Abstract

We describe the design, fabrication, testing, and antenna-range demonstration of a photonic wavelength-multiplexed true-time-delay steering system for use with broadband phased-array antennas. The prototype system is based on a unique hardware-compressive architecture and can drive 16 antenna elements over the 0.35–2.1-GHz band with 6-bit angular resolution over a ±45° scan angle.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. L. Cardone, “Ultra-wideband microwave beamforming technique,” Microwave J. 28, 121–131 (1985).
  2. D. Curtis, “Frequency domain analysis and performance of a true-time delay fiber optic beamforming network for array antennas,” in Optoelectronic Signal Processing for Phased-Array Antennas II, B. M. Hendrickson, G. A. Koepf, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1217, 226–234 (1990).
  3. W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
    [CrossRef]
  4. G. A. Koepf, “Optical processor for phased array antenna beam formation,” in Optical Technology for Microwave Technology I, S. Yao, ed., Proc. Soc. Photo-Opt. Instrum. Eng.477, 75–81 (1984).
  5. P. R. Herczfeld, A. S. Daryoush, “Fiber-optic feed network for large aperture phased array antennas,” Microwave J. 30, 160–166 (1987).
  6. E. D. Toughlian, H. Zmuda, “A photonic variable RF delay line for phased array antennas,” J. Lightwave Technol. 8, 1824–1828 (1990).
    [CrossRef]
  7. R. D. Esman, M. J. Monsma, J. L. Dexter, D. G. Cooper, “Microwave true-time delay modulator using fiberoptic dispersion,” Electron. Lett. 28, 1905–1907 (1992).
    [CrossRef]
  8. R. Soref, “Optical dispersion technique for time-delay beam steering,” Appl. Opt. 31, 7395–7397 (1992).
    [CrossRef] [PubMed]
  9. A. M. Levine, “Fiber-optic phased array antenna system for RF transmission,” U.S. Patent4,028,702 (7June1977).
  10. R. A. Soref, “Programmable time-delay devices,” Appl. Opt. 23, 3736–3737 (1984).
    [CrossRef] [PubMed]
  11. A. P. Goutzoulis, D. K. Davies, “Hardware-compressive 2-D fiber optic delay line architecture for time steering of phased-array antennas,” Appl. Opt. 29, 5353–5359 (1990).
    [CrossRef] [PubMed]
  12. D. Dolfi, F. Michel-Gabriel, S. Bann, J. P. Huignard, “Two-dimensional optical architecture for time-delay beam forming in a phased-array antenna,” Opt. Lett. 16, 255–257 (1991).
    [CrossRef] [PubMed]
  13. C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide technology at 1.32 μm for optically controlled phased array antennas,” in Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703, 264–271 (1992).
  14. G. A. Magel, J. L. Leonard, “Phosphosilicate glass waveguides for phased-array radar time delay,” in Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703, 373–378 (1992).
  15. W. Ng, D. Yap, A. Narayanan, R. Hayes, A. Walston, “GaAs optical time-shift network for steering a dual band microwave phased array antenna,” in Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703, 379–383 (1992).
  16. A. P. Goutzoulis, D. K. Davies, “All-optical hardware-compressive wavelength multiplexed fiber optic architecture for true time delay steering of 2-D phased array antennas,” in Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703, 604–614 (1992).
  17. E. Ackerman, S. Wanuga, D. Kasemset, W. Minford, N. Thorsten, J. Watson, “Integrated 6-bit photonic true-time delay unit for light weight 3–6 GHz radar beamformer,” in MTT-S Symposium Digest (Institute of Electrical and Electronic Engineers, New York, 1992), pp. 681–684.
  18. N. A. Riza, “Three dimensional optical time delay units for radar,” in Photonics for Processors, Neural Networks, and Memories, B. Javidi, J. L. Horner, W. J. Miceli, S. T. Kowel, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2026, 227–237 (1993).
  19. S. L. Huang, C. H. Lee, H. A. Hung, “Optically controlled generation and true time delay phase shifts of broadband 60 GHz signals,” IEEE Microwave Guided Wave Lett. 3, 42–44 (1993).
    [CrossRef]
  20. P. M. Freitag, S. R. Forrest, “A coherent optically controlled phased array antenna system,” IEEE Microwave Guided Wave Lett. 3, 293–295 (1993).
    [CrossRef]
  21. A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
    [CrossRef]
  22. M. R. Meadows, N. Sullo, H. Chase, W. Swann, “Electrooptic fiber optic switches having low crosstalk,” in OSA Annual Meeting, Vol. 17 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), p. 183.
  23. M. Skolnik, ed., Radar Handbook, 2nd ed. (McGraw-Hill, New York, 1990).

1993 (2)

S. L. Huang, C. H. Lee, H. A. Hung, “Optically controlled generation and true time delay phase shifts of broadband 60 GHz signals,” IEEE Microwave Guided Wave Lett. 3, 42–44 (1993).
[CrossRef]

P. M. Freitag, S. R. Forrest, “A coherent optically controlled phased array antenna system,” IEEE Microwave Guided Wave Lett. 3, 293–295 (1993).
[CrossRef]

1992 (3)

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

R. D. Esman, M. J. Monsma, J. L. Dexter, D. G. Cooper, “Microwave true-time delay modulator using fiberoptic dispersion,” Electron. Lett. 28, 1905–1907 (1992).
[CrossRef]

R. Soref, “Optical dispersion technique for time-delay beam steering,” Appl. Opt. 31, 7395–7397 (1992).
[CrossRef] [PubMed]

1991 (2)

D. Dolfi, F. Michel-Gabriel, S. Bann, J. P. Huignard, “Two-dimensional optical architecture for time-delay beam forming in a phased-array antenna,” Opt. Lett. 16, 255–257 (1991).
[CrossRef] [PubMed]

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

1990 (2)

E. D. Toughlian, H. Zmuda, “A photonic variable RF delay line for phased array antennas,” J. Lightwave Technol. 8, 1824–1828 (1990).
[CrossRef]

A. P. Goutzoulis, D. K. Davies, “Hardware-compressive 2-D fiber optic delay line architecture for time steering of phased-array antennas,” Appl. Opt. 29, 5353–5359 (1990).
[CrossRef] [PubMed]

1987 (1)

P. R. Herczfeld, A. S. Daryoush, “Fiber-optic feed network for large aperture phased array antennas,” Microwave J. 30, 160–166 (1987).

1985 (1)

L. Cardone, “Ultra-wideband microwave beamforming technique,” Microwave J. 28, 121–131 (1985).

1984 (1)

Ackerman, E.

E. Ackerman, S. Wanuga, D. Kasemset, W. Minford, N. Thorsten, J. Watson, “Integrated 6-bit photonic true-time delay unit for light weight 3–6 GHz radar beamformer,” in MTT-S Symposium Digest (Institute of Electrical and Electronic Engineers, New York, 1992), pp. 681–684.

Bann, S.

Bernstein, N.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Cardone, L.

L. Cardone, “Ultra-wideband microwave beamforming technique,” Microwave J. 28, 121–131 (1985).

Chase, H.

M. R. Meadows, N. Sullo, H. Chase, W. Swann, “Electrooptic fiber optic switches having low crosstalk,” in OSA Annual Meeting, Vol. 17 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), p. 183.

Cooper, D. G.

R. D. Esman, M. J. Monsma, J. L. Dexter, D. G. Cooper, “Microwave true-time delay modulator using fiberoptic dispersion,” Electron. Lett. 28, 1905–1907 (1992).
[CrossRef]

Curtis, D.

D. Curtis, “Frequency domain analysis and performance of a true-time delay fiber optic beamforming network for array antennas,” in Optoelectronic Signal Processing for Phased-Array Antennas II, B. M. Hendrickson, G. A. Koepf, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1217, 226–234 (1990).

Daryoush, A. S.

P. R. Herczfeld, A. S. Daryoush, “Fiber-optic feed network for large aperture phased array antennas,” Microwave J. 30, 160–166 (1987).

Davies, D. K.

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

A. P. Goutzoulis, D. K. Davies, “Hardware-compressive 2-D fiber optic delay line architecture for time steering of phased-array antennas,” Appl. Opt. 29, 5353–5359 (1990).
[CrossRef] [PubMed]

A. P. Goutzoulis, D. K. Davies, “All-optical hardware-compressive wavelength multiplexed fiber optic architecture for true time delay steering of 2-D phased array antennas,” in Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703, 604–614 (1992).

Dexter, J. L.

R. D. Esman, M. J. Monsma, J. L. Dexter, D. G. Cooper, “Microwave true-time delay modulator using fiberoptic dispersion,” Electron. Lett. 28, 1905–1907 (1992).
[CrossRef]

Dolfi, D.

Esman, R. D.

R. D. Esman, M. J. Monsma, J. L. Dexter, D. G. Cooper, “Microwave true-time delay modulator using fiberoptic dispersion,” Electron. Lett. 28, 1905–1907 (1992).
[CrossRef]

Forrest, S. R.

P. M. Freitag, S. R. Forrest, “A coherent optically controlled phased array antenna system,” IEEE Microwave Guided Wave Lett. 3, 293–295 (1993).
[CrossRef]

Freitag, P. M.

P. M. Freitag, S. R. Forrest, “A coherent optically controlled phased array antenna system,” IEEE Microwave Guided Wave Lett. 3, 293–295 (1993).
[CrossRef]

Goldberg, W.

C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide technology at 1.32 μm for optically controlled phased array antennas,” in Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703, 264–271 (1992).

Gopinath, A.

C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide technology at 1.32 μm for optically controlled phased array antennas,” in Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703, 264–271 (1992).

Goutzoulis, A. P.

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

A. P. Goutzoulis, D. K. Davies, “Hardware-compressive 2-D fiber optic delay line architecture for time steering of phased-array antennas,” Appl. Opt. 29, 5353–5359 (1990).
[CrossRef] [PubMed]

A. P. Goutzoulis, D. K. Davies, “All-optical hardware-compressive wavelength multiplexed fiber optic architecture for true time delay steering of 2-D phased array antennas,” in Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703, 604–614 (1992).

Hayes, R.

W. Ng, D. Yap, A. Narayanan, R. Hayes, A. Walston, “GaAs optical time-shift network for steering a dual band microwave phased array antenna,” in Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703, 379–383 (1992).

Herczfeld, P. R.

P. R. Herczfeld, A. S. Daryoush, “Fiber-optic feed network for large aperture phased array antennas,” Microwave J. 30, 160–166 (1987).

Hibbs-Brenner, M. K.

C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide technology at 1.32 μm for optically controlled phased array antennas,” in Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703, 264–271 (1992).

Huang, S. L.

S. L. Huang, C. H. Lee, H. A. Hung, “Optically controlled generation and true time delay phase shifts of broadband 60 GHz signals,” IEEE Microwave Guided Wave Lett. 3, 42–44 (1993).
[CrossRef]

Huignard, J. P.

Hung, H. A.

S. L. Huang, C. H. Lee, H. A. Hung, “Optically controlled generation and true time delay phase shifts of broadband 60 GHz signals,” IEEE Microwave Guided Wave Lett. 3, 42–44 (1993).
[CrossRef]

Kalweit, E.

C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide technology at 1.32 μm for optically controlled phased array antennas,” in Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703, 264–271 (1992).

Kasemset, D.

E. Ackerman, S. Wanuga, D. Kasemset, W. Minford, N. Thorsten, J. Watson, “Integrated 6-bit photonic true-time delay unit for light weight 3–6 GHz radar beamformer,” in MTT-S Symposium Digest (Institute of Electrical and Electronic Engineers, New York, 1992), pp. 681–684.

Koepf, G. A.

G. A. Koepf, “Optical processor for phased array antenna beam formation,” in Optical Technology for Microwave Technology I, S. Yao, ed., Proc. Soc. Photo-Opt. Instrum. Eng.477, 75–81 (1984).

Lee, C. H.

S. L. Huang, C. H. Lee, H. A. Hung, “Optically controlled generation and true time delay phase shifts of broadband 60 GHz signals,” IEEE Microwave Guided Wave Lett. 3, 42–44 (1993).
[CrossRef]

Lee, J.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Leonard, J. L.

G. A. Magel, J. L. Leonard, “Phosphosilicate glass waveguides for phased-array radar time delay,” in Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703, 373–378 (1992).

Levine, A. M.

A. M. Levine, “Fiber-optic phased array antenna system for RF transmission,” U.S. Patent4,028,702 (7June1977).

Magel, G. A.

G. A. Magel, J. L. Leonard, “Phosphosilicate glass waveguides for phased-array radar time delay,” in Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703, 373–378 (1992).

Marta, T.

C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide technology at 1.32 μm for optically controlled phased array antennas,” in Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703, 264–271 (1992).

Meadows, M. R.

M. R. Meadows, N. Sullo, H. Chase, W. Swann, “Electrooptic fiber optic switches having low crosstalk,” in OSA Annual Meeting, Vol. 17 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), p. 183.

Michel-Gabriel, F.

Minford, W.

E. Ackerman, S. Wanuga, D. Kasemset, W. Minford, N. Thorsten, J. Watson, “Integrated 6-bit photonic true-time delay unit for light weight 3–6 GHz radar beamformer,” in MTT-S Symposium Digest (Institute of Electrical and Electronic Engineers, New York, 1992), pp. 681–684.

Monsma, M. J.

R. D. Esman, M. J. Monsma, J. L. Dexter, D. G. Cooper, “Microwave true-time delay modulator using fiberoptic dispersion,” Electron. Lett. 28, 1905–1907 (1992).
[CrossRef]

Mukherjee, S. D.

C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide technology at 1.32 μm for optically controlled phased array antennas,” in Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703, 264–271 (1992).

Narayanan, A.

W. Ng, D. Yap, A. Narayanan, R. Hayes, A. Walston, “GaAs optical time-shift network for steering a dual band microwave phased array antenna,” in Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703, 379–383 (1992).

Newberg, I.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Ng, W.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

W. Ng, D. Yap, A. Narayanan, R. Hayes, A. Walston, “GaAs optical time-shift network for steering a dual band microwave phased array antenna,” in Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703, 379–383 (1992).

Riza, N. A.

N. A. Riza, “Three dimensional optical time delay units for radar,” in Photonics for Processors, Neural Networks, and Memories, B. Javidi, J. L. Horner, W. J. Miceli, S. T. Kowel, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2026, 227–237 (1993).

Soref, R.

Soref, R. A.

Sullivan, C. T.

C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide technology at 1.32 μm for optically controlled phased array antennas,” in Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703, 264–271 (1992).

Sullo, N.

M. R. Meadows, N. Sullo, H. Chase, W. Swann, “Electrooptic fiber optic switches having low crosstalk,” in OSA Annual Meeting, Vol. 17 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), p. 183.

Swann, W.

M. R. Meadows, N. Sullo, H. Chase, W. Swann, “Electrooptic fiber optic switches having low crosstalk,” in OSA Annual Meeting, Vol. 17 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), p. 183.

Tangonan, G.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Thorsten, N.

E. Ackerman, S. Wanuga, D. Kasemset, W. Minford, N. Thorsten, J. Watson, “Integrated 6-bit photonic true-time delay unit for light weight 3–6 GHz radar beamformer,” in MTT-S Symposium Digest (Institute of Electrical and Electronic Engineers, New York, 1992), pp. 681–684.

Toughlian, E. D.

E. D. Toughlian, H. Zmuda, “A photonic variable RF delay line for phased array antennas,” J. Lightwave Technol. 8, 1824–1828 (1990).
[CrossRef]

Walston, A.

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

W. Ng, D. Yap, A. Narayanan, R. Hayes, A. Walston, “GaAs optical time-shift network for steering a dual band microwave phased array antenna,” in Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703, 379–383 (1992).

Walterson, R.

C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide technology at 1.32 μm for optically controlled phased array antennas,” in Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703, 264–271 (1992).

Wanuga, S.

E. Ackerman, S. Wanuga, D. Kasemset, W. Minford, N. Thorsten, J. Watson, “Integrated 6-bit photonic true-time delay unit for light weight 3–6 GHz radar beamformer,” in MTT-S Symposium Digest (Institute of Electrical and Electronic Engineers, New York, 1992), pp. 681–684.

Watson, J.

E. Ackerman, S. Wanuga, D. Kasemset, W. Minford, N. Thorsten, J. Watson, “Integrated 6-bit photonic true-time delay unit for light weight 3–6 GHz radar beamformer,” in MTT-S Symposium Digest (Institute of Electrical and Electronic Engineers, New York, 1992), pp. 681–684.

Yap, D.

W. Ng, D. Yap, A. Narayanan, R. Hayes, A. Walston, “GaAs optical time-shift network for steering a dual band microwave phased array antenna,” in Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703, 379–383 (1992).

Zmuda, H.

E. D. Toughlian, H. Zmuda, “A photonic variable RF delay line for phased array antennas,” J. Lightwave Technol. 8, 1824–1828 (1990).
[CrossRef]

Zomp, J. M.

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

Appl. Opt. (3)

Electron. Lett. (1)

R. D. Esman, M. J. Monsma, J. L. Dexter, D. G. Cooper, “Microwave true-time delay modulator using fiberoptic dispersion,” Electron. Lett. 28, 1905–1907 (1992).
[CrossRef]

IEEE Microwave Guided Wave Lett. (2)

S. L. Huang, C. H. Lee, H. A. Hung, “Optically controlled generation and true time delay phase shifts of broadband 60 GHz signals,” IEEE Microwave Guided Wave Lett. 3, 42–44 (1993).
[CrossRef]

P. M. Freitag, S. R. Forrest, “A coherent optically controlled phased array antenna system,” IEEE Microwave Guided Wave Lett. 3, 293–295 (1993).
[CrossRef]

J. Lightwave Technol. (2)

E. D. Toughlian, H. Zmuda, “A photonic variable RF delay line for phased array antennas,” J. Lightwave Technol. 8, 1824–1828 (1990).
[CrossRef]

W. Ng, A. Walston, G. Tangonan, J. Lee, I. Newberg, N. Bernstein, “The first demonstration of an optically steered microwave phased array antenna using true-time delay,” J. Lightwave Technol. 9, 1124–1131 (1991).
[CrossRef]

Microwave J. (2)

L. Cardone, “Ultra-wideband microwave beamforming technique,” Microwave J. 28, 121–131 (1985).

P. R. Herczfeld, A. S. Daryoush, “Fiber-optic feed network for large aperture phased array antennas,” Microwave J. 30, 160–166 (1987).

Opt. Eng. (1)

A. P. Goutzoulis, D. K. Davies, J. M. Zomp, “Hybrid electronic fiber optic wavelength multiplexed system for true time-delay steering of phased array antennas,” Opt. Eng. 31, 2312–2322 (1992).
[CrossRef]

Opt. Lett. (1)

Other (11)

M. R. Meadows, N. Sullo, H. Chase, W. Swann, “Electrooptic fiber optic switches having low crosstalk,” in OSA Annual Meeting, Vol. 17 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1991), p. 183.

M. Skolnik, ed., Radar Handbook, 2nd ed. (McGraw-Hill, New York, 1990).

A. M. Levine, “Fiber-optic phased array antenna system for RF transmission,” U.S. Patent4,028,702 (7June1977).

D. Curtis, “Frequency domain analysis and performance of a true-time delay fiber optic beamforming network for array antennas,” in Optoelectronic Signal Processing for Phased-Array Antennas II, B. M. Hendrickson, G. A. Koepf, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1217, 226–234 (1990).

G. A. Koepf, “Optical processor for phased array antenna beam formation,” in Optical Technology for Microwave Technology I, S. Yao, ed., Proc. Soc. Photo-Opt. Instrum. Eng.477, 75–81 (1984).

C. T. Sullivan, S. D. Mukherjee, M. K. Hibbs-Brenner, A. Gopinath, E. Kalweit, T. Marta, W. Goldberg, R. Walterson, “Switched time delay elements based on AlGaAs/GaAs optical waveguide technology at 1.32 μm for optically controlled phased array antennas,” in Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703, 264–271 (1992).

G. A. Magel, J. L. Leonard, “Phosphosilicate glass waveguides for phased-array radar time delay,” in Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703, 373–378 (1992).

W. Ng, D. Yap, A. Narayanan, R. Hayes, A. Walston, “GaAs optical time-shift network for steering a dual band microwave phased array antenna,” in Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703, 379–383 (1992).

A. P. Goutzoulis, D. K. Davies, “All-optical hardware-compressive wavelength multiplexed fiber optic architecture for true time delay steering of 2-D phased array antennas,” in Optical Technology for Microwave Applications VI and Optoelectronic Signal Processing for Phased-Array Antennas III, B. M. Hendrickson, S. Yao, eds., Proc. Soc. Photo-Opt. Instrum. Eng.1703, 604–614 (1992).

E. Ackerman, S. Wanuga, D. Kasemset, W. Minford, N. Thorsten, J. Watson, “Integrated 6-bit photonic true-time delay unit for light weight 3–6 GHz radar beamformer,” in MTT-S Symposium Digest (Institute of Electrical and Electronic Engineers, New York, 1992), pp. 681–684.

N. A. Riza, “Three dimensional optical time delay units for radar,” in Photonics for Processors, Neural Networks, and Memories, B. Javidi, J. L. Horner, W. J. Miceli, S. T. Kowel, eds., Proc. Soc. Photo-Opt. Instrum. Eng.2026, 227–237 (1993).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (17)

Fig. 1
Fig. 1

Block diagram of a 16-element hybrid wavelength MUX TTD architecture. DET’s, detectors.

Fig. 2
Fig. 2

Prototype DiBi board that corresponds to the largest required DiBi.

Fig. 3
Fig. 3

Frequency response of the largest DiBi for the 000000, 010101, 101010, and 111111 delay paths.

Fig. 4
Fig. 4

Measured and calculated delays for the DiBi’s as functions of the steering angle with 1.31° resolution.

Fig. 5
Fig. 5

Deviation of the measured DiBi delays from the design values as a function of the steering angle.

Fig. 6
Fig. 6

Typical SNR’s and SFDR’s of the DiBi’s.

Fig. 7
Fig. 7

Measured and calculated delays for the BIFODEL’s as a function of the steering angle with 1.31° resolution.

Fig. 8
Fig. 8

Deviation of the measured BIFODEL delays from the design values as a function of the steering angle.

Fig. 9
Fig. 9

Typical amplitude and delay dispersion characteristics as functions of the frequency for the DFB LD–pin diode DET combination.

Fig. 10
Fig. 10

Frequency and phase response of the 60-dB gain block used at each output port.

Fig. 11
Fig. 11

Prototype λ-MUX hybrid transmit 16-element TTD system with the 16 output receivers, each of which include a detector and 60-dB amplifiers.

Fig. 12
Fig. 12

Measured and calculated delays for each of the 16 output elements of the integrated TTD system as functions of the steering angle with 1.31° resolution.

Fig. 13
Fig. 13

Antenna-range setup that shows the 16-element TTD-driven PAA mounted on a three-axis rotary positioner and the four-element matching receiver (middle right).

Fig. 14
Fig. 14

Experimental PAA driven by the FO λ-MUX hybrid transmit 16-element TTD system that shows the 16-element antenna and the reference antenna element, the FO manifold, the TTD system inside the cooler, and the associated electronics under a rainproof cover.

Fig. 15
Fig. 15

Squint-free antenna patterns for steering at the −43°, 0° and +45° angles and for frequencies of 600, 900, 1200, and 1500 MHz.

Fig. 16
Fig. 16

Theoretical and experimental antenna patterns for eight antenna elements (odd numbers) and for a frequency of 700 MHz.

Fig. 17
Fig. 17

Antenna patterns as functions of DiBi and BIFODEL switch settings that cover the −42°–+45° angular range for a frequency of 700 MHz.

Metrics