Abstract

A technique for determining approximate ozone-concentration profiles from differential absorption lidar (DIAL) data obtained in the troposphere with large gradients of aerosol backscattering is presented. The atmospheric interferences are defined as errors of the off–on DIAL signal ratio; the interferences are separated and removed before the ratio is differentiated. To facilitate the separation of the regular (subjected to differentiation) component of the signal ratio from random noise, the ratio is transformed into an intermediate function, and the measurement error is minimized by fitting of an analytical function to the transformed function. Simple criteria are used to demarcate atmospheric layering, for which a strong aerosol-backscattering gradient can result in an unacceptably large error in the measured ozone concentration.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. E. W. Browell, S. Ismail, S. T. Shipley, “Ultraviolet DIAL measurements of O3 profiles in regions of spatially inhomogeneous aerosols,” Appl. Opt. 24, 2827–2836 (1985).
    [CrossRef] [PubMed]
  2. Y. Sasano, “Simultaneous determination of aerosol and gas distribution by DIAL measurements.” Appl. Opt. 27, 2640–2641 (1988).
    [CrossRef] [PubMed]
  3. Y. Zhao, “Simplified correction techniques for backscatter errors in differential absorption lidar measurements of ozone,” in Optical Remote Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 275–277.
  4. A. D’Altorio, F. Masci, V. Rizi, G. Visconti, E. Boschi, “Continuous lidar measurements of stratospheric aerosols and ozone after the Pinatubo eruption. Part I: DIAL ozone retrieval in presence of stratospheric aerosol layers,” Geophys. Res. Lett. 20, 2865–2868 (1993).
    [CrossRef]
  5. J. Pelon, G. Megie, “Ozone monitoring in the troposphere and the lower stratosphere: evaluation and operation of a ground based lidar station,” J. Geophys. Res. 87, 4947–4955 (1982).
    [CrossRef]
  6. A. Papayannis, G. Ancellet, J. Pelon, G. Meggie, “Multi-wavelength lidar for ozone measurements in the troposphere and the lower stratosphere,” Appl. Opt. 29, 467–476 (1990).
    [CrossRef] [PubMed]
  7. W. Steinbrecht, A. I. Carswell, “Correcting for interference of Mt. Pinatubo aerosols on DIAL measurements of stratospheric ozone,” in Proceedings of the Sixteenth International Laser Radar Conference, Part 1, M. P. McCormick, ed. (MIT, Cambridge, Mass., 1992), pp. 27–30.
  8. V. A. Kovalev, R. Viswanathan, “Application of a new iterative technique for determining particulate extinction profiles from airborne lidar data obtained in clear tropospheric conditions,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 415–417.
  9. H. Moosmuller, D. Diebel, D. H. Bundy, M. P. Bristow, C. M. Edmonds, R. M. Turner, V. A. Kovalev, R. P. Haas, J. L. McElroy, “The U.S. EPA airborne UV-DIAL system,” in Optical Remote Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest (Optical Society of America, Washington, D.C., 1991), pp. 253–255.
  10. Y. Sasano, E. V. Browell, “Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observation,” Appl. Opt. 28, 1670–1679 (1989).
    [CrossRef] [PubMed]
  11. T. Takamura, Y. Sasano, “Ratio of aerosol backscatter to extinction coefficients as determined from angular scattering measurements for use in atmospheric lidar applications,” Opt. Quantum Electron. 19, 293–302 (1987).
    [CrossRef]
  12. N. Menyuk, D. K. Killinger, C. R. Menyuk, “Limitation of signal averaging due to temporal correlation in laser remote sensing measurements,” Appl. Opt. 21, 3377–3383 (1982).
    [CrossRef] [PubMed]
  13. N. Menyuk, D. K. Killinger, C. R. Menyuk, “Error reduction in laser remote sensing: combined effects of cross correlation and signal averaging,” Appl. Opt. 24, 118–131 (1985).
    [CrossRef] [PubMed]
  14. A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
    [CrossRef] [PubMed]
  15. D. I. Kazakevich, The Basic Concepts of the Random Functions Theory and Its Application in Hydrometeorology, 2nd ed. (Gidrometeoizdat, Leningrad, 1977), Chap. 2, p. 73.
  16. E. E. Uthe, J. M. Livingston, N. B. Nielsen, “Airborne lidar mapping of ozone concentrations during the Lake Michigan ozone study,” J. Air Waste Manage. Assoc. 42, 1313–1318 (1992).
  17. E. W. Browell, “Ozone and aerosol measurements with an airborne system,” Opt. Photon. News 2(10), 8–11 (1991).
    [CrossRef]
  18. H. Moosmuller, R. J. Alvarez, C. M. Edmonds, R. M. Turner, D. H. Bundy, J. L. McElroy, “Airborne ozone measurements with the U.S. EPA UV-DIAL,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 176–179.
  19. J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
    [CrossRef] [PubMed]
  20. J. A. Weinman, “Derivation of atmospheric extinction profiles and wind speed over the ocean from a satellite-borne lidar,” Appl. Opt. 27, 3994–4001 (1988).
    [CrossRef] [PubMed]
  21. V. A. Kovalev, “Lidar measurements of the vertical aerosol extinction profiles with range-dependent backscatter-to-extinction ratios,” Appl. Opt. 32, 6053–6065 (1993).
    [CrossRef] [PubMed]

1993

A. D’Altorio, F. Masci, V. Rizi, G. Visconti, E. Boschi, “Continuous lidar measurements of stratospheric aerosols and ozone after the Pinatubo eruption. Part I: DIAL ozone retrieval in presence of stratospheric aerosol layers,” Geophys. Res. Lett. 20, 2865–2868 (1993).
[CrossRef]

V. A. Kovalev, “Lidar measurements of the vertical aerosol extinction profiles with range-dependent backscatter-to-extinction ratios,” Appl. Opt. 32, 6053–6065 (1993).
[CrossRef] [PubMed]

1992

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef] [PubMed]

E. E. Uthe, J. M. Livingston, N. B. Nielsen, “Airborne lidar mapping of ozone concentrations during the Lake Michigan ozone study,” J. Air Waste Manage. Assoc. 42, 1313–1318 (1992).

1991

E. W. Browell, “Ozone and aerosol measurements with an airborne system,” Opt. Photon. News 2(10), 8–11 (1991).
[CrossRef]

1990

1989

1988

1987

T. Takamura, Y. Sasano, “Ratio of aerosol backscatter to extinction coefficients as determined from angular scattering measurements for use in atmospheric lidar applications,” Opt. Quantum Electron. 19, 293–302 (1987).
[CrossRef]

1985

1982

N. Menyuk, D. K. Killinger, C. R. Menyuk, “Limitation of signal averaging due to temporal correlation in laser remote sensing measurements,” Appl. Opt. 21, 3377–3383 (1982).
[CrossRef] [PubMed]

J. Pelon, G. Megie, “Ozone monitoring in the troposphere and the lower stratosphere: evaluation and operation of a ground based lidar station,” J. Geophys. Res. 87, 4947–4955 (1982).
[CrossRef]

1981

Alvarez, R. J.

H. Moosmuller, R. J. Alvarez, C. M. Edmonds, R. M. Turner, D. H. Bundy, J. L. McElroy, “Airborne ozone measurements with the U.S. EPA UV-DIAL,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 176–179.

Ancellet, G.

Ansmann, A.

Boschi, E.

A. D’Altorio, F. Masci, V. Rizi, G. Visconti, E. Boschi, “Continuous lidar measurements of stratospheric aerosols and ozone after the Pinatubo eruption. Part I: DIAL ozone retrieval in presence of stratospheric aerosol layers,” Geophys. Res. Lett. 20, 2865–2868 (1993).
[CrossRef]

Bristow, M. P.

H. Moosmuller, D. Diebel, D. H. Bundy, M. P. Bristow, C. M. Edmonds, R. M. Turner, V. A. Kovalev, R. P. Haas, J. L. McElroy, “The U.S. EPA airborne UV-DIAL system,” in Optical Remote Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest (Optical Society of America, Washington, D.C., 1991), pp. 253–255.

Browell, E. V.

Browell, E. W.

Bundy, D. H.

H. Moosmuller, R. J. Alvarez, C. M. Edmonds, R. M. Turner, D. H. Bundy, J. L. McElroy, “Airborne ozone measurements with the U.S. EPA UV-DIAL,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 176–179.

H. Moosmuller, D. Diebel, D. H. Bundy, M. P. Bristow, C. M. Edmonds, R. M. Turner, V. A. Kovalev, R. P. Haas, J. L. McElroy, “The U.S. EPA airborne UV-DIAL system,” in Optical Remote Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest (Optical Society of America, Washington, D.C., 1991), pp. 253–255.

Carswell, A. I.

W. Steinbrecht, A. I. Carswell, “Correcting for interference of Mt. Pinatubo aerosols on DIAL measurements of stratospheric ozone,” in Proceedings of the Sixteenth International Laser Radar Conference, Part 1, M. P. McCormick, ed. (MIT, Cambridge, Mass., 1992), pp. 27–30.

D’Altorio, A.

A. D’Altorio, F. Masci, V. Rizi, G. Visconti, E. Boschi, “Continuous lidar measurements of stratospheric aerosols and ozone after the Pinatubo eruption. Part I: DIAL ozone retrieval in presence of stratospheric aerosol layers,” Geophys. Res. Lett. 20, 2865–2868 (1993).
[CrossRef]

Diebel, D.

H. Moosmuller, D. Diebel, D. H. Bundy, M. P. Bristow, C. M. Edmonds, R. M. Turner, V. A. Kovalev, R. P. Haas, J. L. McElroy, “The U.S. EPA airborne UV-DIAL system,” in Optical Remote Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest (Optical Society of America, Washington, D.C., 1991), pp. 253–255.

Edmonds, C. M.

H. Moosmuller, D. Diebel, D. H. Bundy, M. P. Bristow, C. M. Edmonds, R. M. Turner, V. A. Kovalev, R. P. Haas, J. L. McElroy, “The U.S. EPA airborne UV-DIAL system,” in Optical Remote Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest (Optical Society of America, Washington, D.C., 1991), pp. 253–255.

H. Moosmuller, R. J. Alvarez, C. M. Edmonds, R. M. Turner, D. H. Bundy, J. L. McElroy, “Airborne ozone measurements with the U.S. EPA UV-DIAL,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 176–179.

Haas, R. P.

H. Moosmuller, D. Diebel, D. H. Bundy, M. P. Bristow, C. M. Edmonds, R. M. Turner, V. A. Kovalev, R. P. Haas, J. L. McElroy, “The U.S. EPA airborne UV-DIAL system,” in Optical Remote Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest (Optical Society of America, Washington, D.C., 1991), pp. 253–255.

Ismail, S.

Kazakevich, D. I.

D. I. Kazakevich, The Basic Concepts of the Random Functions Theory and Its Application in Hydrometeorology, 2nd ed. (Gidrometeoizdat, Leningrad, 1977), Chap. 2, p. 73.

Killinger, D. K.

Klett, J. D.

Kovalev, V. A.

V. A. Kovalev, “Lidar measurements of the vertical aerosol extinction profiles with range-dependent backscatter-to-extinction ratios,” Appl. Opt. 32, 6053–6065 (1993).
[CrossRef] [PubMed]

V. A. Kovalev, R. Viswanathan, “Application of a new iterative technique for determining particulate extinction profiles from airborne lidar data obtained in clear tropospheric conditions,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 415–417.

H. Moosmuller, D. Diebel, D. H. Bundy, M. P. Bristow, C. M. Edmonds, R. M. Turner, V. A. Kovalev, R. P. Haas, J. L. McElroy, “The U.S. EPA airborne UV-DIAL system,” in Optical Remote Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest (Optical Society of America, Washington, D.C., 1991), pp. 253–255.

Livingston, J. M.

E. E. Uthe, J. M. Livingston, N. B. Nielsen, “Airborne lidar mapping of ozone concentrations during the Lake Michigan ozone study,” J. Air Waste Manage. Assoc. 42, 1313–1318 (1992).

Masci, F.

A. D’Altorio, F. Masci, V. Rizi, G. Visconti, E. Boschi, “Continuous lidar measurements of stratospheric aerosols and ozone after the Pinatubo eruption. Part I: DIAL ozone retrieval in presence of stratospheric aerosol layers,” Geophys. Res. Lett. 20, 2865–2868 (1993).
[CrossRef]

McElroy, J. L.

H. Moosmuller, D. Diebel, D. H. Bundy, M. P. Bristow, C. M. Edmonds, R. M. Turner, V. A. Kovalev, R. P. Haas, J. L. McElroy, “The U.S. EPA airborne UV-DIAL system,” in Optical Remote Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest (Optical Society of America, Washington, D.C., 1991), pp. 253–255.

H. Moosmuller, R. J. Alvarez, C. M. Edmonds, R. M. Turner, D. H. Bundy, J. L. McElroy, “Airborne ozone measurements with the U.S. EPA UV-DIAL,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 176–179.

Meggie, G.

Megie, G.

J. Pelon, G. Megie, “Ozone monitoring in the troposphere and the lower stratosphere: evaluation and operation of a ground based lidar station,” J. Geophys. Res. 87, 4947–4955 (1982).
[CrossRef]

Menyuk, C. R.

Menyuk, N.

Michaelis, W.

Moosmuller, H.

H. Moosmuller, R. J. Alvarez, C. M. Edmonds, R. M. Turner, D. H. Bundy, J. L. McElroy, “Airborne ozone measurements with the U.S. EPA UV-DIAL,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 176–179.

H. Moosmuller, D. Diebel, D. H. Bundy, M. P. Bristow, C. M. Edmonds, R. M. Turner, V. A. Kovalev, R. P. Haas, J. L. McElroy, “The U.S. EPA airborne UV-DIAL system,” in Optical Remote Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest (Optical Society of America, Washington, D.C., 1991), pp. 253–255.

Nielsen, N. B.

E. E. Uthe, J. M. Livingston, N. B. Nielsen, “Airborne lidar mapping of ozone concentrations during the Lake Michigan ozone study,” J. Air Waste Manage. Assoc. 42, 1313–1318 (1992).

Papayannis, A.

Pelon, J.

A. Papayannis, G. Ancellet, J. Pelon, G. Meggie, “Multi-wavelength lidar for ozone measurements in the troposphere and the lower stratosphere,” Appl. Opt. 29, 467–476 (1990).
[CrossRef] [PubMed]

J. Pelon, G. Megie, “Ozone monitoring in the troposphere and the lower stratosphere: evaluation and operation of a ground based lidar station,” J. Geophys. Res. 87, 4947–4955 (1982).
[CrossRef]

Riebesell, M.

Rizi, V.

A. D’Altorio, F. Masci, V. Rizi, G. Visconti, E. Boschi, “Continuous lidar measurements of stratospheric aerosols and ozone after the Pinatubo eruption. Part I: DIAL ozone retrieval in presence of stratospheric aerosol layers,” Geophys. Res. Lett. 20, 2865–2868 (1993).
[CrossRef]

Sasano, Y.

Shipley, S. T.

Steinbrecht, W.

W. Steinbrecht, A. I. Carswell, “Correcting for interference of Mt. Pinatubo aerosols on DIAL measurements of stratospheric ozone,” in Proceedings of the Sixteenth International Laser Radar Conference, Part 1, M. P. McCormick, ed. (MIT, Cambridge, Mass., 1992), pp. 27–30.

Takamura, T.

T. Takamura, Y. Sasano, “Ratio of aerosol backscatter to extinction coefficients as determined from angular scattering measurements for use in atmospheric lidar applications,” Opt. Quantum Electron. 19, 293–302 (1987).
[CrossRef]

Turner, R. M.

H. Moosmuller, R. J. Alvarez, C. M. Edmonds, R. M. Turner, D. H. Bundy, J. L. McElroy, “Airborne ozone measurements with the U.S. EPA UV-DIAL,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 176–179.

H. Moosmuller, D. Diebel, D. H. Bundy, M. P. Bristow, C. M. Edmonds, R. M. Turner, V. A. Kovalev, R. P. Haas, J. L. McElroy, “The U.S. EPA airborne UV-DIAL system,” in Optical Remote Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest (Optical Society of America, Washington, D.C., 1991), pp. 253–255.

Uthe, E. E.

E. E. Uthe, J. M. Livingston, N. B. Nielsen, “Airborne lidar mapping of ozone concentrations during the Lake Michigan ozone study,” J. Air Waste Manage. Assoc. 42, 1313–1318 (1992).

Visconti, G.

A. D’Altorio, F. Masci, V. Rizi, G. Visconti, E. Boschi, “Continuous lidar measurements of stratospheric aerosols and ozone after the Pinatubo eruption. Part I: DIAL ozone retrieval in presence of stratospheric aerosol layers,” Geophys. Res. Lett. 20, 2865–2868 (1993).
[CrossRef]

Viswanathan, R.

V. A. Kovalev, R. Viswanathan, “Application of a new iterative technique for determining particulate extinction profiles from airborne lidar data obtained in clear tropospheric conditions,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 415–417.

Wandinger, U.

Weinman, J. A.

Weitkamp, C.

Zhao, Y.

Y. Zhao, “Simplified correction techniques for backscatter errors in differential absorption lidar measurements of ozone,” in Optical Remote Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 275–277.

Appl. Opt.

J. D. Klett, “Stable analytical inversion solution for processing lidar returns,” Appl. Opt. 20, 211–220 (1981).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, C. R. Menyuk, “Limitation of signal averaging due to temporal correlation in laser remote sensing measurements,” Appl. Opt. 21, 3377–3383 (1982).
[CrossRef] [PubMed]

N. Menyuk, D. K. Killinger, C. R. Menyuk, “Error reduction in laser remote sensing: combined effects of cross correlation and signal averaging,” Appl. Opt. 24, 118–131 (1985).
[CrossRef] [PubMed]

E. W. Browell, S. Ismail, S. T. Shipley, “Ultraviolet DIAL measurements of O3 profiles in regions of spatially inhomogeneous aerosols,” Appl. Opt. 24, 2827–2836 (1985).
[CrossRef] [PubMed]

J. A. Weinman, “Derivation of atmospheric extinction profiles and wind speed over the ocean from a satellite-borne lidar,” Appl. Opt. 27, 3994–4001 (1988).
[CrossRef] [PubMed]

Y. Sasano, E. V. Browell, “Light scattering characteristics of various aerosol types derived from multiple wavelength lidar observation,” Appl. Opt. 28, 1670–1679 (1989).
[CrossRef] [PubMed]

A. Ansmann, U. Wandinger, M. Riebesell, C. Weitkamp, W. Michaelis, “Independent measurement of extinction and backscatter profiles in cirrus clouds by using a combined Raman elastic-backscatter lidar,” Appl. Opt. 31, 7113–7131 (1992).
[CrossRef] [PubMed]

V. A. Kovalev, “Lidar measurements of the vertical aerosol extinction profiles with range-dependent backscatter-to-extinction ratios,” Appl. Opt. 32, 6053–6065 (1993).
[CrossRef] [PubMed]

A. Papayannis, G. Ancellet, J. Pelon, G. Meggie, “Multi-wavelength lidar for ozone measurements in the troposphere and the lower stratosphere,” Appl. Opt. 29, 467–476 (1990).
[CrossRef] [PubMed]

Y. Sasano, “Simultaneous determination of aerosol and gas distribution by DIAL measurements.” Appl. Opt. 27, 2640–2641 (1988).
[CrossRef] [PubMed]

Geophys. Res. Lett.

A. D’Altorio, F. Masci, V. Rizi, G. Visconti, E. Boschi, “Continuous lidar measurements of stratospheric aerosols and ozone after the Pinatubo eruption. Part I: DIAL ozone retrieval in presence of stratospheric aerosol layers,” Geophys. Res. Lett. 20, 2865–2868 (1993).
[CrossRef]

J. Air Waste Manage. Assoc.

E. E. Uthe, J. M. Livingston, N. B. Nielsen, “Airborne lidar mapping of ozone concentrations during the Lake Michigan ozone study,” J. Air Waste Manage. Assoc. 42, 1313–1318 (1992).

J. Geophys. Res.

J. Pelon, G. Megie, “Ozone monitoring in the troposphere and the lower stratosphere: evaluation and operation of a ground based lidar station,” J. Geophys. Res. 87, 4947–4955 (1982).
[CrossRef]

Opt. Photon. News

E. W. Browell, “Ozone and aerosol measurements with an airborne system,” Opt. Photon. News 2(10), 8–11 (1991).
[CrossRef]

Opt. Quantum Electron.

T. Takamura, Y. Sasano, “Ratio of aerosol backscatter to extinction coefficients as determined from angular scattering measurements for use in atmospheric lidar applications,” Opt. Quantum Electron. 19, 293–302 (1987).
[CrossRef]

Other

D. I. Kazakevich, The Basic Concepts of the Random Functions Theory and Its Application in Hydrometeorology, 2nd ed. (Gidrometeoizdat, Leningrad, 1977), Chap. 2, p. 73.

H. Moosmuller, R. J. Alvarez, C. M. Edmonds, R. M. Turner, D. H. Bundy, J. L. McElroy, “Airborne ozone measurements with the U.S. EPA UV-DIAL,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 176–179.

W. Steinbrecht, A. I. Carswell, “Correcting for interference of Mt. Pinatubo aerosols on DIAL measurements of stratospheric ozone,” in Proceedings of the Sixteenth International Laser Radar Conference, Part 1, M. P. McCormick, ed. (MIT, Cambridge, Mass., 1992), pp. 27–30.

V. A. Kovalev, R. Viswanathan, “Application of a new iterative technique for determining particulate extinction profiles from airborne lidar data obtained in clear tropospheric conditions,” in Optical Remote Sensing of the Atmosphere, Vol. 5 of 1993 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1993), pp. 415–417.

H. Moosmuller, D. Diebel, D. H. Bundy, M. P. Bristow, C. M. Edmonds, R. M. Turner, V. A. Kovalev, R. P. Haas, J. L. McElroy, “The U.S. EPA airborne UV-DIAL system,” in Optical Remote Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest (Optical Society of America, Washington, D.C., 1991), pp. 253–255.

Y. Zhao, “Simplified correction techniques for backscatter errors in differential absorption lidar measurements of ozone,” in Optical Remote Sensing of the Atmosphere, Vol. 18 of 1991 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), pp. 275–277.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (9)

Fig. 1
Fig. 1

Model aerosol-extinction-coefficient profiles at λref used for the calculation of the backscatter corrections. Curve 1 represents a vertical profile obtained by the down-looking lidar system in a cloudless atmosphere. Curve 2 represents the same profile but where additional turbid atmospheric layers exist.

Fig. 2
Fig. 2

Backscatter-correction functions ΔN(r) calculated for the extinction-coefficient profile shown as curve 1 in Fig. 1 with the values of ν shown as the numbers to the right of curves and Pπ, a = 0.03 sr−1. The functions are obtained with the conventional regression procedure with a five-point running mean.

Fig. 3
Fig. 3

Same as in Fig. 2 but for the extinction-coefficient profile shown as curve 2 in Fig. 1.

Fig. 4
Fig. 4

Errors in backscatter-correction function ΔN(r) caused by inaccurate specification of ν for the range-cell sizes of 120 m (curves 1 and 2) and 300 m (curves 3 and 4). The errors are determined with the extinction-coefficient profile shown as curve 2 in Fig. 1; ν is chosen a priori as 1, whereas the actual value of ν ranges from 0 to 2.

Fig. 5
Fig. 5

Backscatter-correction function N(r) for the wavelength pair with λon = 268.4 nm and λoff = 291.8 nm; λref = 359.6 nm. Curve 1 shows N(r) calculated with the assumption that the aerosol-backscattering ratio is constant over the measurement range and ν = 1. Curves 2–5 are the same as curve 1 but with δS*(r, λoff) = 0.1, δS*(r, λon) = 0.1, δS*(r, λoff) = 0.2, and δS*(r, λon) = 0.2, respectively. The range-cell size is 300 m.

Fig. 6
Fig. 6

(a) Lidar returns at λon = 276.9 nm (curve 1), λoff = 312.9 nm (curve 2), and λref = 359.6 nm (curve 3) measured with the EPA down-looking airborne UV DIAL system on 13 May 1992. (b) Δτ Y (r) function (curve 1) calculated for the on and off signals shown in (a) with the analytical approximation of Y(r) chosen as a fourth-order polynomial. F(r) is determined with the signal shown as curve 3 (a) and ν = 1. The limit of δS*(r) is chosen as 0.05; the functions Δτ F ,max(r) and Δτ F ,min(r) are shown as curves 2 and 3, respectively.

Fig. 7
Fig. 7

(a) Example of a numerical experiment: curve 1, specified model ozone-concentration profile; curve 2, approximated profile retrieved with the method under consideration; curve 3, profile retrieved with the conventional regression procedure with an 11-point running mean (range cell 300 m). Curves 2 and 3 are calculated with δF(r) ≠ 0. Curve 4 is the same as curve 2 but with δF(r) = 0; i.e., R(r) is not corrupted by noise. We assume that the extinction correction has been made a priori. (b) Example of a numerical experiment: Curves 1–3 are the same as in (a). (c) Example of a numerical experiment for an ozone-concentration profile with a large ozone gradient: curves 1–3, same as in (a). Both the regression procedure and the proposed method introduce a bias at the location where the ozone gradient is large.

Fig. 8
Fig. 8

Example of experimental DIAL data retrieval, where function R(r) is corrupted both by random signal noise and by systematic distortion due to aerosol inhomogeneity. Curve 1 shows the ozone-concentration profile retrieved with the method under consideration, and curve 2 shows the profile retrieved with the conventional regression procedure with an 11-point running mean. The rectangular labels 3 show locations at which the measurement error of the ozone concentration is estimated to be unacceptable.

Fig. 9
Fig. 9

(a) Vertical ozone-concentration profiles determined in successive 15-s time periods with the EPA airborne UV DIAL system on 13 May 1992 with the conventional regression procedure. Each displayed profile is derived from an average of 300 individual lidar shots. The backscatter correction is made with the σ a (r) profile measured at λref= 359.6 nm, assuming P π, a = 0.03 sr−1; no extinction correction is made. (b) Same as (a) but with the method under consideration used. Gaps in curves indicate locations where ozone concentrations are not determined because measurement errors are estimated to be unacceptable.

Equations (31)

Equations on this page are rendered with MathJax. Learn more.

P on ( r ) P off ( r ) = A B on ( r ) B off ( r ) exp [ - 2 r 0 r [ ( a on - a off ) N ( r ) + σ on ( r ) - σ off ( r ) ] d r ] ,
N ( r ) = - 1 2 ( a on - a off ) [ d d r [ ln P on ( r ) P off ( r ) ] - d d r [ ln B on ( r ) B off ( r ) ] + 2 Δ σ ( r ) ] ,
B off ( r ) B on ( r ) = σ m , off σ m , on F ( r ) ,
F ( r ) = 1 + S off ( r ) 1 + S on ( r ) ,
S ( r , λ ) = P π , a ( r , λ ) σ a ( r , λ ) 3 8 π σ m ( r , λ ) .
Δ N ( r ) = - 1 2 ( a on - a off ) d d r ln F ( r ) .
S ( r , λ ) S ( r , λ ref ) = [ λ λ ref ] 4 - ν ,
F ( r ) = 1 + S ( r , λ ref ) ( λ off λ ref ) 4 - ν 1 + S ( r , λ ref ) ( λ on λ ref ) 4 - ν .
P π , a ( r , λ 1 ) σ a ( r , λ 1 ) P π , a ( r , λ 2 ) σ a ( r , λ 2 ) = const ,
S ( r , λ 1 ) = S ( r , λ 2 ) [ 1 + δ S * ( r ) ] ( λ 1 λ 2 ) 4 - ν ,
S ( r , λ 1 ) = S ( r , λ 2 ) ( λ 1 λ 2 ) 4 - [ ν + Δ ν ( r ) ] .
Δ ν ( r ) = - ln [ 1 + δ S * ( r ) ] ln ( λ 1 λ 2 ) .
R ( r ) = A 1 F ( r ) exp [ 2 r 0 r ( r ) d r ] ,
( r ) = ( a on - a off ) N ( r ) + Δ σ ( r ) .
R ( r ) = R ( r ) F ^ ( r ) = A 1 [ 1 + δ F ( r ) ] exp [ 2 r 0 r ( r ) d r ] .
ln R ( r ) = ln A 1 + 2 [ τ ( r 0 , r ) + Δ τ F ( r ) ] ,
τ ( r 0 , r ) = r 0 r ( r ) d r
Δ τ F ( r ) = 0.5 ln [ 1 + δ F ( r ) ] ,
R ( r ) = C Y ( r ) exp [ 2 r 0 r Y ( r ) d r ] ,
d d r ln R ( r ) = 2 Y ( r ) + d d r ln Y ( r ) .
Y ( r ) = R ( r ) C + 2 r 0 r R ( r ) d r .
( r ) = Y ( r ) + 0.5 d d r ln Y ( r ) - 0.5 d d r ln [ 1 + δ F ( r ) ] .
Y ( r ) = Y ^ ( r ) [ 1 + δ Y ( r ) ] ,
( r ) = Y ( r ) + 0.5 { d d r ln Y ^ ( r ) - d d r ln [ 1 + δ F ( r ) ] + d d r ln [ 1 + δ Y ( r ) ] } .
^ ( r ) = Y ( r ) + 0.5 d d r ln Y ^ ( r ) ,
^ ( r ) - ( r ) = 0.5 { d d r ln [ 1 + δ F ( r ) ] - d d r ln [ 1 + δ Y ( r ) ] } .
ln [ 1 + δ F ( r ) 1 + δ Y ( r ) ] = const .
Δ τ Y ( r ) = 0.5 ln [ 1 + δ Y ( r ) ] ,
Δ τ F ( r ) = Δ τ Y ( r ) + const .
Y ( r ) = 0.5 R ( r ) C 1 r 0 r m R ( r ) d r 1 - C 1 + r 0 r R ( r ) d r ,
r = r 0 r m [ ln Y ( r , C 1 ) Y ^ ( r , C 1 ) ] 2 = min ,

Metrics