Abstract

A multicolor fluorescence imaging system applied to medical diagnostics is described. The system presented simultaneously records four fluorescence images in different wavelength bands, permitting low-resolution spectroscopy imaging. An arithmetic function image of the four spectral images is constructed by a pixel-to-pixel calculation and is presented on a monitor in false-color coding. A sensitive detector is required for minimizing the excitation energy necessary to obtain an image and thus avoid side effects on the investigated tissue. Characteristics of the system of importance for the detector sensitivity as well as image quality are discussed. A high degree of suppression of ambient background light is reached with this system by the use of a pulsed laser as an excitation source together with gated detection. Examples of fluorescence images from tumors on the hind legs and in the brain of rats injected with Photofrin are given.

© 1994 Optical Society of America

Full Article  |  PDF Article

References

  • View by:
  • |
  • |
  • |

  1. A. E. Profio, “Fluorescence diagnosis and dosimetry using porphyrins,” in Photodynamic Therapy of Neoplastic Tissue, D. Kessel, ed. (CRC, Boca Raton, Fla., 1990), Vol. 1, pp. 77–89.
  2. S. Andersson-Engels, B. C. Wilson, “In vivo fluorescence in clinical oncology: fundamental and practical issues,” J. Cell. Pharmacol. 3, 48–61 (1992).
  3. S. Svanberg, “Tissue diagnostics using lasers,” in Lasers in Medicine, G. Pettit, R. W. Waynant, eds. (Wiley, New York, to be published).
  4. S. Andersson-Engels, J. Johansson, K. Svanberg, S. Svanberg, “Fluorescence diagnostics and photochemical treatment of diseased tissue using lasers,” Anal. Chem. 61, 1367A–1373A (1989);Anal. Chem. 62, 19A–27A (1990).
    [PubMed]
  5. B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfield, G. Holtom, “Time resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
    [CrossRef] [PubMed]
  6. G. Müller, ed., Medical Optical Tomography: Functional Imaging and Monitoring, Vol. 11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993).
  7. J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983).
    [CrossRef]
  8. A. E. Profio, “Review of fluorescence diagnosis using porphyrins,” in Laser Surgery: Characterization and Therapeutics, K. Atsumi, S. N. Joffe, eds., Proc. Soc. Photo-Opt. Instrum. Eng.907, 150–156(1988).
  9. A. E. Profio, O. J. Balchum, F. Carstens, “Digital ground subtraction for fluorescence imaging,” Med. Phys. 13, 717–721 (1986).
    [CrossRef] [PubMed]
  10. K. J. Brodbeck, A. E. Profio, T. Frewin, O. J. Balchum, “A system for real time fluorescence imaging in color for tumor diagnosis,” Med. Phys. 14, 637–639 (1987).
    [CrossRef] [PubMed]
  11. G. Wagnières, Ch. Depeursinge, Ph. Monnier, M. Savary, P. Cornaz, A. Châtelain, H. van den Bergh, “Photodetection of early cancer by laser induced fluorescence of a tumor-selective dye: apparatus design and realization,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed.,Proc. Soc. Photo-Opt. Instrum. Eng.1203, 43–52 (1990).
  12. E. Unsöld, R. Baumgartner, W. Beyer, D. Jocham, H. Stepp, “Fluorescence detection and photodynamic treatment of photosensitized tumours in special consideration of urology,” Lasers Med. Sci. 5, 207–212 (1990).
    [CrossRef]
  13. B. Palcic, S. Lam, J. Hung, C. MacAuley, “Detection and localization of early lung cancer by imaging techniques,” Chest 99, 742–743 (1991).
    [CrossRef] [PubMed]
  14. S. Andersson-Engels, J. Ankerst, S. Montán, K. Svanberg, S. Svanberg, “Aspects of tumour demarcation in rats by means of laser-induced fluorescence and haematoporphyrin derivatives,” Lasers Med. Sci. 3, 239–248 (1988).
    [CrossRef]
  15. W. Lohmann, E. Paul, “Native fluorescence of unstained cryosections of the skin with melanomas and naevi,” Naturwis-senschaften 76, 424–426 (1989).
    [CrossRef]
  16. S. Lam, C. MacAuley, J. Hung, J. LeRiche, A. E. Profio, B. Palcic, “Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscopic device,” J. Thorac. Cardiovas. Surg. 105, 1035–1040 (1993).
  17. S. Montán, K. Svanberg, S. Svanberg, “Multi-color imaging and contrast enhancement in cancer-tumor localization using laser-induced fluorescence in hematoporphyrin-derivative-bearing tissue,” Opt. Lett. 10, 56–58 (1985).
    [CrossRef] [PubMed]
  18. P. S. Andersson, S. Montán, S. Svanberg, “Multispectral system for medical fluorescence imaging,” IEEE J. Quantum Electron. QE-23, 1798–1805 (1987).
    [CrossRef]
  19. S. Andersson-Engels, A. Brun, E. Kjellén, L. G. Salford, L.-G. Strömblad, K. Svanberg, S. Svanberg, “Identification of brain tumours in rats using laser-induced fluorescence and haematoporphyrin derivative,” Lasers Med. Sci. 4, 241–249 (1989).
    [CrossRef]
  20. S. Andersson-Engels, J. Johansson, S. Svanberg, “Multicolor fluorescence imaging system for tissue diagnostics,” in Bioimaging and Two-Dimensional Spectroscopy, L. C. Smith, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1205, 179–189 (1990).
  21. S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Malignant tumor and atherosclerotic plaque diagnosis using laser-induced fluorescence,” IEEE J. Quantum Electron. 26, 2207–2217 (1990).
    [CrossRef]
  22. R. Cubeddu, G. Canti, P. Taroni, G. Valentini, “Time-gated fluorescence imaging for the diagnosis of tumors in a murine model,” Photochem. Photobiol. 57, 480–485 (1993).
    [CrossRef] [PubMed]

1993 (2)

S. Lam, C. MacAuley, J. Hung, J. LeRiche, A. E. Profio, B. Palcic, “Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscopic device,” J. Thorac. Cardiovas. Surg. 105, 1035–1040 (1993).

R. Cubeddu, G. Canti, P. Taroni, G. Valentini, “Time-gated fluorescence imaging for the diagnosis of tumors in a murine model,” Photochem. Photobiol. 57, 480–485 (1993).
[CrossRef] [PubMed]

1992 (1)

S. Andersson-Engels, B. C. Wilson, “In vivo fluorescence in clinical oncology: fundamental and practical issues,” J. Cell. Pharmacol. 3, 48–61 (1992).

1991 (1)

B. Palcic, S. Lam, J. Hung, C. MacAuley, “Detection and localization of early lung cancer by imaging techniques,” Chest 99, 742–743 (1991).
[CrossRef] [PubMed]

1990 (2)

E. Unsöld, R. Baumgartner, W. Beyer, D. Jocham, H. Stepp, “Fluorescence detection and photodynamic treatment of photosensitized tumours in special consideration of urology,” Lasers Med. Sci. 5, 207–212 (1990).
[CrossRef]

S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Malignant tumor and atherosclerotic plaque diagnosis using laser-induced fluorescence,” IEEE J. Quantum Electron. 26, 2207–2217 (1990).
[CrossRef]

1989 (3)

S. Andersson-Engels, A. Brun, E. Kjellén, L. G. Salford, L.-G. Strömblad, K. Svanberg, S. Svanberg, “Identification of brain tumours in rats using laser-induced fluorescence and haematoporphyrin derivative,” Lasers Med. Sci. 4, 241–249 (1989).
[CrossRef]

W. Lohmann, E. Paul, “Native fluorescence of unstained cryosections of the skin with melanomas and naevi,” Naturwis-senschaften 76, 424–426 (1989).
[CrossRef]

S. Andersson-Engels, J. Johansson, K. Svanberg, S. Svanberg, “Fluorescence diagnostics and photochemical treatment of diseased tissue using lasers,” Anal. Chem. 61, 1367A–1373A (1989);Anal. Chem. 62, 19A–27A (1990).
[PubMed]

1988 (2)

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfield, G. Holtom, “Time resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

S. Andersson-Engels, J. Ankerst, S. Montán, K. Svanberg, S. Svanberg, “Aspects of tumour demarcation in rats by means of laser-induced fluorescence and haematoporphyrin derivatives,” Lasers Med. Sci. 3, 239–248 (1988).
[CrossRef]

1987 (2)

K. J. Brodbeck, A. E. Profio, T. Frewin, O. J. Balchum, “A system for real time fluorescence imaging in color for tumor diagnosis,” Med. Phys. 14, 637–639 (1987).
[CrossRef] [PubMed]

P. S. Andersson, S. Montán, S. Svanberg, “Multispectral system for medical fluorescence imaging,” IEEE J. Quantum Electron. QE-23, 1798–1805 (1987).
[CrossRef]

1986 (1)

A. E. Profio, O. J. Balchum, F. Carstens, “Digital ground subtraction for fluorescence imaging,” Med. Phys. 13, 717–721 (1986).
[CrossRef] [PubMed]

1985 (1)

Andersson, P. S.

P. S. Andersson, S. Montán, S. Svanberg, “Multispectral system for medical fluorescence imaging,” IEEE J. Quantum Electron. QE-23, 1798–1805 (1987).
[CrossRef]

Andersson-Engels, S.

S. Andersson-Engels, B. C. Wilson, “In vivo fluorescence in clinical oncology: fundamental and practical issues,” J. Cell. Pharmacol. 3, 48–61 (1992).

S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Malignant tumor and atherosclerotic plaque diagnosis using laser-induced fluorescence,” IEEE J. Quantum Electron. 26, 2207–2217 (1990).
[CrossRef]

S. Andersson-Engels, A. Brun, E. Kjellén, L. G. Salford, L.-G. Strömblad, K. Svanberg, S. Svanberg, “Identification of brain tumours in rats using laser-induced fluorescence and haematoporphyrin derivative,” Lasers Med. Sci. 4, 241–249 (1989).
[CrossRef]

S. Andersson-Engels, J. Johansson, K. Svanberg, S. Svanberg, “Fluorescence diagnostics and photochemical treatment of diseased tissue using lasers,” Anal. Chem. 61, 1367A–1373A (1989);Anal. Chem. 62, 19A–27A (1990).
[PubMed]

S. Andersson-Engels, J. Ankerst, S. Montán, K. Svanberg, S. Svanberg, “Aspects of tumour demarcation in rats by means of laser-induced fluorescence and haematoporphyrin derivatives,” Lasers Med. Sci. 3, 239–248 (1988).
[CrossRef]

S. Andersson-Engels, J. Johansson, S. Svanberg, “Multicolor fluorescence imaging system for tissue diagnostics,” in Bioimaging and Two-Dimensional Spectroscopy, L. C. Smith, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1205, 179–189 (1990).

Ankerst, J.

S. Andersson-Engels, J. Ankerst, S. Montán, K. Svanberg, S. Svanberg, “Aspects of tumour demarcation in rats by means of laser-induced fluorescence and haematoporphyrin derivatives,” Lasers Med. Sci. 3, 239–248 (1988).
[CrossRef]

Balchum, O. J.

K. J. Brodbeck, A. E. Profio, T. Frewin, O. J. Balchum, “A system for real time fluorescence imaging in color for tumor diagnosis,” Med. Phys. 14, 637–639 (1987).
[CrossRef] [PubMed]

A. E. Profio, O. J. Balchum, F. Carstens, “Digital ground subtraction for fluorescence imaging,” Med. Phys. 13, 717–721 (1986).
[CrossRef] [PubMed]

Baumgartner, R.

E. Unsöld, R. Baumgartner, W. Beyer, D. Jocham, H. Stepp, “Fluorescence detection and photodynamic treatment of photosensitized tumours in special consideration of urology,” Lasers Med. Sci. 5, 207–212 (1990).
[CrossRef]

Beyer, W.

E. Unsöld, R. Baumgartner, W. Beyer, D. Jocham, H. Stepp, “Fluorescence detection and photodynamic treatment of photosensitized tumours in special consideration of urology,” Lasers Med. Sci. 5, 207–212 (1990).
[CrossRef]

Brodbeck, K. J.

K. J. Brodbeck, A. E. Profio, T. Frewin, O. J. Balchum, “A system for real time fluorescence imaging in color for tumor diagnosis,” Med. Phys. 14, 637–639 (1987).
[CrossRef] [PubMed]

Brun, A.

S. Andersson-Engels, A. Brun, E. Kjellén, L. G. Salford, L.-G. Strömblad, K. Svanberg, S. Svanberg, “Identification of brain tumours in rats using laser-induced fluorescence and haematoporphyrin derivative,” Lasers Med. Sci. 4, 241–249 (1989).
[CrossRef]

Canti, G.

R. Cubeddu, G. Canti, P. Taroni, G. Valentini, “Time-gated fluorescence imaging for the diagnosis of tumors in a murine model,” Photochem. Photobiol. 57, 480–485 (1993).
[CrossRef] [PubMed]

Carstens, F.

A. E. Profio, O. J. Balchum, F. Carstens, “Digital ground subtraction for fluorescence imaging,” Med. Phys. 13, 717–721 (1986).
[CrossRef] [PubMed]

Chance, B.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfield, G. Holtom, “Time resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Châtelain, A.

G. Wagnières, Ch. Depeursinge, Ph. Monnier, M. Savary, P. Cornaz, A. Châtelain, H. van den Bergh, “Photodetection of early cancer by laser induced fluorescence of a tumor-selective dye: apparatus design and realization,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed.,Proc. Soc. Photo-Opt. Instrum. Eng.1203, 43–52 (1990).

Cornaz, P.

G. Wagnières, Ch. Depeursinge, Ph. Monnier, M. Savary, P. Cornaz, A. Châtelain, H. van den Bergh, “Photodetection of early cancer by laser induced fluorescence of a tumor-selective dye: apparatus design and realization,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed.,Proc. Soc. Photo-Opt. Instrum. Eng.1203, 43–52 (1990).

Cubeddu, R.

R. Cubeddu, G. Canti, P. Taroni, G. Valentini, “Time-gated fluorescence imaging for the diagnosis of tumors in a murine model,” Photochem. Photobiol. 57, 480–485 (1993).
[CrossRef] [PubMed]

Depeursinge, Ch.

G. Wagnières, Ch. Depeursinge, Ph. Monnier, M. Savary, P. Cornaz, A. Châtelain, H. van den Bergh, “Photodetection of early cancer by laser induced fluorescence of a tumor-selective dye: apparatus design and realization,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed.,Proc. Soc. Photo-Opt. Instrum. Eng.1203, 43–52 (1990).

Fountain, M.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfield, G. Holtom, “Time resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Frewin, T.

K. J. Brodbeck, A. E. Profio, T. Frewin, O. J. Balchum, “A system for real time fluorescence imaging in color for tumor diagnosis,” Med. Phys. 14, 637–639 (1987).
[CrossRef] [PubMed]

Greenfield, R.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfield, G. Holtom, “Time resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Holtom, G.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfield, G. Holtom, “Time resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Hung, J.

S. Lam, C. MacAuley, J. Hung, J. LeRiche, A. E. Profio, B. Palcic, “Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscopic device,” J. Thorac. Cardiovas. Surg. 105, 1035–1040 (1993).

B. Palcic, S. Lam, J. Hung, C. MacAuley, “Detection and localization of early lung cancer by imaging techniques,” Chest 99, 742–743 (1991).
[CrossRef] [PubMed]

Jocham, D.

E. Unsöld, R. Baumgartner, W. Beyer, D. Jocham, H. Stepp, “Fluorescence detection and photodynamic treatment of photosensitized tumours in special consideration of urology,” Lasers Med. Sci. 5, 207–212 (1990).
[CrossRef]

Johansson, J.

S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Malignant tumor and atherosclerotic plaque diagnosis using laser-induced fluorescence,” IEEE J. Quantum Electron. 26, 2207–2217 (1990).
[CrossRef]

S. Andersson-Engels, J. Johansson, K. Svanberg, S. Svanberg, “Fluorescence diagnostics and photochemical treatment of diseased tissue using lasers,” Anal. Chem. 61, 1367A–1373A (1989);Anal. Chem. 62, 19A–27A (1990).
[PubMed]

S. Andersson-Engels, J. Johansson, S. Svanberg, “Multicolor fluorescence imaging system for tissue diagnostics,” in Bioimaging and Two-Dimensional Spectroscopy, L. C. Smith, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1205, 179–189 (1990).

Kent, J.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfield, G. Holtom, “Time resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Kjellén, E.

S. Andersson-Engels, A. Brun, E. Kjellén, L. G. Salford, L.-G. Strömblad, K. Svanberg, S. Svanberg, “Identification of brain tumours in rats using laser-induced fluorescence and haematoporphyrin derivative,” Lasers Med. Sci. 4, 241–249 (1989).
[CrossRef]

Lakowicz, J. R.

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983).
[CrossRef]

Lam, S.

S. Lam, C. MacAuley, J. Hung, J. LeRiche, A. E. Profio, B. Palcic, “Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscopic device,” J. Thorac. Cardiovas. Surg. 105, 1035–1040 (1993).

B. Palcic, S. Lam, J. Hung, C. MacAuley, “Detection and localization of early lung cancer by imaging techniques,” Chest 99, 742–743 (1991).
[CrossRef] [PubMed]

LeRiche, J.

S. Lam, C. MacAuley, J. Hung, J. LeRiche, A. E. Profio, B. Palcic, “Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscopic device,” J. Thorac. Cardiovas. Surg. 105, 1035–1040 (1993).

Lohmann, W.

W. Lohmann, E. Paul, “Native fluorescence of unstained cryosections of the skin with melanomas and naevi,” Naturwis-senschaften 76, 424–426 (1989).
[CrossRef]

MacAuley, C.

S. Lam, C. MacAuley, J. Hung, J. LeRiche, A. E. Profio, B. Palcic, “Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscopic device,” J. Thorac. Cardiovas. Surg. 105, 1035–1040 (1993).

B. Palcic, S. Lam, J. Hung, C. MacAuley, “Detection and localization of early lung cancer by imaging techniques,” Chest 99, 742–743 (1991).
[CrossRef] [PubMed]

McCully, K.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfield, G. Holtom, “Time resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Monnier, Ph.

G. Wagnières, Ch. Depeursinge, Ph. Monnier, M. Savary, P. Cornaz, A. Châtelain, H. van den Bergh, “Photodetection of early cancer by laser induced fluorescence of a tumor-selective dye: apparatus design and realization,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed.,Proc. Soc. Photo-Opt. Instrum. Eng.1203, 43–52 (1990).

Montán, S.

S. Andersson-Engels, J. Ankerst, S. Montán, K. Svanberg, S. Svanberg, “Aspects of tumour demarcation in rats by means of laser-induced fluorescence and haematoporphyrin derivatives,” Lasers Med. Sci. 3, 239–248 (1988).
[CrossRef]

P. S. Andersson, S. Montán, S. Svanberg, “Multispectral system for medical fluorescence imaging,” IEEE J. Quantum Electron. QE-23, 1798–1805 (1987).
[CrossRef]

S. Montán, K. Svanberg, S. Svanberg, “Multi-color imaging and contrast enhancement in cancer-tumor localization using laser-induced fluorescence in hematoporphyrin-derivative-bearing tissue,” Opt. Lett. 10, 56–58 (1985).
[CrossRef] [PubMed]

Nioka, S.

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfield, G. Holtom, “Time resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Palcic, B.

S. Lam, C. MacAuley, J. Hung, J. LeRiche, A. E. Profio, B. Palcic, “Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscopic device,” J. Thorac. Cardiovas. Surg. 105, 1035–1040 (1993).

B. Palcic, S. Lam, J. Hung, C. MacAuley, “Detection and localization of early lung cancer by imaging techniques,” Chest 99, 742–743 (1991).
[CrossRef] [PubMed]

Paul, E.

W. Lohmann, E. Paul, “Native fluorescence of unstained cryosections of the skin with melanomas and naevi,” Naturwis-senschaften 76, 424–426 (1989).
[CrossRef]

Profio, A. E.

S. Lam, C. MacAuley, J. Hung, J. LeRiche, A. E. Profio, B. Palcic, “Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscopic device,” J. Thorac. Cardiovas. Surg. 105, 1035–1040 (1993).

K. J. Brodbeck, A. E. Profio, T. Frewin, O. J. Balchum, “A system for real time fluorescence imaging in color for tumor diagnosis,” Med. Phys. 14, 637–639 (1987).
[CrossRef] [PubMed]

A. E. Profio, O. J. Balchum, F. Carstens, “Digital ground subtraction for fluorescence imaging,” Med. Phys. 13, 717–721 (1986).
[CrossRef] [PubMed]

A. E. Profio, “Review of fluorescence diagnosis using porphyrins,” in Laser Surgery: Characterization and Therapeutics, K. Atsumi, S. N. Joffe, eds., Proc. Soc. Photo-Opt. Instrum. Eng.907, 150–156(1988).

A. E. Profio, “Fluorescence diagnosis and dosimetry using porphyrins,” in Photodynamic Therapy of Neoplastic Tissue, D. Kessel, ed. (CRC, Boca Raton, Fla., 1990), Vol. 1, pp. 77–89.

Salford, L. G.

S. Andersson-Engels, A. Brun, E. Kjellén, L. G. Salford, L.-G. Strömblad, K. Svanberg, S. Svanberg, “Identification of brain tumours in rats using laser-induced fluorescence and haematoporphyrin derivative,” Lasers Med. Sci. 4, 241–249 (1989).
[CrossRef]

Savary, M.

G. Wagnières, Ch. Depeursinge, Ph. Monnier, M. Savary, P. Cornaz, A. Châtelain, H. van den Bergh, “Photodetection of early cancer by laser induced fluorescence of a tumor-selective dye: apparatus design and realization,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed.,Proc. Soc. Photo-Opt. Instrum. Eng.1203, 43–52 (1990).

Stenram, U.

S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Malignant tumor and atherosclerotic plaque diagnosis using laser-induced fluorescence,” IEEE J. Quantum Electron. 26, 2207–2217 (1990).
[CrossRef]

Stepp, H.

E. Unsöld, R. Baumgartner, W. Beyer, D. Jocham, H. Stepp, “Fluorescence detection and photodynamic treatment of photosensitized tumours in special consideration of urology,” Lasers Med. Sci. 5, 207–212 (1990).
[CrossRef]

Strömblad, L.-G.

S. Andersson-Engels, A. Brun, E. Kjellén, L. G. Salford, L.-G. Strömblad, K. Svanberg, S. Svanberg, “Identification of brain tumours in rats using laser-induced fluorescence and haematoporphyrin derivative,” Lasers Med. Sci. 4, 241–249 (1989).
[CrossRef]

Svanberg, K.

S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Malignant tumor and atherosclerotic plaque diagnosis using laser-induced fluorescence,” IEEE J. Quantum Electron. 26, 2207–2217 (1990).
[CrossRef]

S. Andersson-Engels, A. Brun, E. Kjellén, L. G. Salford, L.-G. Strömblad, K. Svanberg, S. Svanberg, “Identification of brain tumours in rats using laser-induced fluorescence and haematoporphyrin derivative,” Lasers Med. Sci. 4, 241–249 (1989).
[CrossRef]

S. Andersson-Engels, J. Johansson, K. Svanberg, S. Svanberg, “Fluorescence diagnostics and photochemical treatment of diseased tissue using lasers,” Anal. Chem. 61, 1367A–1373A (1989);Anal. Chem. 62, 19A–27A (1990).
[PubMed]

S. Andersson-Engels, J. Ankerst, S. Montán, K. Svanberg, S. Svanberg, “Aspects of tumour demarcation in rats by means of laser-induced fluorescence and haematoporphyrin derivatives,” Lasers Med. Sci. 3, 239–248 (1988).
[CrossRef]

S. Montán, K. Svanberg, S. Svanberg, “Multi-color imaging and contrast enhancement in cancer-tumor localization using laser-induced fluorescence in hematoporphyrin-derivative-bearing tissue,” Opt. Lett. 10, 56–58 (1985).
[CrossRef] [PubMed]

Svanberg, S.

S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Malignant tumor and atherosclerotic plaque diagnosis using laser-induced fluorescence,” IEEE J. Quantum Electron. 26, 2207–2217 (1990).
[CrossRef]

S. Andersson-Engels, A. Brun, E. Kjellén, L. G. Salford, L.-G. Strömblad, K. Svanberg, S. Svanberg, “Identification of brain tumours in rats using laser-induced fluorescence and haematoporphyrin derivative,” Lasers Med. Sci. 4, 241–249 (1989).
[CrossRef]

S. Andersson-Engels, J. Johansson, K. Svanberg, S. Svanberg, “Fluorescence diagnostics and photochemical treatment of diseased tissue using lasers,” Anal. Chem. 61, 1367A–1373A (1989);Anal. Chem. 62, 19A–27A (1990).
[PubMed]

S. Andersson-Engels, J. Ankerst, S. Montán, K. Svanberg, S. Svanberg, “Aspects of tumour demarcation in rats by means of laser-induced fluorescence and haematoporphyrin derivatives,” Lasers Med. Sci. 3, 239–248 (1988).
[CrossRef]

P. S. Andersson, S. Montán, S. Svanberg, “Multispectral system for medical fluorescence imaging,” IEEE J. Quantum Electron. QE-23, 1798–1805 (1987).
[CrossRef]

S. Montán, K. Svanberg, S. Svanberg, “Multi-color imaging and contrast enhancement in cancer-tumor localization using laser-induced fluorescence in hematoporphyrin-derivative-bearing tissue,” Opt. Lett. 10, 56–58 (1985).
[CrossRef] [PubMed]

S. Andersson-Engels, J. Johansson, S. Svanberg, “Multicolor fluorescence imaging system for tissue diagnostics,” in Bioimaging and Two-Dimensional Spectroscopy, L. C. Smith, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1205, 179–189 (1990).

S. Svanberg, “Tissue diagnostics using lasers,” in Lasers in Medicine, G. Pettit, R. W. Waynant, eds. (Wiley, New York, to be published).

Taroni, P.

R. Cubeddu, G. Canti, P. Taroni, G. Valentini, “Time-gated fluorescence imaging for the diagnosis of tumors in a murine model,” Photochem. Photobiol. 57, 480–485 (1993).
[CrossRef] [PubMed]

Unsöld, E.

E. Unsöld, R. Baumgartner, W. Beyer, D. Jocham, H. Stepp, “Fluorescence detection and photodynamic treatment of photosensitized tumours in special consideration of urology,” Lasers Med. Sci. 5, 207–212 (1990).
[CrossRef]

Valentini, G.

R. Cubeddu, G. Canti, P. Taroni, G. Valentini, “Time-gated fluorescence imaging for the diagnosis of tumors in a murine model,” Photochem. Photobiol. 57, 480–485 (1993).
[CrossRef] [PubMed]

van den Bergh, H.

G. Wagnières, Ch. Depeursinge, Ph. Monnier, M. Savary, P. Cornaz, A. Châtelain, H. van den Bergh, “Photodetection of early cancer by laser induced fluorescence of a tumor-selective dye: apparatus design and realization,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed.,Proc. Soc. Photo-Opt. Instrum. Eng.1203, 43–52 (1990).

Wagnières, G.

G. Wagnières, Ch. Depeursinge, Ph. Monnier, M. Savary, P. Cornaz, A. Châtelain, H. van den Bergh, “Photodetection of early cancer by laser induced fluorescence of a tumor-selective dye: apparatus design and realization,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed.,Proc. Soc. Photo-Opt. Instrum. Eng.1203, 43–52 (1990).

Wilson, B. C.

S. Andersson-Engels, B. C. Wilson, “In vivo fluorescence in clinical oncology: fundamental and practical issues,” J. Cell. Pharmacol. 3, 48–61 (1992).

Anal. Biochem. (1)

B. Chance, S. Nioka, J. Kent, K. McCully, M. Fountain, R. Greenfield, G. Holtom, “Time resolved spectroscopy of hemoglobin and myoglobin in resting and ischemic muscle,” Anal. Biochem. 174, 698–707 (1988).
[CrossRef] [PubMed]

Anal. Chem. (1)

S. Andersson-Engels, J. Johansson, K. Svanberg, S. Svanberg, “Fluorescence diagnostics and photochemical treatment of diseased tissue using lasers,” Anal. Chem. 61, 1367A–1373A (1989);Anal. Chem. 62, 19A–27A (1990).
[PubMed]

Chest (1)

B. Palcic, S. Lam, J. Hung, C. MacAuley, “Detection and localization of early lung cancer by imaging techniques,” Chest 99, 742–743 (1991).
[CrossRef] [PubMed]

IEEE J. Quantum Electron. (2)

P. S. Andersson, S. Montán, S. Svanberg, “Multispectral system for medical fluorescence imaging,” IEEE J. Quantum Electron. QE-23, 1798–1805 (1987).
[CrossRef]

S. Andersson-Engels, J. Johansson, U. Stenram, K. Svanberg, S. Svanberg, “Malignant tumor and atherosclerotic plaque diagnosis using laser-induced fluorescence,” IEEE J. Quantum Electron. 26, 2207–2217 (1990).
[CrossRef]

J. Cell. Pharmacol. (1)

S. Andersson-Engels, B. C. Wilson, “In vivo fluorescence in clinical oncology: fundamental and practical issues,” J. Cell. Pharmacol. 3, 48–61 (1992).

J. Thorac. Cardiovas. Surg. (1)

S. Lam, C. MacAuley, J. Hung, J. LeRiche, A. E. Profio, B. Palcic, “Detection of dysplasia and carcinoma in situ with a lung imaging fluorescence endoscopic device,” J. Thorac. Cardiovas. Surg. 105, 1035–1040 (1993).

Lasers Med. Sci. (3)

S. Andersson-Engels, A. Brun, E. Kjellén, L. G. Salford, L.-G. Strömblad, K. Svanberg, S. Svanberg, “Identification of brain tumours in rats using laser-induced fluorescence and haematoporphyrin derivative,” Lasers Med. Sci. 4, 241–249 (1989).
[CrossRef]

S. Andersson-Engels, J. Ankerst, S. Montán, K. Svanberg, S. Svanberg, “Aspects of tumour demarcation in rats by means of laser-induced fluorescence and haematoporphyrin derivatives,” Lasers Med. Sci. 3, 239–248 (1988).
[CrossRef]

E. Unsöld, R. Baumgartner, W. Beyer, D. Jocham, H. Stepp, “Fluorescence detection and photodynamic treatment of photosensitized tumours in special consideration of urology,” Lasers Med. Sci. 5, 207–212 (1990).
[CrossRef]

Med. Phys. (2)

A. E. Profio, O. J. Balchum, F. Carstens, “Digital ground subtraction for fluorescence imaging,” Med. Phys. 13, 717–721 (1986).
[CrossRef] [PubMed]

K. J. Brodbeck, A. E. Profio, T. Frewin, O. J. Balchum, “A system for real time fluorescence imaging in color for tumor diagnosis,” Med. Phys. 14, 637–639 (1987).
[CrossRef] [PubMed]

Naturwis-senschaften (1)

W. Lohmann, E. Paul, “Native fluorescence of unstained cryosections of the skin with melanomas and naevi,” Naturwis-senschaften 76, 424–426 (1989).
[CrossRef]

Opt. Lett. (1)

Photochem. Photobiol. (1)

R. Cubeddu, G. Canti, P. Taroni, G. Valentini, “Time-gated fluorescence imaging for the diagnosis of tumors in a murine model,” Photochem. Photobiol. 57, 480–485 (1993).
[CrossRef] [PubMed]

Other (7)

S. Andersson-Engels, J. Johansson, S. Svanberg, “Multicolor fluorescence imaging system for tissue diagnostics,” in Bioimaging and Two-Dimensional Spectroscopy, L. C. Smith, ed., Proc. Soc. Photo-Opt. Instrum. Eng.1205, 179–189 (1990).

G. Wagnières, Ch. Depeursinge, Ph. Monnier, M. Savary, P. Cornaz, A. Châtelain, H. van den Bergh, “Photodetection of early cancer by laser induced fluorescence of a tumor-selective dye: apparatus design and realization,” in Photodynamic Therapy: Mechanisms II, T. J. Dougherty, ed.,Proc. Soc. Photo-Opt. Instrum. Eng.1203, 43–52 (1990).

S. Svanberg, “Tissue diagnostics using lasers,” in Lasers in Medicine, G. Pettit, R. W. Waynant, eds. (Wiley, New York, to be published).

A. E. Profio, “Fluorescence diagnosis and dosimetry using porphyrins,” in Photodynamic Therapy of Neoplastic Tissue, D. Kessel, ed. (CRC, Boca Raton, Fla., 1990), Vol. 1, pp. 77–89.

G. Müller, ed., Medical Optical Tomography: Functional Imaging and Monitoring, Vol. 11 of SPIE Institute Series (Society of Photo-Optical Instrumentation Engineers, Bellingham, Wash., 1993).

J. R. Lakowicz, Principles of Fluorescence Spectroscopy (Plenum, New York, 1983).
[CrossRef]

A. E. Profio, “Review of fluorescence diagnosis using porphyrins,” in Laser Surgery: Characterization and Therapeutics, K. Atsumi, S. N. Joffe, eds., Proc. Soc. Photo-Opt. Instrum. Eng.907, 150–156(1988).

Cited By

OSA participates in CrossRef's Cited-By Linking service. Citing articles from OSA journals and other participating publishers are listed here.

Alert me when this article is cited.


Figures (6)

Fig. 1
Fig. 1

Setup of the multicolor fluorescence imaging system.

Fig. 2
Fig. 2

Plots of the recorded signal as a function of detected light level for two different gains of the single MCP image intensifier. The light intensities used for the recordings with high gain were considerably lower than for the low-gain measurements.

Fig. 3
Fig. 3

Plot of the MTF of the system as a function of linewidth in a striped test object.

Fig. 4
Fig. 4

Fluorescence images at 630, 600, and 470 nm, corrected for the spatial sensitivity variation in the system, are shown together with an image calculated pixel by pixel as F = [I(630) − k × I(600)]/I(470). The images show the same area (10 mm × 10 mm) of a rat muscle on the right hind leg. At 1:00 p.m. in the images a 1.5 mm × 3 mm tumor is present. The intensities in a cross section through the images are illustrated below each image. The fluorescence emission spectra from the tumor region and the surrounding muscle are shown as well. The last part of the figure shows a histogram, presenting the number of pixels with a certain function value in the processed image versus the function value. An insert of the processed image with all pixels below the indicated threshold represented as black and all above the same threshold as white is also shown. The data were accumulated for 50 readout following 337-nm excitation with the system with one MCP.

Fig. 5
Fig. 5

Two examples of raw data and processed multicolor fluorescence images of tumors in rats, recorded under the same conditions as in Fig. 4, are shown, (a) Inoculated adenocarcinoma tumor growing in the hind leg muscle is shown in the upper-left corner of the images, (b) inoculated brain tumor is present in the lower-left corner of the images.

Fig. 6
Fig. 6

Examples of images of an inoculated adenocarcinoma tumor in the muscle recorded with two MCP's at lower gain but otherwise under the same conditions as in Figs. 4 and 5. The tumor is located near the center of the images.

Metrics