Abstract

The process of image plane holography with incoherent illumination has many significant properties. The process can produce extremely high-quality, low-noise images, section slicing, image formation through inhomogeneities, and high-resolution image formation through small apertures. The process of confocal imaging has similar properties. We describe the similarities and differences between the two processes.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. J. M. Burch, J. W. Gates, R. G. N. Hill, L. H. Tanner, “Holography with a scatter-plate as beam splitter and a pulsed ruby laser as light source,” Nature (London) 212, 1347–1348 (1966).
    [CrossRef]
  2. R. E. Brooks, L. O. Heflinger, R. F. Wuerker, “Pulsed laser holograms,” IEEE J. Quantum Electron. QE-2, 275–279 (1966).
    [CrossRef]
  3. L. Rosen, “Focused-image holography with extended source,” Appl. Phys. Lett. 9, 337–339 (1966).
    [CrossRef]
  4. O. Bryngdahl, A. W. Lohmann, “Modified holographic image formation,” J. Opt. Soc. Am. 57, 1412A (1967).
    [PubMed]
  5. E. N. Leith, J. Upatnieks, “Holography with achromatic-fringe systems,” J. Opt. Soc. Am. 57, 975–980 (1967).
    [CrossRef]
  6. E. N. Leith, B. J. Chang, “Image formation with an achromatic interferometer,” Opt. Commun. 23, 217–219 (1977).
    [CrossRef]
  7. E. N. Leith, G. J. Swanson, “Recording of phase-amplitude images,” Appl. Opt. 20, 3081–3084 (1981).
    [CrossRef] [PubMed]
  8. E. N. Leith, G. C. Yang, “Interferometric spatial carrier formation with an extended source,” Appl. Opt. 20, 3819–3821(1981).
    [CrossRef] [PubMed]
  9. D. Gorlitz, F. Lanzl, “Methods of zero-order non-coherent filtering,” Opt. Commun. 20, 68–72 (1977).
    [CrossRef]
  10. A. W. Lohmann, “Incoherent optical processing of complex data,” Appl. Opt. 16, 261–263 (1977).
    [CrossRef] [PubMed]
  11. W. T. Rhodes, “Bipolar point spread function synthesis by phase switching,” Appl. Opt. 16, 265–267 (1977).
    [CrossRef] [PubMed]
  12. W. Stoner, “Edge enhancement with incoherent optics,” Appl. Opt. 16, 1451–1453 (1977).
    [CrossRef] [PubMed]
  13. E. N. Leith, D. K. Angell, “Generalization of some incoherent spatial filtering techniques,” Appl. Opt. 25, 499–502 (1986).
    [CrossRef] [PubMed]
  14. E. N. Leith, D. Angell, C.-P. Kuei, “Superresolution by incoherent-to-coherent conversion,” J. Opt. Soc. Am. A 4, 1050–1054 (1987).
    [CrossRef]
  15. T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).
  16. M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.775, 233–247 (1987).

1987 (1)

1986 (1)

1981 (2)

1977 (5)

1967 (2)

E. N. Leith, J. Upatnieks, “Holography with achromatic-fringe systems,” J. Opt. Soc. Am. 57, 975–980 (1967).
[CrossRef]

O. Bryngdahl, A. W. Lohmann, “Modified holographic image formation,” J. Opt. Soc. Am. 57, 1412A (1967).
[PubMed]

1966 (3)

J. M. Burch, J. W. Gates, R. G. N. Hill, L. H. Tanner, “Holography with a scatter-plate as beam splitter and a pulsed ruby laser as light source,” Nature (London) 212, 1347–1348 (1966).
[CrossRef]

R. E. Brooks, L. O. Heflinger, R. F. Wuerker, “Pulsed laser holograms,” IEEE J. Quantum Electron. QE-2, 275–279 (1966).
[CrossRef]

L. Rosen, “Focused-image holography with extended source,” Appl. Phys. Lett. 9, 337–339 (1966).
[CrossRef]

Angell, D.

Angell, D. K.

Brooks, R. E.

R. E. Brooks, L. O. Heflinger, R. F. Wuerker, “Pulsed laser holograms,” IEEE J. Quantum Electron. QE-2, 275–279 (1966).
[CrossRef]

Bryngdahl, O.

O. Bryngdahl, A. W. Lohmann, “Modified holographic image formation,” J. Opt. Soc. Am. 57, 1412A (1967).
[PubMed]

Burch, J. M.

J. M. Burch, J. W. Gates, R. G. N. Hill, L. H. Tanner, “Holography with a scatter-plate as beam splitter and a pulsed ruby laser as light source,” Nature (London) 212, 1347–1348 (1966).
[CrossRef]

Chang, B. J.

E. N. Leith, B. J. Chang, “Image formation with an achromatic interferometer,” Opt. Commun. 23, 217–219 (1977).
[CrossRef]

Cohen, F.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.775, 233–247 (1987).

Davidson, M.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.775, 233–247 (1987).

Gates, J. W.

J. M. Burch, J. W. Gates, R. G. N. Hill, L. H. Tanner, “Holography with a scatter-plate as beam splitter and a pulsed ruby laser as light source,” Nature (London) 212, 1347–1348 (1966).
[CrossRef]

Gorlitz, D.

D. Gorlitz, F. Lanzl, “Methods of zero-order non-coherent filtering,” Opt. Commun. 20, 68–72 (1977).
[CrossRef]

Heflinger, L. O.

R. E. Brooks, L. O. Heflinger, R. F. Wuerker, “Pulsed laser holograms,” IEEE J. Quantum Electron. QE-2, 275–279 (1966).
[CrossRef]

Hill, R. G. N.

J. M. Burch, J. W. Gates, R. G. N. Hill, L. H. Tanner, “Holography with a scatter-plate as beam splitter and a pulsed ruby laser as light source,” Nature (London) 212, 1347–1348 (1966).
[CrossRef]

Kaufman, K.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.775, 233–247 (1987).

Kuei, C.-P.

Lanzl, F.

D. Gorlitz, F. Lanzl, “Methods of zero-order non-coherent filtering,” Opt. Commun. 20, 68–72 (1977).
[CrossRef]

Leith, E. N.

Lohmann, A. W.

A. W. Lohmann, “Incoherent optical processing of complex data,” Appl. Opt. 16, 261–263 (1977).
[CrossRef] [PubMed]

O. Bryngdahl, A. W. Lohmann, “Modified holographic image formation,” J. Opt. Soc. Am. 57, 1412A (1967).
[PubMed]

Mazor, I.

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.775, 233–247 (1987).

Rhodes, W. T.

Rosen, L.

L. Rosen, “Focused-image holography with extended source,” Appl. Phys. Lett. 9, 337–339 (1966).
[CrossRef]

Sheppard, C. J. R.

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

Stoner, W.

Swanson, G. J.

Tanner, L. H.

J. M. Burch, J. W. Gates, R. G. N. Hill, L. H. Tanner, “Holography with a scatter-plate as beam splitter and a pulsed ruby laser as light source,” Nature (London) 212, 1347–1348 (1966).
[CrossRef]

Upatnieks, J.

Wilson, T.

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

Wuerker, R. F.

R. E. Brooks, L. O. Heflinger, R. F. Wuerker, “Pulsed laser holograms,” IEEE J. Quantum Electron. QE-2, 275–279 (1966).
[CrossRef]

Yang, G. C.

Appl. Opt. (6)

Appl. Phys. Lett. (1)

L. Rosen, “Focused-image holography with extended source,” Appl. Phys. Lett. 9, 337–339 (1966).
[CrossRef]

IEEE J. Quantum Electron. (1)

R. E. Brooks, L. O. Heflinger, R. F. Wuerker, “Pulsed laser holograms,” IEEE J. Quantum Electron. QE-2, 275–279 (1966).
[CrossRef]

J. Opt. Soc. Am. (2)

O. Bryngdahl, A. W. Lohmann, “Modified holographic image formation,” J. Opt. Soc. Am. 57, 1412A (1967).
[PubMed]

E. N. Leith, J. Upatnieks, “Holography with achromatic-fringe systems,” J. Opt. Soc. Am. 57, 975–980 (1967).
[CrossRef]

J. Opt. Soc. Am. A (1)

Nature (London) (1)

J. M. Burch, J. W. Gates, R. G. N. Hill, L. H. Tanner, “Holography with a scatter-plate as beam splitter and a pulsed ruby laser as light source,” Nature (London) 212, 1347–1348 (1966).
[CrossRef]

Opt. Commun. (2)

E. N. Leith, B. J. Chang, “Image formation with an achromatic interferometer,” Opt. Commun. 23, 217–219 (1977).
[CrossRef]

D. Gorlitz, F. Lanzl, “Methods of zero-order non-coherent filtering,” Opt. Commun. 20, 68–72 (1977).
[CrossRef]

Other (2)

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

M. Davidson, K. Kaufman, I. Mazor, F. Cohen, “An application of interference microscopy to integrated circuit inspection and metrology,” in Integrated Circuit Metrology, Inspection, and Process Control, K. M. Monahan, ed., Proc. Soc. Photo-Opt. Instrum. Eng.775, 233–247 (1987).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Confocal imaging system.

Fig. 2
Fig. 2

Illustration of confocal system for imaging through scattering media.

Fig. 3
Fig. 3

Dual-channel, extended-source grating interferometer for performing image plane holography with confocallike imaging properties. G1, G2, gratings.

Fig. 4
Fig. 4

Experimental arrangement for demonstrating the scattered light rejection properties of extended-source image plane holography.

Fig. 5
Fig. 5

Experiment results. Image of a resolution chart hidden behind two pieces of ground glass (a) in a conventional one-channel imaging system, (b) in an extended-source image plane holographic system.

Fig. 6
Fig. 6

Experimental arrangement for demonstrating the property of the depth discrimination of the holographic system.

Fig. 7
Fig. 7

Experiment results. Image of a resolution chart formed with part of the object being defocused by a piece of thick glass (a) in a conventional one-channel imaging system, (b) in the holographic system.

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

u o ( x ; x s ) = δ ( x x s ) exp [ j k 2 z ( x x ) 2 ] d x = exp [ j k 2 z ( x x s ) 2 ] ,
u o ( x ; x s ) = exp [ j π λ z ( x x s ) 2 ] t ( x ) h 1 ( x x ) d x ,
u r ( x ; x s ) = exp [ j π λ z ( x x s ) 2 ] h 2 ( x x ) d x ,
u ( x ; x s ) = u o ( x ; x s ) exp ( j π f o x ) + u r ( x ; x s ) exp ( j π f o x ) ,
I = D / 2 D / 2 | u | 2 d x s = D / 2 D / 2 [ | u o | 2 + | u r | 2 + u o u r * exp ( j 2 π f o ) + u o * u r exp ( j 2 π f o ) ] d x s ,
u R ( x ) = D / 2 D / 2 u o u r * d x s = D / 2 D / 2 { t ( x ) h 1 ( x x ) h 2 * ( x x ) × exp [ j π λ z ( x 2 x 2 ) ] × exp [ j 2 π λ z ( x x ) x s ] d x d x } d x s = t ( x ) h 1 ( x x ) h 2 * ( x x ) × exp [ j π λ z ( x 2 x 2 ) ] × sinc [ j π λ z ( x x ) ] d x d x ,
u R ( x ) = t ( x ) h 1 ( x x ) h 2 * ( x x ) d x = t ( x ) * [ h 1 ( x ) h 2 * ( x ) ] ,
u R ( x ) = t ( x ) * | h 1 ( x ) | 2 .

Metrics