Abstract

The orthogonal polarization fiber gyroscope (OPFG) is an interferometric fiber gyroscope design that requires no phase bias in the fiber ring and is insensitive to light-source intensity noise. However, in the original OPFG [Hitachi Rev. 33, 215 (1984)], environmental changes caused first-order false rotation signals. We propose and experimentally verify modifications that eliminate the first-order sensitivity to environmental changes and that improve the gyroscope's resolution as well. We believe that this modified OPFG is the first interferometric fiber gyroscope capable of stable, high-sensitivity measurement that contains only reciprocal optical elements.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. V. Vali, R. W. Shorthill, “Fiber ring interferometer,” Appl. Opt. 15, 1099–1100 (1976).
    [Crossref] [PubMed]
  2. R. Ulrich, M. Johnson, “Fiber-ring interferometer: polarization analysis,” Opt. Lett. 4, 152–154 (1979).
    [Crossref] [PubMed]
  3. R. Ulrich, “Fiber-optic rotation sensing with low drift,” Opt. Lett. 5, 173–175 (1980).
    [Crossref] [PubMed]
  4. S. Ezekiel, H. J. Arditty, Fiber-Optic Rotation Sensors (Springer, New York, 1982), pp. 3–27.
  5. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N.J., 1984), pp. 55–63.
  6. H. J. Carlin, A. B. Giordano, Network Theory: An Introduction to Reciprocal and Nonreciprocal Circuits (Prentice-Hall, New York, 1964), p. 5.
  7. A. M. Yurek, H. F. Taylor, L. Goldberg, J. F. Weller, A. Dandridge, “Quantum noise in superluminescent diodes,” IEEE J. Quantum Electron. QE-22, 522–527 (1986).
    [Crossref]
  8. W. K. Burns, R. P. Moeller, A. Dandridge, “Excess noise in fiber gyroscope sources,” IEEE Photon. Technol. Lett. 2, 606–608 (1990).
    [Crossref]
  9. H. A. Haus, K. Bergman, Y. Lai, “Fiber gyro with squeezed radiation,” J. Opt. Soc. Am. B 8, 1952–1957 (1991).
    [Crossref]
  10. H. Kajioka, “Optical fiber laser gyroscope,” U.S. patent57-78964 (15November1983).
  11. H. Kajioka, H. Matsumura, “Single polarization optical fiber and its applications,” Hitachi Rev. 33, 215–218 (1984).
  12. G. L. Abbas, V. W. S. Chan, T. K. Yee, “Local-oscillator excess-noise suppression for homodyne and heterodyne detection,” Opt. Lett. 8, 419–421 (1983).
    [Crossref] [PubMed]
  13. R. P. Moeller, W. K. Burns, “1.06-μm all-fiber gyroscope with noise subtraction,” Opt. Lett. 16, 1902–1904 (1991).
    [Crossref] [PubMed]
  14. M. Shirasaki, C. R. Doerr, K. Bergman, H. A. Haus, “Optical squeezing with self-phase stabilized scheme,” in Nonlinear Optics: Materials, Fundamentals & Applications, Vol. 18 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 173–175.
  15. R. P. Moeller, W. K. Burns, N. J. Frigo, “Open-loop output and scale factor stability in a fiber-optic gyroscope,” J. Lightwave Technol. 7, 262–269 (1989).
    [Crossref]
  16. S. B. Alexander, “Design of wide-band optical heterodyne balanced mixer receivers,” J. Lightwave Technol. 5, 523–537 (1987).
    [Crossref]

1991 (2)

1990 (1)

W. K. Burns, R. P. Moeller, A. Dandridge, “Excess noise in fiber gyroscope sources,” IEEE Photon. Technol. Lett. 2, 606–608 (1990).
[Crossref]

1989 (1)

R. P. Moeller, W. K. Burns, N. J. Frigo, “Open-loop output and scale factor stability in a fiber-optic gyroscope,” J. Lightwave Technol. 7, 262–269 (1989).
[Crossref]

1987 (1)

S. B. Alexander, “Design of wide-band optical heterodyne balanced mixer receivers,” J. Lightwave Technol. 5, 523–537 (1987).
[Crossref]

1986 (1)

A. M. Yurek, H. F. Taylor, L. Goldberg, J. F. Weller, A. Dandridge, “Quantum noise in superluminescent diodes,” IEEE J. Quantum Electron. QE-22, 522–527 (1986).
[Crossref]

1984 (1)

H. Kajioka, H. Matsumura, “Single polarization optical fiber and its applications,” Hitachi Rev. 33, 215–218 (1984).

1983 (1)

1980 (1)

1979 (1)

1976 (1)

Abbas, G. L.

Alexander, S. B.

S. B. Alexander, “Design of wide-band optical heterodyne balanced mixer receivers,” J. Lightwave Technol. 5, 523–537 (1987).
[Crossref]

Arditty, H. J.

S. Ezekiel, H. J. Arditty, Fiber-Optic Rotation Sensors (Springer, New York, 1982), pp. 3–27.

Bergman, K.

H. A. Haus, K. Bergman, Y. Lai, “Fiber gyro with squeezed radiation,” J. Opt. Soc. Am. B 8, 1952–1957 (1991).
[Crossref]

M. Shirasaki, C. R. Doerr, K. Bergman, H. A. Haus, “Optical squeezing with self-phase stabilized scheme,” in Nonlinear Optics: Materials, Fundamentals & Applications, Vol. 18 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 173–175.

Burns, W. K.

R. P. Moeller, W. K. Burns, “1.06-μm all-fiber gyroscope with noise subtraction,” Opt. Lett. 16, 1902–1904 (1991).
[Crossref] [PubMed]

W. K. Burns, R. P. Moeller, A. Dandridge, “Excess noise in fiber gyroscope sources,” IEEE Photon. Technol. Lett. 2, 606–608 (1990).
[Crossref]

R. P. Moeller, W. K. Burns, N. J. Frigo, “Open-loop output and scale factor stability in a fiber-optic gyroscope,” J. Lightwave Technol. 7, 262–269 (1989).
[Crossref]

Carlin, H. J.

H. J. Carlin, A. B. Giordano, Network Theory: An Introduction to Reciprocal and Nonreciprocal Circuits (Prentice-Hall, New York, 1964), p. 5.

Chan, V. W. S.

Dandridge, A.

W. K. Burns, R. P. Moeller, A. Dandridge, “Excess noise in fiber gyroscope sources,” IEEE Photon. Technol. Lett. 2, 606–608 (1990).
[Crossref]

A. M. Yurek, H. F. Taylor, L. Goldberg, J. F. Weller, A. Dandridge, “Quantum noise in superluminescent diodes,” IEEE J. Quantum Electron. QE-22, 522–527 (1986).
[Crossref]

Doerr, C. R.

M. Shirasaki, C. R. Doerr, K. Bergman, H. A. Haus, “Optical squeezing with self-phase stabilized scheme,” in Nonlinear Optics: Materials, Fundamentals & Applications, Vol. 18 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 173–175.

Ezekiel, S.

S. Ezekiel, H. J. Arditty, Fiber-Optic Rotation Sensors (Springer, New York, 1982), pp. 3–27.

Frigo, N. J.

R. P. Moeller, W. K. Burns, N. J. Frigo, “Open-loop output and scale factor stability in a fiber-optic gyroscope,” J. Lightwave Technol. 7, 262–269 (1989).
[Crossref]

Giordano, A. B.

H. J. Carlin, A. B. Giordano, Network Theory: An Introduction to Reciprocal and Nonreciprocal Circuits (Prentice-Hall, New York, 1964), p. 5.

Goldberg, L.

A. M. Yurek, H. F. Taylor, L. Goldberg, J. F. Weller, A. Dandridge, “Quantum noise in superluminescent diodes,” IEEE J. Quantum Electron. QE-22, 522–527 (1986).
[Crossref]

Haus, H. A.

H. A. Haus, K. Bergman, Y. Lai, “Fiber gyro with squeezed radiation,” J. Opt. Soc. Am. B 8, 1952–1957 (1991).
[Crossref]

M. Shirasaki, C. R. Doerr, K. Bergman, H. A. Haus, “Optical squeezing with self-phase stabilized scheme,” in Nonlinear Optics: Materials, Fundamentals & Applications, Vol. 18 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 173–175.

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N.J., 1984), pp. 55–63.

Johnson, M.

Kajioka, H.

H. Kajioka, H. Matsumura, “Single polarization optical fiber and its applications,” Hitachi Rev. 33, 215–218 (1984).

H. Kajioka, “Optical fiber laser gyroscope,” U.S. patent57-78964 (15November1983).

Lai, Y.

Matsumura, H.

H. Kajioka, H. Matsumura, “Single polarization optical fiber and its applications,” Hitachi Rev. 33, 215–218 (1984).

Moeller, R. P.

R. P. Moeller, W. K. Burns, “1.06-μm all-fiber gyroscope with noise subtraction,” Opt. Lett. 16, 1902–1904 (1991).
[Crossref] [PubMed]

W. K. Burns, R. P. Moeller, A. Dandridge, “Excess noise in fiber gyroscope sources,” IEEE Photon. Technol. Lett. 2, 606–608 (1990).
[Crossref]

R. P. Moeller, W. K. Burns, N. J. Frigo, “Open-loop output and scale factor stability in a fiber-optic gyroscope,” J. Lightwave Technol. 7, 262–269 (1989).
[Crossref]

Shirasaki, M.

M. Shirasaki, C. R. Doerr, K. Bergman, H. A. Haus, “Optical squeezing with self-phase stabilized scheme,” in Nonlinear Optics: Materials, Fundamentals & Applications, Vol. 18 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 173–175.

Shorthill, R. W.

Taylor, H. F.

A. M. Yurek, H. F. Taylor, L. Goldberg, J. F. Weller, A. Dandridge, “Quantum noise in superluminescent diodes,” IEEE J. Quantum Electron. QE-22, 522–527 (1986).
[Crossref]

Ulrich, R.

Vali, V.

Weller, J. F.

A. M. Yurek, H. F. Taylor, L. Goldberg, J. F. Weller, A. Dandridge, “Quantum noise in superluminescent diodes,” IEEE J. Quantum Electron. QE-22, 522–527 (1986).
[Crossref]

Yee, T. K.

Yurek, A. M.

A. M. Yurek, H. F. Taylor, L. Goldberg, J. F. Weller, A. Dandridge, “Quantum noise in superluminescent diodes,” IEEE J. Quantum Electron. QE-22, 522–527 (1986).
[Crossref]

Appl. Opt. (1)

Hitachi Rev. (1)

H. Kajioka, H. Matsumura, “Single polarization optical fiber and its applications,” Hitachi Rev. 33, 215–218 (1984).

IEEE J. Quantum Electron. (1)

A. M. Yurek, H. F. Taylor, L. Goldberg, J. F. Weller, A. Dandridge, “Quantum noise in superluminescent diodes,” IEEE J. Quantum Electron. QE-22, 522–527 (1986).
[Crossref]

IEEE Photon. Technol. Lett. (1)

W. K. Burns, R. P. Moeller, A. Dandridge, “Excess noise in fiber gyroscope sources,” IEEE Photon. Technol. Lett. 2, 606–608 (1990).
[Crossref]

J. Lightwave Technol. (2)

R. P. Moeller, W. K. Burns, N. J. Frigo, “Open-loop output and scale factor stability in a fiber-optic gyroscope,” J. Lightwave Technol. 7, 262–269 (1989).
[Crossref]

S. B. Alexander, “Design of wide-band optical heterodyne balanced mixer receivers,” J. Lightwave Technol. 5, 523–537 (1987).
[Crossref]

J. Opt. Soc. Am. B (1)

Opt. Lett. (4)

Other (5)

M. Shirasaki, C. R. Doerr, K. Bergman, H. A. Haus, “Optical squeezing with self-phase stabilized scheme,” in Nonlinear Optics: Materials, Fundamentals & Applications, Vol. 18 of 1992 OSA Technical Digest Series (Optical Society of America, Washington, D.C., 1992), pp. 173–175.

S. Ezekiel, H. J. Arditty, Fiber-Optic Rotation Sensors (Springer, New York, 1982), pp. 3–27.

H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, Englewood Cliffs, N.J., 1984), pp. 55–63.

H. J. Carlin, A. B. Giordano, Network Theory: An Introduction to Reciprocal and Nonreciprocal Circuits (Prentice-Hall, New York, 1964), p. 5.

H. Kajioka, “Optical fiber laser gyroscope,” U.S. patent57-78964 (15November1983).

Cited By

OSA participates in Crossref's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Basic scheme of the conventional fiber gyroscope. The small circles on the PM fiber ends represent the stress rods of panda fiber. The fiber coupling lenses are omitted for clarity. BS, beam splitter.

Fig. 2
Fig. 2

Our concept of the original OPFG. Insets (a)–(d) display the polarization states at the corresponding lettered locations. The solid polarization states represent the case of zero ring rotation, and the dashed states represent ring rotation in one direction.

Fig. 3
Fig. 3

Modified OPFG. As in Fig. 2, insets (a)–(d) show the polarization states in the scheme.

Fig. 4
Fig. 4

Poincaré sphere showing polarization states in the modified OPFG.

Fig. 5
Fig. 5

Design of an SPBS with no material between the light-splitting points of the SPBS and the detector PBS; 0B Brewster's angle.

Fig. 6
Fig. 6

Gyroscope output low-pass filtered with a cutoff of 0.03 Hz with the coil at rest with respect to the Earth.

Equations (11)

Equations on this page are rendered with MathJax. Learn more.

( ϕ min ) conventional = [ 1 + J 0 ( ϕ m ) J 1 ( ϕ m ) ] ( 1 P detect ) 1 / 2 ( h ν B 4 η ) 1 / 2 ,
P detect = [ 1 + J 0 ( ϕ m ) 2 ] | r | 2 ( 1 | r | 2 ) P source ,
( ϕ min ) conventional = { [ 1 + J 0 ( ϕ m ) ] 1 / 2 | r | ( 1 | r | 2 ) 1 / 2 J 1 ( ϕ m ) } ( 1 P source ) 1 / 2 ( h ν B 4 η ) 1 / 2 .
( ϕ min ) conventional 3.8 ( 1 P source ) 1 / 2 ( h ν B 2 η ) 1 / 2 .
Δ i = ( η e h ν ) | r | 2 ( 1 | r | 2 ) P source sin ( 2 ϕ s ) ,
| r | 2 ( 1 | r | 2 ) P source .
( ϕ min ) original OPFG = [ 1 | r | ( 1 | r | 2 ) 1 / 2 ] ( 1 P source ) 1 / 2 ( h ν B 2 η ) 1 / 2 .
( ϕ min ) original OPFG = 2 ( 1 P source ) 1 / 2 ( h ν B 2 η ) 1 / 2 .
Δ i = ( η e h ν ) | r p | ( 1 | r p | 2 ) P source sin ( 2 ϕ s ) ,
| r p | 2 ( 1 | r p | 2 ) P source .
( ϕ min ) modified OPFG = [ 1 ( 1 | r p | 2 ) 1 / 2 ] ( 1 P source ) 1 / 2 ( h ν B 2 η ) 1 / 2 .

Metrics