Abstract

Scanning confocal microscopy is now well developed and applied. As an alternative to a laser spot to be scanned, parallel processing can be obtained when a two-dimensional structure is moved through the focal plane and a series of image sections is recorded. Surface topography is determined by analysis of the normalized intensity of the appropriate image points, i.e., a search of the intensity maximum leads to surface coordinates. With a high numerical aperture of the optical system, the half-width of I(z) is small, and the topography can be calculated with high accuracy. But with a high numerical aperture, only small object fields can be reproduced. As an alternative to the Nipkow disk for parallel processing, high-numerical-aperture microlenses are combined in an array. The reproducible object field is then limited by the size of the array and the number of lens and detector elements.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984), Chaps. 1, 2, and 4.
  2. G. J. Brakenhoff, P. Blom, P. Barends, “Confocal scanning light microscopy with high aperture immersion lenses,” J. Microsc. 117, 219–232 (1979).
    [CrossRef]
  3. K. Carlsson, N. Aslund, “Confocal imaging for 3-D digital microscopy,” Appl. Opt. 26, 3232–3238 (1987).
    [CrossRef] [PubMed]
  4. M. Petran, M. Hadravsky, M. D. Egger, R. Galambos, “Tandem-scanning reflected-light microscope,” J. Opt. Soc. Am. 58, 661–664 (1968).
    [CrossRef]
  5. G. Q. Xiao, T. R. Corle, G. S. Kino, “Real time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
    [CrossRef]
  6. C. J. R. Sheppard, H. J. Matthews, “The extended-focus, auto-focus and surface-profiling techniques of confocal microscopy,” J. Mod. Opt. 35, 145–154 (1988).
    [CrossRef]
  7. M. C. Hutley, “The manufacture and testing of microlens arrays,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigelt, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1319, 491–492 (1990).
  8. G. Zinser, U. Harbarth, H. Schröder, “Formation and analysis of three-dimensional data with the laser tomographic scanner (LTS)” in Scanning Ophthalmoscopy and Tomography, J. E. Nasemann, R. E. Burk, eds. (Quintessenz-Verlag, Berlin, 1990), pp. 243–252.

1988 (2)

G. Q. Xiao, T. R. Corle, G. S. Kino, “Real time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

C. J. R. Sheppard, H. J. Matthews, “The extended-focus, auto-focus and surface-profiling techniques of confocal microscopy,” J. Mod. Opt. 35, 145–154 (1988).
[CrossRef]

1987 (1)

1979 (1)

G. J. Brakenhoff, P. Blom, P. Barends, “Confocal scanning light microscopy with high aperture immersion lenses,” J. Microsc. 117, 219–232 (1979).
[CrossRef]

1968 (1)

Aslund, N.

Barends, P.

G. J. Brakenhoff, P. Blom, P. Barends, “Confocal scanning light microscopy with high aperture immersion lenses,” J. Microsc. 117, 219–232 (1979).
[CrossRef]

Blom, P.

G. J. Brakenhoff, P. Blom, P. Barends, “Confocal scanning light microscopy with high aperture immersion lenses,” J. Microsc. 117, 219–232 (1979).
[CrossRef]

Brakenhoff, G. J.

G. J. Brakenhoff, P. Blom, P. Barends, “Confocal scanning light microscopy with high aperture immersion lenses,” J. Microsc. 117, 219–232 (1979).
[CrossRef]

Carlsson, K.

Corle, T. R.

G. Q. Xiao, T. R. Corle, G. S. Kino, “Real time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

Egger, M. D.

Galambos, R.

Hadravsky, M.

Harbarth, U.

G. Zinser, U. Harbarth, H. Schröder, “Formation and analysis of three-dimensional data with the laser tomographic scanner (LTS)” in Scanning Ophthalmoscopy and Tomography, J. E. Nasemann, R. E. Burk, eds. (Quintessenz-Verlag, Berlin, 1990), pp. 243–252.

Hutley, M. C.

M. C. Hutley, “The manufacture and testing of microlens arrays,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigelt, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1319, 491–492 (1990).

Kino, G. S.

G. Q. Xiao, T. R. Corle, G. S. Kino, “Real time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

Matthews, H. J.

C. J. R. Sheppard, H. J. Matthews, “The extended-focus, auto-focus and surface-profiling techniques of confocal microscopy,” J. Mod. Opt. 35, 145–154 (1988).
[CrossRef]

Petran, M.

Schröder, H.

G. Zinser, U. Harbarth, H. Schröder, “Formation and analysis of three-dimensional data with the laser tomographic scanner (LTS)” in Scanning Ophthalmoscopy and Tomography, J. E. Nasemann, R. E. Burk, eds. (Quintessenz-Verlag, Berlin, 1990), pp. 243–252.

Sheppard, C. J. R.

C. J. R. Sheppard, H. J. Matthews, “The extended-focus, auto-focus and surface-profiling techniques of confocal microscopy,” J. Mod. Opt. 35, 145–154 (1988).
[CrossRef]

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984), Chaps. 1, 2, and 4.

Wilson, T.

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984), Chaps. 1, 2, and 4.

Xiao, G. Q.

G. Q. Xiao, T. R. Corle, G. S. Kino, “Real time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

Zinser, G.

G. Zinser, U. Harbarth, H. Schröder, “Formation and analysis of three-dimensional data with the laser tomographic scanner (LTS)” in Scanning Ophthalmoscopy and Tomography, J. E. Nasemann, R. E. Burk, eds. (Quintessenz-Verlag, Berlin, 1990), pp. 243–252.

Appl. Opt. (1)

Appl. Phys. Lett. (1)

G. Q. Xiao, T. R. Corle, G. S. Kino, “Real time confocal scanning optical microscope,” Appl. Phys. Lett. 53, 716–718 (1988).
[CrossRef]

J. Microsc. (1)

G. J. Brakenhoff, P. Blom, P. Barends, “Confocal scanning light microscopy with high aperture immersion lenses,” J. Microsc. 117, 219–232 (1979).
[CrossRef]

J. Mod. Opt. (1)

C. J. R. Sheppard, H. J. Matthews, “The extended-focus, auto-focus and surface-profiling techniques of confocal microscopy,” J. Mod. Opt. 35, 145–154 (1988).
[CrossRef]

J. Opt. Soc. Am. (1)

Other (3)

T. Wilson, C. J. R. Sheppard, Theory and Practice of Scanning Optical Microscopy (Academic, London, 1984), Chaps. 1, 2, and 4.

M. C. Hutley, “The manufacture and testing of microlens arrays,” in Optics in Complex Systems, F. Lanzl, H. Preuss, G. Weigelt, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1319, 491–492 (1990).

G. Zinser, U. Harbarth, H. Schröder, “Formation and analysis of three-dimensional data with the laser tomographic scanner (LTS)” in Scanning Ophthalmoscopy and Tomography, J. E. Nasemann, R. E. Burk, eds. (Quintessenz-Verlag, Berlin, 1990), pp. 243–252.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (7)

Fig. 1
Fig. 1

Principle of a whole-field confocal microscope.6

Fig. 2
Fig. 2

(a) Confocal measured 3-D plot of one groove of the calibration standard. (b) Profile BB′ of the 3-D plot of Fig. 2(a). The groove depth of the PTB calibration measurement is (5.66 ± 0.05) μm; the depth measured with our confocal setup is 5.70 μm.

Fig. 3
Fig. 3

(a) Stylus profile record of a roughness standard calibrated at the PTB. Section AA′, with a lateral distance of ~1.6 mm, is marked, (b) Profile of the marked section, AA′, measured with the confocal principle of Fig. 1.

Fig. 4
Fig. 4

Arrangement for confocal 3-D analysis with a microlens array.

Fig. 5
Fig. 5

(a) 3-D plot of a tilted mirror surface 35 mm × 35 mm and a total height variation of 39.56 μm. (b) Section of this surface.

Fig. 6
Fig. 6

(a) 3-D plot of a spherical surface 35 mm × 35 mm with a radius of curvature of 4000 mm and a height resolution of 90 nm. (b) Cross section of this profile.

Fig. 7
Fig. 7

Analysis of a portion of a one-cent piece: field size 11 mm × 11 mm. The spot separations were (a) 125 μm, (b) 125 μm/4 = 31.25 μm when the sample was shifted. (c), (d), Cross sections of (b), perpendicular to each other.

Equations (6)

Equations on this page are rendered with MathJax. Learn more.

I ( z ) = { sin [ k z ( 1 cos α ) ] k z ( 1 cos α ) } 2 ,
FWHM = 0 . 44 λ 1 cos α .
I ( i , j ; k ) , i = 1 512 , j = 1 512 , k = 1 256 ,
κ ( i , j ) where i = 1 512 , j = 1 512 , 1 κ 256 ,
A ( i , j ) = I [ i , j ; κ ( i , j ) ] .
κ cog ( i , j ) = k = 1 256 k I ( i , j ; k ) k = 1 256 I ( i , j ; k )

Metrics