Abstract

A compact scanning microscope that uses a semiconductor laser both to illuminate a specimen and to detect the signal reflected from it is described. It is demonstrated that the spatial filtering performed by the laser detector ensures confocal operation. Two detection regimes, one employing a laser power monitor and the other using the diode junction voltage as a signal, are compared.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilson, ed., Confocal Microscopy (Academic, London, 1984), Chaps. 1–3.
  2. S. Kimura, T. Wilson, “Confocal scanning optical microscope using single-mode fiber for signal detection,” Appl. Opt. 30, 2143–2150 (1991).
    [Crossref] [PubMed]
  3. L. Giniunas, R. Juškaitis, S. V. Shatalin, “Scanning fibre-optic microscope,” Electron. Lett. 27, 724–726 (1991).
    [Crossref]
  4. R. Juškaitis, T. Wilson, “Imaging in reciprocal fibre-optic based confocal scanning microscopes,” Opt. Commun. 92, 315–325 (1992).
    [Crossref]
  5. R. Juškaitis, F. Reinholz, T. Wilson, “Fibre-optic based confocal scanning microscopy with semiconductor laser excitation and detection,” Electron. Lett. 28, 986–987 (1992).
    [Crossref]
  6. R. Juškaitis, N. Rea, T. Wilson, “Fibre-optic based confocal remote scanning microscopy using laser detection,” Opt. Commun. 99, 105–113 (1993).
    [Crossref]
  7. R. Juskaitis, T. Wilson, F. Reinholz, “Spatial filtering by laser detection in confocal microscopy,” Opt. Lett. 18, 1135–1137 (1993).
    [Crossref] [PubMed]
  8. A. Yariv, Quantum Electronics (Wiley, New York, 1988), Chap. 11.
  9. A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).
  10. D. Lenstra, M. van Vaalen, B. Jaskorzynska, “On the theory of a single-mode laser with weak optical feedback,” Physica (The Hague) 125C, 255–264 (1984).
  11. J. Katz, S. Margalit, C. Harderer, D. Wilt, A. Yariv, “The intrinsic electrical equivalent circuit of a laser diode,” IEEE J. Quantum Electron. QE-17, 4–7 (1981).
    [Crossref]
  12. J. Mørk, B. Tromborg, J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28, 93–108 (1992).
    [Crossref]

1993 (2)

R. Juškaitis, N. Rea, T. Wilson, “Fibre-optic based confocal remote scanning microscopy using laser detection,” Opt. Commun. 99, 105–113 (1993).
[Crossref]

R. Juskaitis, T. Wilson, F. Reinholz, “Spatial filtering by laser detection in confocal microscopy,” Opt. Lett. 18, 1135–1137 (1993).
[Crossref] [PubMed]

1992 (3)

R. Juškaitis, T. Wilson, “Imaging in reciprocal fibre-optic based confocal scanning microscopes,” Opt. Commun. 92, 315–325 (1992).
[Crossref]

R. Juškaitis, F. Reinholz, T. Wilson, “Fibre-optic based confocal scanning microscopy with semiconductor laser excitation and detection,” Electron. Lett. 28, 986–987 (1992).
[Crossref]

J. Mørk, B. Tromborg, J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28, 93–108 (1992).
[Crossref]

1991 (2)

S. Kimura, T. Wilson, “Confocal scanning optical microscope using single-mode fiber for signal detection,” Appl. Opt. 30, 2143–2150 (1991).
[Crossref] [PubMed]

L. Giniunas, R. Juškaitis, S. V. Shatalin, “Scanning fibre-optic microscope,” Electron. Lett. 27, 724–726 (1991).
[Crossref]

1984 (1)

D. Lenstra, M. van Vaalen, B. Jaskorzynska, “On the theory of a single-mode laser with weak optical feedback,” Physica (The Hague) 125C, 255–264 (1984).

1981 (1)

J. Katz, S. Margalit, C. Harderer, D. Wilt, A. Yariv, “The intrinsic electrical equivalent circuit of a laser diode,” IEEE J. Quantum Electron. QE-17, 4–7 (1981).
[Crossref]

Giniunas, L.

L. Giniunas, R. Juškaitis, S. V. Shatalin, “Scanning fibre-optic microscope,” Electron. Lett. 27, 724–726 (1991).
[Crossref]

Harderer, C.

J. Katz, S. Margalit, C. Harderer, D. Wilt, A. Yariv, “The intrinsic electrical equivalent circuit of a laser diode,” IEEE J. Quantum Electron. QE-17, 4–7 (1981).
[Crossref]

Jaskorzynska, B.

D. Lenstra, M. van Vaalen, B. Jaskorzynska, “On the theory of a single-mode laser with weak optical feedback,” Physica (The Hague) 125C, 255–264 (1984).

Juskaitis, R.

Juškaitis, R.

R. Juškaitis, N. Rea, T. Wilson, “Fibre-optic based confocal remote scanning microscopy using laser detection,” Opt. Commun. 99, 105–113 (1993).
[Crossref]

R. Juškaitis, T. Wilson, “Imaging in reciprocal fibre-optic based confocal scanning microscopes,” Opt. Commun. 92, 315–325 (1992).
[Crossref]

R. Juškaitis, F. Reinholz, T. Wilson, “Fibre-optic based confocal scanning microscopy with semiconductor laser excitation and detection,” Electron. Lett. 28, 986–987 (1992).
[Crossref]

L. Giniunas, R. Juškaitis, S. V. Shatalin, “Scanning fibre-optic microscope,” Electron. Lett. 27, 724–726 (1991).
[Crossref]

Katz, J.

J. Katz, S. Margalit, C. Harderer, D. Wilt, A. Yariv, “The intrinsic electrical equivalent circuit of a laser diode,” IEEE J. Quantum Electron. QE-17, 4–7 (1981).
[Crossref]

Kimura, S.

Lenstra, D.

D. Lenstra, M. van Vaalen, B. Jaskorzynska, “On the theory of a single-mode laser with weak optical feedback,” Physica (The Hague) 125C, 255–264 (1984).

Margalit, S.

J. Katz, S. Margalit, C. Harderer, D. Wilt, A. Yariv, “The intrinsic electrical equivalent circuit of a laser diode,” IEEE J. Quantum Electron. QE-17, 4–7 (1981).
[Crossref]

Mark, J.

J. Mørk, B. Tromborg, J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28, 93–108 (1992).
[Crossref]

Mørk, J.

J. Mørk, B. Tromborg, J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28, 93–108 (1992).
[Crossref]

Rea, N.

R. Juškaitis, N. Rea, T. Wilson, “Fibre-optic based confocal remote scanning microscopy using laser detection,” Opt. Commun. 99, 105–113 (1993).
[Crossref]

Reinholz, F.

R. Juskaitis, T. Wilson, F. Reinholz, “Spatial filtering by laser detection in confocal microscopy,” Opt. Lett. 18, 1135–1137 (1993).
[Crossref] [PubMed]

R. Juškaitis, F. Reinholz, T. Wilson, “Fibre-optic based confocal scanning microscopy with semiconductor laser excitation and detection,” Electron. Lett. 28, 986–987 (1992).
[Crossref]

Shatalin, S. V.

L. Giniunas, R. Juškaitis, S. V. Shatalin, “Scanning fibre-optic microscope,” Electron. Lett. 27, 724–726 (1991).
[Crossref]

Siegman, A. E.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Tromborg, B.

J. Mørk, B. Tromborg, J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28, 93–108 (1992).
[Crossref]

van Vaalen, M.

D. Lenstra, M. van Vaalen, B. Jaskorzynska, “On the theory of a single-mode laser with weak optical feedback,” Physica (The Hague) 125C, 255–264 (1984).

Wilson, T.

R. Juškaitis, N. Rea, T. Wilson, “Fibre-optic based confocal remote scanning microscopy using laser detection,” Opt. Commun. 99, 105–113 (1993).
[Crossref]

R. Juskaitis, T. Wilson, F. Reinholz, “Spatial filtering by laser detection in confocal microscopy,” Opt. Lett. 18, 1135–1137 (1993).
[Crossref] [PubMed]

R. Juškaitis, T. Wilson, “Imaging in reciprocal fibre-optic based confocal scanning microscopes,” Opt. Commun. 92, 315–325 (1992).
[Crossref]

R. Juškaitis, F. Reinholz, T. Wilson, “Fibre-optic based confocal scanning microscopy with semiconductor laser excitation and detection,” Electron. Lett. 28, 986–987 (1992).
[Crossref]

S. Kimura, T. Wilson, “Confocal scanning optical microscope using single-mode fiber for signal detection,” Appl. Opt. 30, 2143–2150 (1991).
[Crossref] [PubMed]

Wilt, D.

J. Katz, S. Margalit, C. Harderer, D. Wilt, A. Yariv, “The intrinsic electrical equivalent circuit of a laser diode,” IEEE J. Quantum Electron. QE-17, 4–7 (1981).
[Crossref]

Yariv, A.

J. Katz, S. Margalit, C. Harderer, D. Wilt, A. Yariv, “The intrinsic electrical equivalent circuit of a laser diode,” IEEE J. Quantum Electron. QE-17, 4–7 (1981).
[Crossref]

A. Yariv, Quantum Electronics (Wiley, New York, 1988), Chap. 11.

Appl. Opt. (1)

Electron. Lett. (2)

L. Giniunas, R. Juškaitis, S. V. Shatalin, “Scanning fibre-optic microscope,” Electron. Lett. 27, 724–726 (1991).
[Crossref]

R. Juškaitis, F. Reinholz, T. Wilson, “Fibre-optic based confocal scanning microscopy with semiconductor laser excitation and detection,” Electron. Lett. 28, 986–987 (1992).
[Crossref]

IEEE J. Quantum Electron. (2)

J. Katz, S. Margalit, C. Harderer, D. Wilt, A. Yariv, “The intrinsic electrical equivalent circuit of a laser diode,” IEEE J. Quantum Electron. QE-17, 4–7 (1981).
[Crossref]

J. Mørk, B. Tromborg, J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE J. Quantum Electron. 28, 93–108 (1992).
[Crossref]

Opt. Commun. (2)

R. Juškaitis, N. Rea, T. Wilson, “Fibre-optic based confocal remote scanning microscopy using laser detection,” Opt. Commun. 99, 105–113 (1993).
[Crossref]

R. Juškaitis, T. Wilson, “Imaging in reciprocal fibre-optic based confocal scanning microscopes,” Opt. Commun. 92, 315–325 (1992).
[Crossref]

Opt. Lett. (1)

Physica (The Hague) (1)

D. Lenstra, M. van Vaalen, B. Jaskorzynska, “On the theory of a single-mode laser with weak optical feedback,” Physica (The Hague) 125C, 255–264 (1984).

Other (3)

T. Wilson, ed., Confocal Microscopy (Academic, London, 1984), Chaps. 1–3.

A. Yariv, Quantum Electronics (Wiley, New York, 1988), Chap. 11.

A. E. Siegman, Lasers (University Science, Mill Valley, Calif., 1986).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (8)

Fig. 1
Fig. 1

(a) Schematic layout of the laser diode microscope, (b) schematic diagram of the power monitor and diode voltage detection schemes.

Fig. 2
Fig. 2

Theoretical axial responses for various values of a.

Fig. 3
Fig. 3

Differential resistance of the diode laser. The circles represent the experimental measurements, whereas the full curve is the theoretical prediction from Eq. (20).

Fig. 4
Fig. 4

Variation of the laser power (mW) as a function of injection current (mA). Right-hand trace, isolated laser; left-hand trace, with feedback signal reflected from a mirror.

Fig. 5
Fig. 5

Dependence of the junction voltage signal on the reflected power. Injection current 64 mA.

Fig. 6
Fig. 6

Variation of the power monitor and the junction voltage signals as a function of the injection current.

Fig. 7
Fig. 7

Axial responses of the diode laser microscope. Injection current 64 mA. Horizontal scale, 2.1 μm/division; vertical scale, normalized, (a) a = 0.57, (b) a = 1.0, (c) a = 1.4.

Fig. 8
Fig. 8

Two specimen images taken at 3-μm axial separation. Field of view 80 × 80 μm.

Equations (21)

Equations on this page are rendered with MathJax. Learn more.

d n d t = i d q n τ s g p ,
d p d t = g p p τ ph ,
i 0 d q n 0 τ s g 0 p 0 = 0 ,
g 0 1 τ ph 0 = 0 .
1 τ ph = σ + 2 τ [ ln ( 1 r ) + ln ( 1 r ) ] ,
1 τ ph 1 = 1 τ ph 0 2 r 1 τ r ,
i 1 d q n 1 τ s g 0 p 1 A n 1 p 0 = 0 ,
A n 1 + 2 r 1 τ r = 0 ,
p 1 = 2 r 1 A g 0 2 τ r n 0 d q [ ( g 0 n 0 A ) i th + n 0 A i 0 ] ,
r + r 1 = r + ( 1 r 2 ) s ,
C = x τ ext τ ( 1 + β 2 ) 1 / 2 ,
r 1 = ( 1 r 2 ) | s | .
s = h eff 2 t ,
h eff = h e ,
| s ( u ) | = | sin ( u / 2 ) u / 2 | .
e ( x , y ) = exp ( x 2 a 2 + y 2 b 2 ) ,
n = n i exp q V 2 k T ,
V 1 = 2 k T q n 1 n 0 ,
V 1 = 4 k T A q n 0 τ r 1 r .
R = 2 k T q I ,
V 1 = P 1 R th η ,

Metrics