Abstract

Surface plasmons generated at a silver–polyimide interface and the guided modes coupled into planar films cause dips in the reflectivity curve of a transparent dielectric–silver–polyimide–air structure. These minima in the reflectivity curve were used to measure the polyimide thickness as well as the real and imaginary parts of the polymer refractive index (extinction). Precision within 1% of the polymer coat thickness was achieved through the use of this technique over the range 0.5−10 μm. In some cases, this technique is capable of yielding a precision of ∼10% on the imaginary part of the polymer refractive index and provides a useful method for determining the performance of a low-loss polymer waveguide. Techniques in fitting the experimental reflectivity data to obtain the optical constants are also described.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol. 7, 1445–1453 (1989).
    [CrossRef]
  2. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988), Chap. 2, pp. 4–13.
  3. E. Kretschmann, “The determination of the optical constants of metals by the excitation of surface plasmons,” Z. Phys. 241, 313–324 (1971).
    [CrossRef]
  4. M. E. Caldwell, E. M. Yeatman, “Optically addressed surface plasmon spatial light modulators,” in High Speed Phenomena in Photonic Materials and Optical Bistability, D. Jaeger, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1280, 276–288 (1990).
  5. W. M. Robertson, E. Fullerton, “Reexamination of the surface-plasma-wave technique for determining the dielectric constant and thickness of metal films.” J. Opt. Soc. Am. B 6, 1584–1589 (1989).
    [CrossRef]
  6. I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978).
    [CrossRef]
  7. W. H. Weber, “Comment on observation of an index-of-refraction-induced change in the Drude parameters of Ag films,” Phys. Rev. B 34, 1319–1321 (1986).
    [CrossRef]
  8. H. J. Simon, D. E. Mitchell, J. G. Watson, “Surface plasmons in silver films—a novel undergraduate experiment,” Am. J. Phys. 43, 630–636 (1975).
    [CrossRef]
  9. P. B. Johnson, R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
    [CrossRef]
  10. K. Welford, “Surface plasmon-polaritons and their uses,” J. Opt. Quantum Electron. 23, 1–27 (1991).
    [CrossRef]
  11. P. K. Tien, “Integrated optics and new wave phenomena optical waveguides,” Rev. Mod. Phys. 49, 361–420 (1977).
    [CrossRef]
  12. M. Born, E. Wolf, Principles of optics, 6th ed. (Pergamon, New York, 1980), Chap. 13, p. 632.
  13. J. M. Guerra, M. Srinivasarao, R. S. Stein, “Photon tunneling microscopy of polymeric surface,” Science 262, 1395–1400 (1993).
    [CrossRef] [PubMed]
  14. G. H. Meeten, Optical Properties of Polymers (Elsevier, New York, 1989), Chap 1, p. 31.

1993 (1)

J. M. Guerra, M. Srinivasarao, R. S. Stein, “Photon tunneling microscopy of polymeric surface,” Science 262, 1395–1400 (1993).
[CrossRef] [PubMed]

1991 (1)

K. Welford, “Surface plasmon-polaritons and their uses,” J. Opt. Quantum Electron. 23, 1–27 (1991).
[CrossRef]

1989 (2)

1986 (1)

W. H. Weber, “Comment on observation of an index-of-refraction-induced change in the Drude parameters of Ag films,” Phys. Rev. B 34, 1319–1321 (1986).
[CrossRef]

1978 (1)

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978).
[CrossRef]

1977 (1)

P. K. Tien, “Integrated optics and new wave phenomena optical waveguides,” Rev. Mod. Phys. 49, 361–420 (1977).
[CrossRef]

1975 (1)

H. J. Simon, D. E. Mitchell, J. G. Watson, “Surface plasmons in silver films—a novel undergraduate experiment,” Am. J. Phys. 43, 630–636 (1975).
[CrossRef]

1972 (1)

P. B. Johnson, R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

1971 (1)

E. Kretschmann, “The determination of the optical constants of metals by the excitation of surface plasmons,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

Booth, B. L.

B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol. 7, 1445–1453 (1989).
[CrossRef]

Born, M.

M. Born, E. Wolf, Principles of optics, 6th ed. (Pergamon, New York, 1980), Chap. 13, p. 632.

Caldwell, M. E.

M. E. Caldwell, E. M. Yeatman, “Optically addressed surface plasmon spatial light modulators,” in High Speed Phenomena in Photonic Materials and Optical Bistability, D. Jaeger, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1280, 276–288 (1990).

Christy, R. W.

P. B. Johnson, R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Fullerton, E.

Guerra, J. M.

J. M. Guerra, M. Srinivasarao, R. S. Stein, “Photon tunneling microscopy of polymeric surface,” Science 262, 1395–1400 (1993).
[CrossRef] [PubMed]

Johnson, P. B.

P. B. Johnson, R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

Kretschmann, E.

E. Kretschmann, “The determination of the optical constants of metals by the excitation of surface plasmons,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

Meeten, G. H.

G. H. Meeten, Optical Properties of Polymers (Elsevier, New York, 1989), Chap 1, p. 31.

Mitchell, D. E.

H. J. Simon, D. E. Mitchell, J. G. Watson, “Surface plasmons in silver films—a novel undergraduate experiment,” Am. J. Phys. 43, 630–636 (1975).
[CrossRef]

Pockrand, I.

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978).
[CrossRef]

Raether, H.

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988), Chap. 2, pp. 4–13.

Robertson, W. M.

Simon, H. J.

H. J. Simon, D. E. Mitchell, J. G. Watson, “Surface plasmons in silver films—a novel undergraduate experiment,” Am. J. Phys. 43, 630–636 (1975).
[CrossRef]

Srinivasarao, M.

J. M. Guerra, M. Srinivasarao, R. S. Stein, “Photon tunneling microscopy of polymeric surface,” Science 262, 1395–1400 (1993).
[CrossRef] [PubMed]

Stein, R. S.

J. M. Guerra, M. Srinivasarao, R. S. Stein, “Photon tunneling microscopy of polymeric surface,” Science 262, 1395–1400 (1993).
[CrossRef] [PubMed]

Tien, P. K.

P. K. Tien, “Integrated optics and new wave phenomena optical waveguides,” Rev. Mod. Phys. 49, 361–420 (1977).
[CrossRef]

Watson, J. G.

H. J. Simon, D. E. Mitchell, J. G. Watson, “Surface plasmons in silver films—a novel undergraduate experiment,” Am. J. Phys. 43, 630–636 (1975).
[CrossRef]

Weber, W. H.

W. H. Weber, “Comment on observation of an index-of-refraction-induced change in the Drude parameters of Ag films,” Phys. Rev. B 34, 1319–1321 (1986).
[CrossRef]

Welford, K.

K. Welford, “Surface plasmon-polaritons and their uses,” J. Opt. Quantum Electron. 23, 1–27 (1991).
[CrossRef]

Wolf, E.

M. Born, E. Wolf, Principles of optics, 6th ed. (Pergamon, New York, 1980), Chap. 13, p. 632.

Yeatman, E. M.

M. E. Caldwell, E. M. Yeatman, “Optically addressed surface plasmon spatial light modulators,” in High Speed Phenomena in Photonic Materials and Optical Bistability, D. Jaeger, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1280, 276–288 (1990).

Am. J. Phys. (1)

H. J. Simon, D. E. Mitchell, J. G. Watson, “Surface plasmons in silver films—a novel undergraduate experiment,” Am. J. Phys. 43, 630–636 (1975).
[CrossRef]

J. Lightwave Technol. (1)

B. L. Booth, “Low loss channel waveguides in polymers,” J. Lightwave Technol. 7, 1445–1453 (1989).
[CrossRef]

J. Opt. Quantum Electron. (1)

K. Welford, “Surface plasmon-polaritons and their uses,” J. Opt. Quantum Electron. 23, 1–27 (1991).
[CrossRef]

J. Opt. Soc. Am. B (1)

Phys. Rev. B (2)

P. B. Johnson, R. W. Christy, “Optical constants of noble metals,” Phys. Rev. B 6, 4370–4379 (1972).
[CrossRef]

W. H. Weber, “Comment on observation of an index-of-refraction-induced change in the Drude parameters of Ag films,” Phys. Rev. B 34, 1319–1321 (1986).
[CrossRef]

Rev. Mod. Phys. (1)

P. K. Tien, “Integrated optics and new wave phenomena optical waveguides,” Rev. Mod. Phys. 49, 361–420 (1977).
[CrossRef]

Science (1)

J. M. Guerra, M. Srinivasarao, R. S. Stein, “Photon tunneling microscopy of polymeric surface,” Science 262, 1395–1400 (1993).
[CrossRef] [PubMed]

Surf. Sci. (1)

I. Pockrand, “Surface plasma oscillations at silver surfaces with thin transparent and absorbing coatings,” Surf. Sci. 72, 577–588 (1978).
[CrossRef]

Z. Phys. (1)

E. Kretschmann, “The determination of the optical constants of metals by the excitation of surface plasmons,” Z. Phys. 241, 313–324 (1971).
[CrossRef]

Other (4)

M. E. Caldwell, E. M. Yeatman, “Optically addressed surface plasmon spatial light modulators,” in High Speed Phenomena in Photonic Materials and Optical Bistability, D. Jaeger, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1280, 276–288 (1990).

H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer-Verlag, Berlin, 1988), Chap. 2, pp. 4–13.

G. H. Meeten, Optical Properties of Polymers (Elsevier, New York, 1989), Chap 1, p. 31.

M. Born, E. Wolf, Principles of optics, 6th ed. (Pergamon, New York, 1980), Chap. 13, p. 632.

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (3)

Fig. 1
Fig. 1

Attenuated total reflection configuration used to measure reflectivity (in the case of ZrO2, metal is evaporated directly on the prism).

Fig. 2
Fig. 2

Reflectivity data for a ZrO2–silver–polyimide–air structure; θ is in degrees.

Fig. 3
Fig. 3

Reflectivity data for a glass–silver–polyimide–air structure; θ is in degrees.

Tables (1)

Tables Icon

Table 1 Real and Imaginary Parts of Polyimide Refractive Index np′ and np″, Film Thickness d3, and the Expected d3 Value from the Thickness versus Spinning Speed Graph Provided by the Product Manufacturer

Equations (8)

Equations on this page are rendered with MathJax. Learn more.

k SP = ω c ( 2 3 2 + 3 ) 1 / 2 ,
R = | r 123 | 2 = | r 12 + r 23 exp ( 2 j k 2 d 2 ) 1 + r 12 r 23 exp ( 2 j k 2 d 2 ) | 2 ,
r i j = j k i i k j j k i + i k j ,
k i ( or j ) = ω c ( i ( or j ) n 2 sin 2 θ ) 1 / 2 , i ( or j ) = 1 , 2 , 3 .
R = | r 1234 | 2 t 2 ,
r 1234 = r 12 + r 234 exp ( 2 j k 2 d 2 ) 1 + r 12 r 234 exp ( 2 j k 2 d 2 ) ,
r 234 = r 23 + r 34 exp ( 2 j k 3 d 3 ) 1 + r 23 r 34 exp ( 2 j k 3 d 3 ) .
t 2 = 4 n cos ( θ α ) [ 1 n 2 sin 2 ( θ α ) ] 1 / 2 { cos ( θ α ) + n [ 1 n 2 sin 2 ( θ α ) ] 1 / 2 } 2 .

Metrics