Abstract

A fiber-optic laser scanning confocal microscope that utilizes a single-mode optical fiber as both the source and the detection aperture is described. The design of a compact, portable scanning head that is robust in alignment and fits simply to standard light microscopes is presented. Resolution performance and imaging capability are demonstrated for several objective lenses in both reflectance and fluorescence modes of operation. This microscope achieves performance that is comparable with that of conventional bulk optical laser scanning confocal microscopes while offering flexibility in usage forbidden to such instruments.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. M. Minsky, “Microscopy apparatus,” U.S. patent3,013,467 (19December1961).
  2. T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).
  3. W. B. Amos, J. G. White, M. Fordham, “Use of confocal imaging in the study of biological structures,” Appl. Opt. 26, 3238–3243 (1987).
    [CrossRef]
  4. G. S. Kino, T. R. Corle “Confocal scanning optical microscopy,” Phys. Today 42(9), 55–62 (1989).
    [CrossRef]
  5. A. Fine, W. B. Amos, R. M. Durbin, A. McNaughton, “Confocal microscopy: applications in neurobiology,” Trends Neurosci. 11, 346–351 (1988).
    [CrossRef] [PubMed]
  6. M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10, 128–138 (1988).
    [CrossRef]
  7. W. A. Carrington, K. E. Fogarty, L. Lifschitz, F. S. Fay, “Three-dimensional imaging on confocal and wide-field microscopes,” in The Handbook on Biological Confocal Microscopy, J. Pawley, ed. (IMR, Madison, Wisc, 1989), pp. 137–146.
  8. K. Carlsson, N. Aslund, “Confocal imaging for 3-D digital microscopy,” Appl. Opt. 26, 3232–3238 (1987).
    [CrossRef] [PubMed]
  9. T. Wilson, A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett. 12, 227–229 (1987).
    [CrossRef] [PubMed]
  10. T. Wilson, A. R. Carlini, “Three-dimensional imaging in confocal imaging systems with finite sized detectors,” J. Microsc. 149, 51–66 (1988).
    [CrossRef]
  11. M. R. Harris, “Scanning confocal microscope including a single fibre for transmitting light to and receiving light from an object,” U.S. patent5,120,953 (9June1992).
  12. A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).
  13. S. Kimura, T. Wilson, “Confocal scanning optical microscope using single-mode fiber for signal detection,” Appl. Opt. 30, 2143–2150 (1991).
    [CrossRef] [PubMed]
  14. M. Gu, C. J. R. Sheppard, X. Gan, “Image formation in a fiber-optical confocal scanning microscope,” J. Opt. Soc. Am. A 8, 1755–1761 (1991).
    [CrossRef]
  15. M. Gu, C. J. R. Sheppard, “Signal level in the fiber-optical confocal scanning microscope,” J. Mod. Opt. 38, 1621–1630 (1991).
    [CrossRef]
  16. J. Benschop, G. van Rosmalen, “Confocal compact scanning optical microscope based on compact disc technology.” Appl. Opt. 30, 1179–1184 (1991).
    [CrossRef] [PubMed]
  17. P. J. Shaw, D. J. Rawlins, “The point-spread function of a confocal microscope: its measurement and use in deconvolution of 3-D data,” J. Microsc. 163, 151–165 (1991).
    [CrossRef]
  18. T. Dabbs, M. Glass, “Single-mode fibers used as confocal microscope pinholes,” Appl. Opt. 31, 705–706 (1992).
    [CrossRef] [PubMed]
  19. L. Giniunas, R. Juskaitis, S. V. Shatalin, “Scanning fiber-optic microscope, Electron. Lett. 27, 724–726 (1991).
    [CrossRef]
  20. K. P. Ghiggino, M. R. Harris, P. G. Spizziri, “Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope,” Rev. Sci. Instrum. 63, 2999–3002 (1992)
    [CrossRef]
  21. T. Dabbs, M. Glass, “Fiber-optic confocal microscope: FOCON,” Appl. Opt. 31, 3030–3035 (1992).
    [CrossRef] [PubMed]
  22. R. Juskaitis, T. Wilson, “Imaging in reciprocal fibre-optic based confocal scanning microscopes,” Opt. Commun. 92, 315 (1992).
    [CrossRef]
  23. E. H. K. Stelzer, “Considerations on the intermediate optical system in confocal microscopes,” in The Handbook on Biological Confocal Microscopy, J. Pawley, ed. (IMR, Madison, Wisc, 1989), pp. 83–92.
  24. H. E. Keller, “Objective lenses for confocal microscopy,” in The Handbook on Biological Confocal Microscopy, J. Pawley, ed. (IMR, Madison, Wisc, 1989), pp. 69–82
  25. P. M. Delaney, M. R. Harris, R. G. King, “Novel microscopy using fibre optic confocal imaging and its suitability for subsurface blood vessel imaging in vivo,” Clin. Exp. Pharmacol. Physiol. 20, 197–198 (1993).
    [CrossRef] [PubMed]
  26. P. M. Delaney, J. K. Callaway, W. C. Hodgson, R. G. King, “Microvascular dynamics in the rat ileum viewed using novel fibre optic confocal imaging (FOCI),” Clin. Exp. Pharmacol. Physiol. 21Suppl., 17 (1992).
  27. P. M. Delaney, R. G. King, J. R. Lambert, M. R. Harris, “Fiber optic confocal imaging (FOCI) for sub-surface imaging of the colon in vivo.” J. Anat. (to be published).

1993

P. M. Delaney, M. R. Harris, R. G. King, “Novel microscopy using fibre optic confocal imaging and its suitability for subsurface blood vessel imaging in vivo,” Clin. Exp. Pharmacol. Physiol. 20, 197–198 (1993).
[CrossRef] [PubMed]

1992

P. M. Delaney, J. K. Callaway, W. C. Hodgson, R. G. King, “Microvascular dynamics in the rat ileum viewed using novel fibre optic confocal imaging (FOCI),” Clin. Exp. Pharmacol. Physiol. 21Suppl., 17 (1992).

T. Dabbs, M. Glass, “Fiber-optic confocal microscope: FOCON,” Appl. Opt. 31, 3030–3035 (1992).
[CrossRef] [PubMed]

K. P. Ghiggino, M. R. Harris, P. G. Spizziri, “Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope,” Rev. Sci. Instrum. 63, 2999–3002 (1992)
[CrossRef]

R. Juskaitis, T. Wilson, “Imaging in reciprocal fibre-optic based confocal scanning microscopes,” Opt. Commun. 92, 315 (1992).
[CrossRef]

T. Dabbs, M. Glass, “Single-mode fibers used as confocal microscope pinholes,” Appl. Opt. 31, 705–706 (1992).
[CrossRef] [PubMed]

1991

M. Gu, C. J. R. Sheppard, “Signal level in the fiber-optical confocal scanning microscope,” J. Mod. Opt. 38, 1621–1630 (1991).
[CrossRef]

P. J. Shaw, D. J. Rawlins, “The point-spread function of a confocal microscope: its measurement and use in deconvolution of 3-D data,” J. Microsc. 163, 151–165 (1991).
[CrossRef]

L. Giniunas, R. Juskaitis, S. V. Shatalin, “Scanning fiber-optic microscope, Electron. Lett. 27, 724–726 (1991).
[CrossRef]

J. Benschop, G. van Rosmalen, “Confocal compact scanning optical microscope based on compact disc technology.” Appl. Opt. 30, 1179–1184 (1991).
[CrossRef] [PubMed]

S. Kimura, T. Wilson, “Confocal scanning optical microscope using single-mode fiber for signal detection,” Appl. Opt. 30, 2143–2150 (1991).
[CrossRef] [PubMed]

M. Gu, C. J. R. Sheppard, X. Gan, “Image formation in a fiber-optical confocal scanning microscope,” J. Opt. Soc. Am. A 8, 1755–1761 (1991).
[CrossRef]

1989

G. S. Kino, T. R. Corle “Confocal scanning optical microscopy,” Phys. Today 42(9), 55–62 (1989).
[CrossRef]

1988

A. Fine, W. B. Amos, R. M. Durbin, A. McNaughton, “Confocal microscopy: applications in neurobiology,” Trends Neurosci. 11, 346–351 (1988).
[CrossRef] [PubMed]

M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10, 128–138 (1988).
[CrossRef]

T. Wilson, A. R. Carlini, “Three-dimensional imaging in confocal imaging systems with finite sized detectors,” J. Microsc. 149, 51–66 (1988).
[CrossRef]

1987

Amos, W. B.

A. Fine, W. B. Amos, R. M. Durbin, A. McNaughton, “Confocal microscopy: applications in neurobiology,” Trends Neurosci. 11, 346–351 (1988).
[CrossRef] [PubMed]

W. B. Amos, J. G. White, M. Fordham, “Use of confocal imaging in the study of biological structures,” Appl. Opt. 26, 3238–3243 (1987).
[CrossRef]

Aslund, N.

Benschop, J.

Callaway, J. K.

P. M. Delaney, J. K. Callaway, W. C. Hodgson, R. G. King, “Microvascular dynamics in the rat ileum viewed using novel fibre optic confocal imaging (FOCI),” Clin. Exp. Pharmacol. Physiol. 21Suppl., 17 (1992).

Carlini, A. R.

T. Wilson, A. R. Carlini, “Three-dimensional imaging in confocal imaging systems with finite sized detectors,” J. Microsc. 149, 51–66 (1988).
[CrossRef]

T. Wilson, A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett. 12, 227–229 (1987).
[CrossRef] [PubMed]

Carlsson, K.

Carrington, W. A.

W. A. Carrington, K. E. Fogarty, L. Lifschitz, F. S. Fay, “Three-dimensional imaging on confocal and wide-field microscopes,” in The Handbook on Biological Confocal Microscopy, J. Pawley, ed. (IMR, Madison, Wisc, 1989), pp. 137–146.

Corle, T. R.

G. S. Kino, T. R. Corle “Confocal scanning optical microscopy,” Phys. Today 42(9), 55–62 (1989).
[CrossRef]

Dabbs, T.

Delaney, P. M.

P. M. Delaney, M. R. Harris, R. G. King, “Novel microscopy using fibre optic confocal imaging and its suitability for subsurface blood vessel imaging in vivo,” Clin. Exp. Pharmacol. Physiol. 20, 197–198 (1993).
[CrossRef] [PubMed]

P. M. Delaney, J. K. Callaway, W. C. Hodgson, R. G. King, “Microvascular dynamics in the rat ileum viewed using novel fibre optic confocal imaging (FOCI),” Clin. Exp. Pharmacol. Physiol. 21Suppl., 17 (1992).

P. M. Delaney, R. G. King, J. R. Lambert, M. R. Harris, “Fiber optic confocal imaging (FOCI) for sub-surface imaging of the colon in vivo.” J. Anat. (to be published).

Durbin, R. M.

A. Fine, W. B. Amos, R. M. Durbin, A. McNaughton, “Confocal microscopy: applications in neurobiology,” Trends Neurosci. 11, 346–351 (1988).
[CrossRef] [PubMed]

Fay, F. S.

W. A. Carrington, K. E. Fogarty, L. Lifschitz, F. S. Fay, “Three-dimensional imaging on confocal and wide-field microscopes,” in The Handbook on Biological Confocal Microscopy, J. Pawley, ed. (IMR, Madison, Wisc, 1989), pp. 137–146.

Fine, A.

A. Fine, W. B. Amos, R. M. Durbin, A. McNaughton, “Confocal microscopy: applications in neurobiology,” Trends Neurosci. 11, 346–351 (1988).
[CrossRef] [PubMed]

Fogarty, K. E.

W. A. Carrington, K. E. Fogarty, L. Lifschitz, F. S. Fay, “Three-dimensional imaging on confocal and wide-field microscopes,” in The Handbook on Biological Confocal Microscopy, J. Pawley, ed. (IMR, Madison, Wisc, 1989), pp. 137–146.

Fordham, M.

W. B. Amos, J. G. White, M. Fordham, “Use of confocal imaging in the study of biological structures,” Appl. Opt. 26, 3238–3243 (1987).
[CrossRef]

Gan, X.

Ghiggino, K. P.

K. P. Ghiggino, M. R. Harris, P. G. Spizziri, “Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope,” Rev. Sci. Instrum. 63, 2999–3002 (1992)
[CrossRef]

Giniunas, L.

L. Giniunas, R. Juskaitis, S. V. Shatalin, “Scanning fiber-optic microscope, Electron. Lett. 27, 724–726 (1991).
[CrossRef]

Glass, M.

Gu, M.

M. Gu, C. J. R. Sheppard, X. Gan, “Image formation in a fiber-optical confocal scanning microscope,” J. Opt. Soc. Am. A 8, 1755–1761 (1991).
[CrossRef]

M. Gu, C. J. R. Sheppard, “Signal level in the fiber-optical confocal scanning microscope,” J. Mod. Opt. 38, 1621–1630 (1991).
[CrossRef]

Harris, M. R.

P. M. Delaney, M. R. Harris, R. G. King, “Novel microscopy using fibre optic confocal imaging and its suitability for subsurface blood vessel imaging in vivo,” Clin. Exp. Pharmacol. Physiol. 20, 197–198 (1993).
[CrossRef] [PubMed]

K. P. Ghiggino, M. R. Harris, P. G. Spizziri, “Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope,” Rev. Sci. Instrum. 63, 2999–3002 (1992)
[CrossRef]

M. R. Harris, “Scanning confocal microscope including a single fibre for transmitting light to and receiving light from an object,” U.S. patent5,120,953 (9June1992).

P. M. Delaney, R. G. King, J. R. Lambert, M. R. Harris, “Fiber optic confocal imaging (FOCI) for sub-surface imaging of the colon in vivo.” J. Anat. (to be published).

Hodgson, W. C.

P. M. Delaney, J. K. Callaway, W. C. Hodgson, R. G. King, “Microvascular dynamics in the rat ileum viewed using novel fibre optic confocal imaging (FOCI),” Clin. Exp. Pharmacol. Physiol. 21Suppl., 17 (1992).

Juskaitis, R.

R. Juskaitis, T. Wilson, “Imaging in reciprocal fibre-optic based confocal scanning microscopes,” Opt. Commun. 92, 315 (1992).
[CrossRef]

L. Giniunas, R. Juskaitis, S. V. Shatalin, “Scanning fiber-optic microscope, Electron. Lett. 27, 724–726 (1991).
[CrossRef]

Keller, H. E.

H. E. Keller, “Objective lenses for confocal microscopy,” in The Handbook on Biological Confocal Microscopy, J. Pawley, ed. (IMR, Madison, Wisc, 1989), pp. 69–82

Kimura, S.

King, R. G.

P. M. Delaney, M. R. Harris, R. G. King, “Novel microscopy using fibre optic confocal imaging and its suitability for subsurface blood vessel imaging in vivo,” Clin. Exp. Pharmacol. Physiol. 20, 197–198 (1993).
[CrossRef] [PubMed]

P. M. Delaney, J. K. Callaway, W. C. Hodgson, R. G. King, “Microvascular dynamics in the rat ileum viewed using novel fibre optic confocal imaging (FOCI),” Clin. Exp. Pharmacol. Physiol. 21Suppl., 17 (1992).

P. M. Delaney, R. G. King, J. R. Lambert, M. R. Harris, “Fiber optic confocal imaging (FOCI) for sub-surface imaging of the colon in vivo.” J. Anat. (to be published).

Kino, G. S.

G. S. Kino, T. R. Corle “Confocal scanning optical microscopy,” Phys. Today 42(9), 55–62 (1989).
[CrossRef]

Lambert, J. R.

P. M. Delaney, R. G. King, J. R. Lambert, M. R. Harris, “Fiber optic confocal imaging (FOCI) for sub-surface imaging of the colon in vivo.” J. Anat. (to be published).

Lifschitz, L.

W. A. Carrington, K. E. Fogarty, L. Lifschitz, F. S. Fay, “Three-dimensional imaging on confocal and wide-field microscopes,” in The Handbook on Biological Confocal Microscopy, J. Pawley, ed. (IMR, Madison, Wisc, 1989), pp. 137–146.

Love, J. D.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

McNaughton, A.

A. Fine, W. B. Amos, R. M. Durbin, A. McNaughton, “Confocal microscopy: applications in neurobiology,” Trends Neurosci. 11, 346–351 (1988).
[CrossRef] [PubMed]

Minsky, M.

M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10, 128–138 (1988).
[CrossRef]

M. Minsky, “Microscopy apparatus,” U.S. patent3,013,467 (19December1961).

Rawlins, D. J.

P. J. Shaw, D. J. Rawlins, “The point-spread function of a confocal microscope: its measurement and use in deconvolution of 3-D data,” J. Microsc. 163, 151–165 (1991).
[CrossRef]

Shatalin, S. V.

L. Giniunas, R. Juskaitis, S. V. Shatalin, “Scanning fiber-optic microscope, Electron. Lett. 27, 724–726 (1991).
[CrossRef]

Shaw, P. J.

P. J. Shaw, D. J. Rawlins, “The point-spread function of a confocal microscope: its measurement and use in deconvolution of 3-D data,” J. Microsc. 163, 151–165 (1991).
[CrossRef]

Sheppard, C.

T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

Sheppard, C. J. R.

M. Gu, C. J. R. Sheppard, “Signal level in the fiber-optical confocal scanning microscope,” J. Mod. Opt. 38, 1621–1630 (1991).
[CrossRef]

M. Gu, C. J. R. Sheppard, X. Gan, “Image formation in a fiber-optical confocal scanning microscope,” J. Opt. Soc. Am. A 8, 1755–1761 (1991).
[CrossRef]

Snyder, A. W.

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

Spizziri, P. G.

K. P. Ghiggino, M. R. Harris, P. G. Spizziri, “Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope,” Rev. Sci. Instrum. 63, 2999–3002 (1992)
[CrossRef]

Stelzer, E. H. K.

E. H. K. Stelzer, “Considerations on the intermediate optical system in confocal microscopes,” in The Handbook on Biological Confocal Microscopy, J. Pawley, ed. (IMR, Madison, Wisc, 1989), pp. 83–92.

van Rosmalen, G.

White, J. G.

W. B. Amos, J. G. White, M. Fordham, “Use of confocal imaging in the study of biological structures,” Appl. Opt. 26, 3238–3243 (1987).
[CrossRef]

Wilson, T.

R. Juskaitis, T. Wilson, “Imaging in reciprocal fibre-optic based confocal scanning microscopes,” Opt. Commun. 92, 315 (1992).
[CrossRef]

S. Kimura, T. Wilson, “Confocal scanning optical microscope using single-mode fiber for signal detection,” Appl. Opt. 30, 2143–2150 (1991).
[CrossRef] [PubMed]

T. Wilson, A. R. Carlini, “Three-dimensional imaging in confocal imaging systems with finite sized detectors,” J. Microsc. 149, 51–66 (1988).
[CrossRef]

T. Wilson, A. R. Carlini, “Size of the detector in confocal imaging systems,” Opt. Lett. 12, 227–229 (1987).
[CrossRef] [PubMed]

T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

Appl. Opt.

Clin. Exp. Pharmacol. Physiol.

P. M. Delaney, M. R. Harris, R. G. King, “Novel microscopy using fibre optic confocal imaging and its suitability for subsurface blood vessel imaging in vivo,” Clin. Exp. Pharmacol. Physiol. 20, 197–198 (1993).
[CrossRef] [PubMed]

P. M. Delaney, J. K. Callaway, W. C. Hodgson, R. G. King, “Microvascular dynamics in the rat ileum viewed using novel fibre optic confocal imaging (FOCI),” Clin. Exp. Pharmacol. Physiol. 21Suppl., 17 (1992).

Electron. Lett.

L. Giniunas, R. Juskaitis, S. V. Shatalin, “Scanning fiber-optic microscope, Electron. Lett. 27, 724–726 (1991).
[CrossRef]

J. Microsc.

P. J. Shaw, D. J. Rawlins, “The point-spread function of a confocal microscope: its measurement and use in deconvolution of 3-D data,” J. Microsc. 163, 151–165 (1991).
[CrossRef]

T. Wilson, A. R. Carlini, “Three-dimensional imaging in confocal imaging systems with finite sized detectors,” J. Microsc. 149, 51–66 (1988).
[CrossRef]

J. Mod. Opt.

M. Gu, C. J. R. Sheppard, “Signal level in the fiber-optical confocal scanning microscope,” J. Mod. Opt. 38, 1621–1630 (1991).
[CrossRef]

J. Opt. Soc. Am. A

Opt. Commun.

R. Juskaitis, T. Wilson, “Imaging in reciprocal fibre-optic based confocal scanning microscopes,” Opt. Commun. 92, 315 (1992).
[CrossRef]

Opt. Lett.

Phys. Today

G. S. Kino, T. R. Corle “Confocal scanning optical microscopy,” Phys. Today 42(9), 55–62 (1989).
[CrossRef]

Rev. Sci. Instrum.

K. P. Ghiggino, M. R. Harris, P. G. Spizziri, “Fluorescence lifetime measurements using a novel fiber-optic laser scanning confocal microscope,” Rev. Sci. Instrum. 63, 2999–3002 (1992)
[CrossRef]

Scanning

M. Minsky, “Memoir on inventing the confocal scanning microscope,” Scanning 10, 128–138 (1988).
[CrossRef]

Trends Neurosci.

A. Fine, W. B. Amos, R. M. Durbin, A. McNaughton, “Confocal microscopy: applications in neurobiology,” Trends Neurosci. 11, 346–351 (1988).
[CrossRef] [PubMed]

Other

M. Minsky, “Microscopy apparatus,” U.S. patent3,013,467 (19December1961).

T. Wilson, C. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984).

W. A. Carrington, K. E. Fogarty, L. Lifschitz, F. S. Fay, “Three-dimensional imaging on confocal and wide-field microscopes,” in The Handbook on Biological Confocal Microscopy, J. Pawley, ed. (IMR, Madison, Wisc, 1989), pp. 137–146.

M. R. Harris, “Scanning confocal microscope including a single fibre for transmitting light to and receiving light from an object,” U.S. patent5,120,953 (9June1992).

A. W. Snyder, J. D. Love, Optical Waveguide Theory (Chapman & Hall, London, 1983).

E. H. K. Stelzer, “Considerations on the intermediate optical system in confocal microscopes,” in The Handbook on Biological Confocal Microscopy, J. Pawley, ed. (IMR, Madison, Wisc, 1989), pp. 83–92.

H. E. Keller, “Objective lenses for confocal microscopy,” in The Handbook on Biological Confocal Microscopy, J. Pawley, ed. (IMR, Madison, Wisc, 1989), pp. 69–82

P. M. Delaney, R. G. King, J. R. Lambert, M. R. Harris, “Fiber optic confocal imaging (FOCI) for sub-surface imaging of the colon in vivo.” J. Anat. (to be published).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (4)

Fig. 1
Fig. 1

Schematic representation of the scanning head configuration. The output of the optic fiber is focused by a lens element through the scanning mirrors and the beam steering lens into the image plane of the microscope. The beam steering lens serves to steer the beam from any point in the image plane to the rear entrance aperture of the objective lens (see text for a detailed description).

Fig. 2
Fig. 2

Demonstration of axial response of the fiber-optic confocal microscope in the fluorescence mode. A typical xz image of a 0. 1-μm fluorescent bead is shown (scale bar, 1 μm). Mean fluorescence axial response measurements are shown in Table 1.

Fig. 3
Fig. 3

Typical fluorescence psf obtained by scanning a 0.1-μm fluorescent bead, using an Olympus SPlanApo60× 1.4-NA oil-immersion objective lens (vertical scale I), intensity in arbitrary units; horizontal scale, lateral displacement. Mean lateral resolution measurements are shown in Table 1.

Fig. 4
Fig. 4

Fluorescence images of chromosomes in a Feulgan-stained cell preparation of the root tip of the onion, Allium cepa. Individual scans of the chromosomes were obtained with an Olympus SPlanApo60× 1.4-NA oil-immersion objective at depths of (a) 0, (b) 0.5 μm, (c) 1.0 μm, (d) 1.5 μm, (e) 2.0 μm, (f) 2.5 μm. Field, 25 μm in each image.

Tables (1)

Tables Icon

Table 1 Mean Fluorescence Resolution Results (in Micrometers) for Olympus PlanApo20× 0.65-NA and SPIanApo60× 1.4-NA Objective Lenses a

Metrics