation Effects Facility to characterize fast-neutron irradiation effects in several silica-based optical fibers over the wavelength range ∼ 450–1100 nm. The experimental arrangement allowed optical loss spectra to be developed from remotely recovered frame grabs at various times during irradiation without it being necessary to resort to cutback methods. Data recorded for a pure-silica-core/F-doped-silica-clad fiber displayed a peculiar artifact, which is described and mathematically modeled in terms of leaky modes propagating in an optical cladding that is substantially less susceptible to radiation-induced optical attenuation than is the core. Evidence from optical time-domain reflectometry supports the postulate that mode leakage into the cladding may be a result of light scattering from the tracks of ions displaced by the 14-MeV neutrons. These results suggest that fibers with fluorine doping in the core, as well as in the cladding, would be relatively resistant to radiation-induced attenuation in the UV–visible spectral region.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. F. W. Clinard, E. H. Farnum, D. L. Griscom, R. F. Mattas, S. S. Medley, F. W. Wiffin, S. S. Wojtowwicz, K. M. Young, S. J. Zinkle, “Materials issues in diagnostic systems for BPX and ITER,” J. Nucl. Mater. 191–194, 1399–1403 (1992).
    [CrossRef]
  2. E. J. Friebele, “Optical fiber waveguides in radiation environments,” Opt. Eng. 18, 552–561 (1979).
  3. E. J. Friebele, M. E. Gingerich, K. J. Long, “Radiation damage of optical fiber waveguides at long wavelengths,” Appl. Opt. 21, 547–553 (1982).
    [CrossRef] [PubMed]
  4. E. J. Friebele, C. G. Askins, M. E. Gingerich, K. J. Long, “Optical fiber waveguides in radiation environments, II,” Nucl. Instrum. Methods B 1, 355–369 (1984).
    [CrossRef]
  5. E. J. Friebele, K. J. Long, C. G. Askins, M. E. Gingerich, M. J. Marrone, D. L. Griscom, “Overview of radiation effects in fiber optics,” in Effects on Optical Materials, P. W. Levy, ed., Proc. Soc. Photo-Opt. Instrum. Eng.541, 70–88 (1985).
  6. P. B. Lyons, “Fiber optics in transient radiation fields,” in Radiation Effects on Optical Materials, P. W. Levy, ed., Proc. Soc. Photo-Opt. Instrum. Eng.541, 89–96 (1985).
  7. J. K. Partin, “Fiber optics in high dose radiation fields,” in Radiation Effects on Optical Materials, P. W. Levy, ed., Proc. Soc. Photo-Opt. Instrum. Eng.541, 97–109 (1985).
  8. W. Schneider, U. Babst, “Induced attenuation in optical fibers during steady state and pulsed irradiation,” presented at Photon '83, 1983.
  9. Neutron fluences quoted here are preliminary estimates provided by W. Sommer of Los Alamos National Laboratory based on earlier determinations of fluence as a function of integrated beam current at LASREF. This estimate could be in error by as much as a factor of 2, because of the as-yet unevaluated effects of isotope production stringers having been inserted into the beam at various times during the current run.
  10. D. B. Keck, R. D. Maurer, P. C. Schultz, “On the ultimate lower limit of attenuation in glass optical waveguides,” Appl. Phys. Lett. 22, 307–309 (1973).
    [CrossRef]
  11. E. J. Friebele, M. E. Gingerich, “Radiation-induced optical absorption bands in low loss optical fiber waveguides,” J. Non-Cryst. Solids 38/39, 245–250 (1980).
    [CrossRef]
  12. K. Nagasawa, M. Tanabe, K. Yahagi, “Gamma-ray induced absorption bands in pure silica core fibers,” Jpn. J. Appl. Phys. 23, 1608–1613 (1984).
    [CrossRef]
  13. K. Nagasawa, Y. Hoshi, Y. Ohki, K. Yahagi, “Radiation effects on pure silica core optical fibers by γ-rays: relation between 2 eV band and non-bridging oxygen hole center,” Jpn. J. Appl. Phys. 25, 464–468 (1986).
    [CrossRef]
  14. S. E. Miller, A. G. Chynoweth, Optical Fiber Telecommunications (Academic, San Diego, Calif., 1979).
  15. S. E. Miller, I. P. Kaminow, Optical Fiber Telecommunications II (Academic, San Diego, Calif., 1988).
  16. Optical time-domain reflectometer data taken by W. Unruh will be published [W. Unruh, “In situ measurements of optical absorption due to high-flux neutron irradiation of silica optical fibers,” to be submitted to Appl. Opt.].
  17. R. H. West, S. Dowling, “Measurement of long term radiation induced losses in fibre optics using optical time domain reflectometry,” in Proceedings of the First European Conference on Radiation and Its Effects on Devices and Systems (RADECS 91) (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 375–379.
    [CrossRef]
  18. D. L. Griscom, E. J. Friebele, K. J. Long, J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorusdoped silica glass and optical fibers,” J. Appl. Phys. 54, 3743–3762 (1983).
    [CrossRef]
  19. K. Nagasawa, R. Tohmon, Y. Ohki, “Effect of cladding material on 2 eV optical absorption in pure-silica core fibers and method to suppress the absorption,” Jpn. J. Appl. Phys. 26, 148–151 (1987).
    [CrossRef]
  20. D. L. Griscom, “Optical properties and structure of defects in silica glass,” J. Ceram. Soc. Jpn. 99, 923–942 (1991).
    [CrossRef]
  21. K. Nagasawa, Shonan Institute of Technology, Fujisawa, Kanagawa 251, Japan (personal communication, 1992).
  22. E. J. Friebele, chairman, and NATO Nuclear Effects Task Group A/C243, Panel IV (RSG.12), “Procedure for measuring radiation-induced attenuation in optical fibers and optical cables,” Rep. NRL/MR/6505-92-6963 (Naval Research Laboratory, Washington, D.C., 1992), pp. 1–21.

1992 (1)

F. W. Clinard, E. H. Farnum, D. L. Griscom, R. F. Mattas, S. S. Medley, F. W. Wiffin, S. S. Wojtowwicz, K. M. Young, S. J. Zinkle, “Materials issues in diagnostic systems for BPX and ITER,” J. Nucl. Mater. 191–194, 1399–1403 (1992).
[CrossRef]

1991 (1)

D. L. Griscom, “Optical properties and structure of defects in silica glass,” J. Ceram. Soc. Jpn. 99, 923–942 (1991).
[CrossRef]

1987 (1)

K. Nagasawa, R. Tohmon, Y. Ohki, “Effect of cladding material on 2 eV optical absorption in pure-silica core fibers and method to suppress the absorption,” Jpn. J. Appl. Phys. 26, 148–151 (1987).
[CrossRef]

1986 (1)

K. Nagasawa, Y. Hoshi, Y. Ohki, K. Yahagi, “Radiation effects on pure silica core optical fibers by γ-rays: relation between 2 eV band and non-bridging oxygen hole center,” Jpn. J. Appl. Phys. 25, 464–468 (1986).
[CrossRef]

1984 (2)

E. J. Friebele, C. G. Askins, M. E. Gingerich, K. J. Long, “Optical fiber waveguides in radiation environments, II,” Nucl. Instrum. Methods B 1, 355–369 (1984).
[CrossRef]

K. Nagasawa, M. Tanabe, K. Yahagi, “Gamma-ray induced absorption bands in pure silica core fibers,” Jpn. J. Appl. Phys. 23, 1608–1613 (1984).
[CrossRef]

1983 (1)

D. L. Griscom, E. J. Friebele, K. J. Long, J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorusdoped silica glass and optical fibers,” J. Appl. Phys. 54, 3743–3762 (1983).
[CrossRef]

1982 (1)

1980 (1)

E. J. Friebele, M. E. Gingerich, “Radiation-induced optical absorption bands in low loss optical fiber waveguides,” J. Non-Cryst. Solids 38/39, 245–250 (1980).
[CrossRef]

1979 (1)

E. J. Friebele, “Optical fiber waveguides in radiation environments,” Opt. Eng. 18, 552–561 (1979).

1973 (1)

D. B. Keck, R. D. Maurer, P. C. Schultz, “On the ultimate lower limit of attenuation in glass optical waveguides,” Appl. Phys. Lett. 22, 307–309 (1973).
[CrossRef]

Askins, C. G.

E. J. Friebele, C. G. Askins, M. E. Gingerich, K. J. Long, “Optical fiber waveguides in radiation environments, II,” Nucl. Instrum. Methods B 1, 355–369 (1984).
[CrossRef]

E. J. Friebele, K. J. Long, C. G. Askins, M. E. Gingerich, M. J. Marrone, D. L. Griscom, “Overview of radiation effects in fiber optics,” in Effects on Optical Materials, P. W. Levy, ed., Proc. Soc. Photo-Opt. Instrum. Eng.541, 70–88 (1985).

Babst, U.

W. Schneider, U. Babst, “Induced attenuation in optical fibers during steady state and pulsed irradiation,” presented at Photon '83, 1983.

Chynoweth, A. G.

S. E. Miller, A. G. Chynoweth, Optical Fiber Telecommunications (Academic, San Diego, Calif., 1979).

Clinard, F. W.

F. W. Clinard, E. H. Farnum, D. L. Griscom, R. F. Mattas, S. S. Medley, F. W. Wiffin, S. S. Wojtowwicz, K. M. Young, S. J. Zinkle, “Materials issues in diagnostic systems for BPX and ITER,” J. Nucl. Mater. 191–194, 1399–1403 (1992).
[CrossRef]

Dowling, S.

R. H. West, S. Dowling, “Measurement of long term radiation induced losses in fibre optics using optical time domain reflectometry,” in Proceedings of the First European Conference on Radiation and Its Effects on Devices and Systems (RADECS 91) (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 375–379.
[CrossRef]

Farnum, E. H.

F. W. Clinard, E. H. Farnum, D. L. Griscom, R. F. Mattas, S. S. Medley, F. W. Wiffin, S. S. Wojtowwicz, K. M. Young, S. J. Zinkle, “Materials issues in diagnostic systems for BPX and ITER,” J. Nucl. Mater. 191–194, 1399–1403 (1992).
[CrossRef]

Fleming, J. W.

D. L. Griscom, E. J. Friebele, K. J. Long, J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorusdoped silica glass and optical fibers,” J. Appl. Phys. 54, 3743–3762 (1983).
[CrossRef]

Friebele, E. J.

E. J. Friebele, C. G. Askins, M. E. Gingerich, K. J. Long, “Optical fiber waveguides in radiation environments, II,” Nucl. Instrum. Methods B 1, 355–369 (1984).
[CrossRef]

D. L. Griscom, E. J. Friebele, K. J. Long, J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorusdoped silica glass and optical fibers,” J. Appl. Phys. 54, 3743–3762 (1983).
[CrossRef]

E. J. Friebele, M. E. Gingerich, K. J. Long, “Radiation damage of optical fiber waveguides at long wavelengths,” Appl. Opt. 21, 547–553 (1982).
[CrossRef] [PubMed]

E. J. Friebele, M. E. Gingerich, “Radiation-induced optical absorption bands in low loss optical fiber waveguides,” J. Non-Cryst. Solids 38/39, 245–250 (1980).
[CrossRef]

E. J. Friebele, “Optical fiber waveguides in radiation environments,” Opt. Eng. 18, 552–561 (1979).

E. J. Friebele, chairman, and NATO Nuclear Effects Task Group A/C243, Panel IV (RSG.12), “Procedure for measuring radiation-induced attenuation in optical fibers and optical cables,” Rep. NRL/MR/6505-92-6963 (Naval Research Laboratory, Washington, D.C., 1992), pp. 1–21.

E. J. Friebele, K. J. Long, C. G. Askins, M. E. Gingerich, M. J. Marrone, D. L. Griscom, “Overview of radiation effects in fiber optics,” in Effects on Optical Materials, P. W. Levy, ed., Proc. Soc. Photo-Opt. Instrum. Eng.541, 70–88 (1985).

Gingerich, M. E.

E. J. Friebele, C. G. Askins, M. E. Gingerich, K. J. Long, “Optical fiber waveguides in radiation environments, II,” Nucl. Instrum. Methods B 1, 355–369 (1984).
[CrossRef]

E. J. Friebele, M. E. Gingerich, K. J. Long, “Radiation damage of optical fiber waveguides at long wavelengths,” Appl. Opt. 21, 547–553 (1982).
[CrossRef] [PubMed]

E. J. Friebele, M. E. Gingerich, “Radiation-induced optical absorption bands in low loss optical fiber waveguides,” J. Non-Cryst. Solids 38/39, 245–250 (1980).
[CrossRef]

E. J. Friebele, K. J. Long, C. G. Askins, M. E. Gingerich, M. J. Marrone, D. L. Griscom, “Overview of radiation effects in fiber optics,” in Effects on Optical Materials, P. W. Levy, ed., Proc. Soc. Photo-Opt. Instrum. Eng.541, 70–88 (1985).

Griscom, D. L.

F. W. Clinard, E. H. Farnum, D. L. Griscom, R. F. Mattas, S. S. Medley, F. W. Wiffin, S. S. Wojtowwicz, K. M. Young, S. J. Zinkle, “Materials issues in diagnostic systems for BPX and ITER,” J. Nucl. Mater. 191–194, 1399–1403 (1992).
[CrossRef]

D. L. Griscom, “Optical properties and structure of defects in silica glass,” J. Ceram. Soc. Jpn. 99, 923–942 (1991).
[CrossRef]

D. L. Griscom, E. J. Friebele, K. J. Long, J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorusdoped silica glass and optical fibers,” J. Appl. Phys. 54, 3743–3762 (1983).
[CrossRef]

E. J. Friebele, K. J. Long, C. G. Askins, M. E. Gingerich, M. J. Marrone, D. L. Griscom, “Overview of radiation effects in fiber optics,” in Effects on Optical Materials, P. W. Levy, ed., Proc. Soc. Photo-Opt. Instrum. Eng.541, 70–88 (1985).

Hoshi, Y.

K. Nagasawa, Y. Hoshi, Y. Ohki, K. Yahagi, “Radiation effects on pure silica core optical fibers by γ-rays: relation between 2 eV band and non-bridging oxygen hole center,” Jpn. J. Appl. Phys. 25, 464–468 (1986).
[CrossRef]

Kaminow, I. P.

S. E. Miller, I. P. Kaminow, Optical Fiber Telecommunications II (Academic, San Diego, Calif., 1988).

Keck, D. B.

D. B. Keck, R. D. Maurer, P. C. Schultz, “On the ultimate lower limit of attenuation in glass optical waveguides,” Appl. Phys. Lett. 22, 307–309 (1973).
[CrossRef]

Long, K. J.

E. J. Friebele, C. G. Askins, M. E. Gingerich, K. J. Long, “Optical fiber waveguides in radiation environments, II,” Nucl. Instrum. Methods B 1, 355–369 (1984).
[CrossRef]

D. L. Griscom, E. J. Friebele, K. J. Long, J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorusdoped silica glass and optical fibers,” J. Appl. Phys. 54, 3743–3762 (1983).
[CrossRef]

E. J. Friebele, M. E. Gingerich, K. J. Long, “Radiation damage of optical fiber waveguides at long wavelengths,” Appl. Opt. 21, 547–553 (1982).
[CrossRef] [PubMed]

E. J. Friebele, K. J. Long, C. G. Askins, M. E. Gingerich, M. J. Marrone, D. L. Griscom, “Overview of radiation effects in fiber optics,” in Effects on Optical Materials, P. W. Levy, ed., Proc. Soc. Photo-Opt. Instrum. Eng.541, 70–88 (1985).

Lyons, P. B.

P. B. Lyons, “Fiber optics in transient radiation fields,” in Radiation Effects on Optical Materials, P. W. Levy, ed., Proc. Soc. Photo-Opt. Instrum. Eng.541, 89–96 (1985).

Marrone, M. J.

E. J. Friebele, K. J. Long, C. G. Askins, M. E. Gingerich, M. J. Marrone, D. L. Griscom, “Overview of radiation effects in fiber optics,” in Effects on Optical Materials, P. W. Levy, ed., Proc. Soc. Photo-Opt. Instrum. Eng.541, 70–88 (1985).

Mattas, R. F.

F. W. Clinard, E. H. Farnum, D. L. Griscom, R. F. Mattas, S. S. Medley, F. W. Wiffin, S. S. Wojtowwicz, K. M. Young, S. J. Zinkle, “Materials issues in diagnostic systems for BPX and ITER,” J. Nucl. Mater. 191–194, 1399–1403 (1992).
[CrossRef]

Maurer, R. D.

D. B. Keck, R. D. Maurer, P. C. Schultz, “On the ultimate lower limit of attenuation in glass optical waveguides,” Appl. Phys. Lett. 22, 307–309 (1973).
[CrossRef]

Medley, S. S.

F. W. Clinard, E. H. Farnum, D. L. Griscom, R. F. Mattas, S. S. Medley, F. W. Wiffin, S. S. Wojtowwicz, K. M. Young, S. J. Zinkle, “Materials issues in diagnostic systems for BPX and ITER,” J. Nucl. Mater. 191–194, 1399–1403 (1992).
[CrossRef]

Miller, S. E.

S. E. Miller, A. G. Chynoweth, Optical Fiber Telecommunications (Academic, San Diego, Calif., 1979).

S. E. Miller, I. P. Kaminow, Optical Fiber Telecommunications II (Academic, San Diego, Calif., 1988).

Nagasawa, K.

K. Nagasawa, R. Tohmon, Y. Ohki, “Effect of cladding material on 2 eV optical absorption in pure-silica core fibers and method to suppress the absorption,” Jpn. J. Appl. Phys. 26, 148–151 (1987).
[CrossRef]

K. Nagasawa, Y. Hoshi, Y. Ohki, K. Yahagi, “Radiation effects on pure silica core optical fibers by γ-rays: relation between 2 eV band and non-bridging oxygen hole center,” Jpn. J. Appl. Phys. 25, 464–468 (1986).
[CrossRef]

K. Nagasawa, M. Tanabe, K. Yahagi, “Gamma-ray induced absorption bands in pure silica core fibers,” Jpn. J. Appl. Phys. 23, 1608–1613 (1984).
[CrossRef]

K. Nagasawa, Shonan Institute of Technology, Fujisawa, Kanagawa 251, Japan (personal communication, 1992).

Ohki, Y.

K. Nagasawa, R. Tohmon, Y. Ohki, “Effect of cladding material on 2 eV optical absorption in pure-silica core fibers and method to suppress the absorption,” Jpn. J. Appl. Phys. 26, 148–151 (1987).
[CrossRef]

K. Nagasawa, Y. Hoshi, Y. Ohki, K. Yahagi, “Radiation effects on pure silica core optical fibers by γ-rays: relation between 2 eV band and non-bridging oxygen hole center,” Jpn. J. Appl. Phys. 25, 464–468 (1986).
[CrossRef]

Partin, J. K.

J. K. Partin, “Fiber optics in high dose radiation fields,” in Radiation Effects on Optical Materials, P. W. Levy, ed., Proc. Soc. Photo-Opt. Instrum. Eng.541, 97–109 (1985).

Schneider, W.

W. Schneider, U. Babst, “Induced attenuation in optical fibers during steady state and pulsed irradiation,” presented at Photon '83, 1983.

Schultz, P. C.

D. B. Keck, R. D. Maurer, P. C. Schultz, “On the ultimate lower limit of attenuation in glass optical waveguides,” Appl. Phys. Lett. 22, 307–309 (1973).
[CrossRef]

Tanabe, M.

K. Nagasawa, M. Tanabe, K. Yahagi, “Gamma-ray induced absorption bands in pure silica core fibers,” Jpn. J. Appl. Phys. 23, 1608–1613 (1984).
[CrossRef]

Tohmon, R.

K. Nagasawa, R. Tohmon, Y. Ohki, “Effect of cladding material on 2 eV optical absorption in pure-silica core fibers and method to suppress the absorption,” Jpn. J. Appl. Phys. 26, 148–151 (1987).
[CrossRef]

Unruh, W.

Optical time-domain reflectometer data taken by W. Unruh will be published [W. Unruh, “In situ measurements of optical absorption due to high-flux neutron irradiation of silica optical fibers,” to be submitted to Appl. Opt.].

West, R. H.

R. H. West, S. Dowling, “Measurement of long term radiation induced losses in fibre optics using optical time domain reflectometry,” in Proceedings of the First European Conference on Radiation and Its Effects on Devices and Systems (RADECS 91) (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 375–379.
[CrossRef]

Wiffin, F. W.

F. W. Clinard, E. H. Farnum, D. L. Griscom, R. F. Mattas, S. S. Medley, F. W. Wiffin, S. S. Wojtowwicz, K. M. Young, S. J. Zinkle, “Materials issues in diagnostic systems for BPX and ITER,” J. Nucl. Mater. 191–194, 1399–1403 (1992).
[CrossRef]

Wojtowwicz, S. S.

F. W. Clinard, E. H. Farnum, D. L. Griscom, R. F. Mattas, S. S. Medley, F. W. Wiffin, S. S. Wojtowwicz, K. M. Young, S. J. Zinkle, “Materials issues in diagnostic systems for BPX and ITER,” J. Nucl. Mater. 191–194, 1399–1403 (1992).
[CrossRef]

Yahagi, K.

K. Nagasawa, Y. Hoshi, Y. Ohki, K. Yahagi, “Radiation effects on pure silica core optical fibers by γ-rays: relation between 2 eV band and non-bridging oxygen hole center,” Jpn. J. Appl. Phys. 25, 464–468 (1986).
[CrossRef]

K. Nagasawa, M. Tanabe, K. Yahagi, “Gamma-ray induced absorption bands in pure silica core fibers,” Jpn. J. Appl. Phys. 23, 1608–1613 (1984).
[CrossRef]

Young, K. M.

F. W. Clinard, E. H. Farnum, D. L. Griscom, R. F. Mattas, S. S. Medley, F. W. Wiffin, S. S. Wojtowwicz, K. M. Young, S. J. Zinkle, “Materials issues in diagnostic systems for BPX and ITER,” J. Nucl. Mater. 191–194, 1399–1403 (1992).
[CrossRef]

Zinkle, S. J.

F. W. Clinard, E. H. Farnum, D. L. Griscom, R. F. Mattas, S. S. Medley, F. W. Wiffin, S. S. Wojtowwicz, K. M. Young, S. J. Zinkle, “Materials issues in diagnostic systems for BPX and ITER,” J. Nucl. Mater. 191–194, 1399–1403 (1992).
[CrossRef]

Appl. Opt. (1)

Appl. Phys. Lett. (1)

D. B. Keck, R. D. Maurer, P. C. Schultz, “On the ultimate lower limit of attenuation in glass optical waveguides,” Appl. Phys. Lett. 22, 307–309 (1973).
[CrossRef]

J. Appl. Phys. (1)

D. L. Griscom, E. J. Friebele, K. J. Long, J. W. Fleming, “Fundamental defect centers in glass: electron spin resonance and optical absorption studies of irradiated phosphorusdoped silica glass and optical fibers,” J. Appl. Phys. 54, 3743–3762 (1983).
[CrossRef]

J. Ceram. Soc. Jpn. (1)

D. L. Griscom, “Optical properties and structure of defects in silica glass,” J. Ceram. Soc. Jpn. 99, 923–942 (1991).
[CrossRef]

J. Non-Cryst. Solids (1)

E. J. Friebele, M. E. Gingerich, “Radiation-induced optical absorption bands in low loss optical fiber waveguides,” J. Non-Cryst. Solids 38/39, 245–250 (1980).
[CrossRef]

J. Nucl. Mater. (1)

F. W. Clinard, E. H. Farnum, D. L. Griscom, R. F. Mattas, S. S. Medley, F. W. Wiffin, S. S. Wojtowwicz, K. M. Young, S. J. Zinkle, “Materials issues in diagnostic systems for BPX and ITER,” J. Nucl. Mater. 191–194, 1399–1403 (1992).
[CrossRef]

Jpn. J. Appl. Phys. (3)

K. Nagasawa, R. Tohmon, Y. Ohki, “Effect of cladding material on 2 eV optical absorption in pure-silica core fibers and method to suppress the absorption,” Jpn. J. Appl. Phys. 26, 148–151 (1987).
[CrossRef]

K. Nagasawa, M. Tanabe, K. Yahagi, “Gamma-ray induced absorption bands in pure silica core fibers,” Jpn. J. Appl. Phys. 23, 1608–1613 (1984).
[CrossRef]

K. Nagasawa, Y. Hoshi, Y. Ohki, K. Yahagi, “Radiation effects on pure silica core optical fibers by γ-rays: relation between 2 eV band and non-bridging oxygen hole center,” Jpn. J. Appl. Phys. 25, 464–468 (1986).
[CrossRef]

Nucl. Instrum. Methods B (1)

E. J. Friebele, C. G. Askins, M. E. Gingerich, K. J. Long, “Optical fiber waveguides in radiation environments, II,” Nucl. Instrum. Methods B 1, 355–369 (1984).
[CrossRef]

Opt. Eng. (1)

E. J. Friebele, “Optical fiber waveguides in radiation environments,” Opt. Eng. 18, 552–561 (1979).

Other (11)

E. J. Friebele, K. J. Long, C. G. Askins, M. E. Gingerich, M. J. Marrone, D. L. Griscom, “Overview of radiation effects in fiber optics,” in Effects on Optical Materials, P. W. Levy, ed., Proc. Soc. Photo-Opt. Instrum. Eng.541, 70–88 (1985).

P. B. Lyons, “Fiber optics in transient radiation fields,” in Radiation Effects on Optical Materials, P. W. Levy, ed., Proc. Soc. Photo-Opt. Instrum. Eng.541, 89–96 (1985).

J. K. Partin, “Fiber optics in high dose radiation fields,” in Radiation Effects on Optical Materials, P. W. Levy, ed., Proc. Soc. Photo-Opt. Instrum. Eng.541, 97–109 (1985).

W. Schneider, U. Babst, “Induced attenuation in optical fibers during steady state and pulsed irradiation,” presented at Photon '83, 1983.

Neutron fluences quoted here are preliminary estimates provided by W. Sommer of Los Alamos National Laboratory based on earlier determinations of fluence as a function of integrated beam current at LASREF. This estimate could be in error by as much as a factor of 2, because of the as-yet unevaluated effects of isotope production stringers having been inserted into the beam at various times during the current run.

S. E. Miller, A. G. Chynoweth, Optical Fiber Telecommunications (Academic, San Diego, Calif., 1979).

S. E. Miller, I. P. Kaminow, Optical Fiber Telecommunications II (Academic, San Diego, Calif., 1988).

Optical time-domain reflectometer data taken by W. Unruh will be published [W. Unruh, “In situ measurements of optical absorption due to high-flux neutron irradiation of silica optical fibers,” to be submitted to Appl. Opt.].

R. H. West, S. Dowling, “Measurement of long term radiation induced losses in fibre optics using optical time domain reflectometry,” in Proceedings of the First European Conference on Radiation and Its Effects on Devices and Systems (RADECS 91) (Institute of Electrical and Electronics Engineers, New York, 1992), pp. 375–379.
[CrossRef]

K. Nagasawa, Shonan Institute of Technology, Fujisawa, Kanagawa 251, Japan (personal communication, 1992).

E. J. Friebele, chairman, and NATO Nuclear Effects Task Group A/C243, Panel IV (RSG.12), “Procedure for measuring radiation-induced attenuation in optical fibers and optical cables,” Rep. NRL/MR/6505-92-6963 (Naval Research Laboratory, Washington, D.C., 1992), pp. 1–21.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Schematic diagram of experimental setup.

Fig. 2
Fig. 2

Transmission spectra of CeramOptec fibers after accumulated neutron fluence9 of 5.1 × 1015 n/cm2. Spectra below 700 nm are expanded by using a longer integration time.

Fig. 3
Fig. 3

Induced optical loss spectra of CeramOptec fiber during neutron irradiation. Numbers on the curves correspond to the neutron fluence9 (in units of 1014 n/cm2).

Fig. 4
Fig. 4

Absorption spectrum of a γ-irradiated (12 kGy) pure-silica-core/F-doped-silica-clad fiber (solid curve)13 and trial spectrum (circles) used in model calculations of Fig. 5.

Fig. 5
Fig. 5

Model calculation of radiation-induced absorption in a pure-silica-core optical fiber supporting low-level light transmission in a rad-hard optical cladding. The shape of the induced absorption in the core was assumed to be independent of fluence and was taken to be given by Fig. 4 (circles). The numbers on the curves are proportional to the intensities assumed for the core absorption. (These numbers could represent fluences if the induced losses were to grow linearly with fluence.)

Fig. 6
Fig. 6

Postirradiation measurement of absorption spectrum of Ceram Optec fiber (1-m coil in beam, plus lead-in and lead-out fibers) obtained by cutback technique. Below ∼ 700 nm, the spectrum obtained with mode stripping gives the true spectral shape of the optical loss in the fiber core, although its absolute value is uncertain within a factor of ∼ 2. Above 700 nm, the induced loss in coil is not separable from the intrinsic loss in leads.

Equations (3)

Equations on this page are rendered with MathJax. Learn more.

L ( λ ) = 10 0.019 log 10 [ I 0 ( λ ) I ( λ ) ]
I = I ( core ) + I ( clad ) ,
I 0 = I 0 ( core ) + I 0 ( clad ) ,

Metrics